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A NOTE ON A CONJECTURED NESBITT TYPE INEQUALITY

Shanhe Wu and Ovidiu Furdui*

Abstract. In this note, a modified version of a conjectured Nesbitt type
inequality is given and a generalization of Nesbitt’s inequality involving three
parameters is established.

1. INTRODUCTION

Nesbitt’s inequality, (see [3] or [5]), states that if x, y, and z are positive real
numbers, then

(1)
x

y + z
+

y

z + x
+

z

x + y
≥ 3

2
,

with equality if and only if the three variables are equal. The motivation of this
note is the following Nesbitt type inequality conjectured in [7].

Conjecture 1. Let x1, x2, · · · , xn be positive real numbers, n ≥ 2, α ≤ 1
2 .

Then,

(2)
(

x1

x1 + x2

)α

+
(

x2

x2 + x3

)α

+ · · ·+
(

xn−1

xn−1 + xn

)α

+
(

xn

xn + x1

)α

≤ n

2α
.

As stated the conjecture is not valid, a counterexample being n = 4, α = 1
2 ,

and x1, x2, x3, and x4 positive real numbers such that x2
x1

= x3
x2

= x4
x3

= 0.1 and
x1
x4

= 1000. A calculation shows that

3√
1.1

+
1√
1001

= 2.8919 >
4√
2

= 2.8284,
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which proves that the conjecture is false. In this paper we prove that, under the
additional hypothesis that n ≤ α+1

α , inequality (2) becomes valid and we will
also establish a new generalization of Nesbitt’s inequality (1) by introducing three
parameters. It is worth mentioning that inequality (1) is a particular case of Peixoto’s
inequality, (see [6]). For related cyclic type inequalities the interested reader is
reffered to [1] and [2].

2. A MODIFIED VERSION OF THE CONJECTURED NESBITT TYPE INEQUALITY

In this section we prove that if n is a positive integer that verifies the additional
hypothesis that n ≤ α+1

α then the conjecture is true and we will give the proof of
it. Our main result is the following theorem.

Theorem 2. 1) Let 0 ≤ α ≤ 1 and let x ≥ 0. The following inequality holds

1
(1 + x)α

+
(

x

1 + x

)α

≤ 2
2α

.

2) Let x1, x2, · · · , xn be positive real numbers such that x 1x2 · · ·xn = 1. Let
3 ≤ n ≤ α+1

α and let 0 < α ≤ 1
2 . The following inequality holds

1
(1 + x1)α

+
1

(1 + x2)α
+ · · ·+ 1

(1 + xn)α
≤ n

2α
.

Before we give the proof of Theorem 2 we collect some lemmas that we need for
proving the main result of the paper. Recall that, the vector x = (x1, x2, · · · , xn)
majorizes the vector y = (y1, y2, · · · , yn), and we write x � y, if and only if the
following conditions are satisfied



x1 ≥ y1,

x1 + x2 ≥ y1 + y2,

...

x1 + x2 + · · ·+ xn−1 ≥ y1 + y2 + · · ·+ yn−1,

x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn.

Lemma 3. (The Majorization Inequality). If x1, x2, · · · , xn, y1, y2, · · · , yn are
real numbers from an interval I such that the vector x = (x 1, x2, · · · , xn) majorizes
the vector y = (y1, y2, · · · , yn), and if f : I → R is a convex (concave) function
then

f(x1) + f(x2) + · · ·+ f(xn) ≥ (≤)f(y1) + f(y2) + · · ·+ f(yn).
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For topics related to the theory of majorization and its applications the interested
reader may consult [4].

Lemma 4. Let 0 < α ≤ 1
2 and let n ≥ 3 be a natural number such that

n ≤ α+1
α . The following inequalities hold


x1−n α

α+1 − 1 + x

1 + xn−1
≤ 0, 0 ≤ x ≤ 1

x1−n α
α+1 − 1 + x

1 + xn−1
≥ 0, x ≥ 1.

Proof. Let u : [0,∞) → R be the function defined by

u(x) = x1−n α
α+1 − 1 + x

1 + xn−1
.

First we consider the case when 0 ≤ x ≤ 1. We have, since n−1 ≥ 1, that xn−1 ≤
x, and this implies that 1+x

1+xn−1 ≥ 1. It follows that u(x) ≤ x1−n α
α+1 −1 ≤ 0. When

x ≥ 1 we have that 1+x
1+xn−1 ≤ 1 which implies that u(x) ≥ x1−n α

α+1 − 1 ≥ 0, and
the lemma is proved.

Lemma 5. Let 0 < α ≤ 1 and let n ≤ α+1
α . Then for all x ≥ 0 the following

inequality holds
n − 1

(1 + x)α
+
(

xn−1

1 + xn−1

)α

≤ n

2α
.

Proof. Let f : [0,∞) → R be the function defined by

f(x) =
n − 1

(1 + x)α
+
(

xn−1

1 + xn−1

)α

.

A calculation shows that

f ′(x) = − α(n − 1)
(1 + x)α+1xα+1−nα

(
xα+1−nα −

(
1 + x

1 + xn−1

)α+1
)

.

It follows that the sign of f ′ is given by the sign of

x1−n α
α+1 − 1 + x

1 + xn−1
.

An application of Lemma 4 shows that f ′(x) ≥ 0 when x ∈ (0, 1] and f ′(x) ≤ 0
when x ≥ 1. It follows that f increases on the interval [0, 1] and it decreases on
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[1,∞), and hence, f attains its maximum at 1. Thus f(x) ≤ f(1) = n
2α and the

lemma is proved.
Now we are ready to give the proof of Theorem 2 which is based on an applica-

tion of the Majorization Inequality combined with the classical Jensen’s Inequality
for concave functions.

Proof of Theorem 2.

(1) If α = 0 or α = 1 there is nothing to prove. So let α ∈ (0, 1). Let
g : [0,∞) → R be the function defined by

g(x) =
1

(1 + x)α
+
(

x

1 + x

)α

.

A calculation shows that

g′(x) =
α(1 − x1−α)

x1−α(1 + x)α+1
.

Thus g increases on [0, 1] and it decreases on the interval [1,∞) attaining its
maximum at 1. It follows that g(x) ≤ g(1) = 2

2α and the first part of the
theorem is proved.

(2) Let n ≥ 3. Let x1 = et1, x2 = et2, · · · , xn = etn . The inequality to prove
reads

1
(1+et1)α

+
1

(1+et2)α
+· · ·+ 1

(1 + etn)α
≤ n

2α
, subject to t1+t2+· · ·+tn = 0.

Let h : R → R be the function defined by

h(t) =
1

(1 + et)α
.

A calculation shows that

h′(t) = − αet

(1 + et)α+1
and h′′(t) =

αet(αet − 1)
(1 + et)α+2

.

Thus h has exactly one inflection point namely k = ln 1
α . We distinguish here

two cases.

Case 1. k ≥ t1 ≥ t2 ≥ · · · ≥ tn. Since h is concave on (−∞, k), it follows,
based on Jensen’s inequality for concave functions, that

n∑
j=1

h(tj) ≤ nh

(
t1 + t2 + · · ·+ tn

n

)
= nh(0) =

n

2α
.
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Case 2. There is an integer m such that t1 ≥ t2 ≥ · · · ≥ tm ≥ k ≥ tm+1 ≥
· · · ≥ tn. We note that

(t1 + t2 + · · ·+ tm − (m − 1)k, k, · · · , k) � (t1, t2, · · · , tm).

It follows, based on Lemma 3 combined with the fact that h is convex on (k,∞),
that

h(t1) + h(t2) + · · ·+ h(tm) ≤ (m− 1)h(k) + h(t1 + t2 + · · ·+ tm − (m − 1)k).

This implies that

(3)

n∑
j=1

h(tj)

≤ (m− 1)h(k)+h(tm+1)+· · ·+h(tn)+h(t1+t2+· · ·+tm−(m− 1)k).

On the other hand, since h is concave on (−∞, k) we get, based on Jensen’s
Inequality, that

(4)
(m − 1)h(k) + h(tm+1) + · · ·+ h(tn)

≤ (n − 1)h
(

(m− 1)k + tm+1 + · · ·+ tn
n − 1

)
.

Combining (3) and (4) we obtain that

(5)

n∑
j=1

h(tj)

≤ (n−1)h
(
(m−1)k+tm+1+ · · ·+tn

n−1

)
+h(t1+t2+ · · ·+tm−(m−1)k).

Let
t∗ =

(m− 1)k + tm+1 + · · ·+ tn
n − 1

,

and we note that (n − 1)t∗ + t1 + t2 + · · ·+ tm − (m − 1)k = 0. Thus, we have
n∑

j=1

h(tj)≤(n−1)h (t∗)+h(−(n−1)t∗) =
n−1

(1+et∗)α
+

(
e(n−1)t∗

1 + e(n−1)t∗

)α

, (t∗ < 0).

This implies, by letting et∗ = x, that it suffices to study the maximum of the
function

f(x) =
n − 1

(1 + x)α
+
(

xn−1

1 + xn−1

)α

over the interval (0, 1). An application of Lemma 5 shows that the maximum of f
equals n

2α and the theorem is proved.
Next we give the modified version of inequality (2).
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Theorem 6. Let x1, x2, · · · , xn be positive real numbers, let 3 ≤ n ≤ α+1
α and

let 0 < α ≤ 1
2 . Then,

(
x1

x1 + x2

)α

+
(

x2

x2 + x3

)α

+ · · ·+
(

xn−1

xn−1 + xn

)α

+
(

xn

xn + x1

)α

≤ n

2α
.

Proof. The inequality follows by using the substitutions

x1 �−→ x2

x1
, x2 �−→ x3

x2
, · · · , xn−1 �−→ xn

xn−1
, xn �−→ x1

xn

combined with the second part of Theorem 2.

3. A PARAMETRIZED NESBITT’S INEQUALITY

Theorem 7. Let x, y, z, tx + ky + lz, ty + kz + lx, tz + kx + ly be positive
real numbers and let −k − l < t ≤ k+l

2 . Then,

(6)
x

tx + ky + lz
+

y

ty + kz + lx
+

z

tz + kx + ly
≥ 3

t + k + l
,

with equality if and only if t = k = l or x = y = z.

Proof. We have, based on Cauchy-Schwarz inequality, that
(

x

tx + ky + lz
+

y

ty + kz + lx
+

z

tz + kx + ly

)

· (x(tx + ky + lz) + y(ty + kz + lx) + z(tz + kx + ly))

is greater than or equal to (x + y + z)2. It follows that

(7)

x

tx + ky + lz
+

y

ty + kz + lx
+

z

tz + kx + ly

≥ (x + y + z)2

x(tx + ky + lz) + y(ty + kz + lx) + z(tz + kx + ly)
,

whith equality if and only if

(8) tx + ky + lz = ty + kz + lx = tz + kx + ly.

On the other hand, direct calculations give
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(9)

(x+y+z)2

x(tx+ky+lz)+y(ty+kz+lx)+z(tz+kx+ly)

=
3

t+k+l
+

(k+l−2t)(x2+y2+z2−xy−yz−zx)
(t+k+l)[x(tx+ky+lz)+y(ty+kz+lx)+z(tz+kx+ly)]

=
3

t+k+l
+

(k+l−2t)[(x−y)2+(y−z)2+(z−x)2]
2(t+k+l)[x(tx+ky+lz)+y(ty+kz+lx)+z(tz+kx+ly)]

≥ 3
t+k+l

.

The equality holds in inequality (9) if and only if

(10) k + l = 2t or x = y = z.

Combining (7) and (9) we obtain the desired inequality (6). To establish the cases
of equality, we have, based on (8) and (10), that equality holds in (6) if and only if
t = k = l or x = y = z, and this completes the proof of Theorem 7.

Corollary 8. If x, y, z are positive real numbers and 0 < t ≤ 1, then
x

tx + y + z
+

y

ty + z + x
+

z

tz + x + y
≥ 3

t + 2
.

Proof. This follows from Theorem 7 when k = l = 1 and 0 < t ≤ 1.

Corollary 9. If x, y, z, k, l are positive real numbers, then
x

ky + lz
+

y

kz + lx
+

z

kx + ly
≥ 3

k + l
.

Proof. This follows from Theorem 7 when t = 0.
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