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INTEGRATION WITH ONE-DIMENSIONAL SPACE OF GAUGES

Piotr Sworowski

Abstract. We offer an alternative definition for the H1-integral of Garces,
Lee, and Zhao.

1. INTRODUCTION

1.1. H1-integral

The H1-integral has been introduced by Garces, Lee, and Zhao [3], in an attempt
to define an integral with nearly the Kurzweil–Henstock integral power, but in terms
of Moore–Smith limits. Later advances in the theory of H1-integration have shown
that this challenge was not successful in some sense. From the most important
results, except a Harnack extension theorem, we saw that H1-integral is rather far
from than close to the Kurzweil–Henstock integral. For example, it integrates neither
all derivatives nor all almost everywhere null functions. Moreover, all standard
limit passages under the integral sign are not permitted (i.e., the limit function can
fail to be integrable), if not under a rather artificial equi-integrability (Vitali-type)
assumption (not easy to handle). This makes H1-integration less convenient in the
sense of any potential applications.

However, as it turned out, H1-integrability of a Kurzweil–Henstock integrable
(H-integrable, for short) function depends on some continuity-type property; this fact
has been formulated in a characterization theorem, similar to the classical Lebesgue
theorem for Riemann integrability. In this connection, one can find the H1-integral
interesting not as being an alternative tool for integration, with some advantages
over other integration processes, but as producing the class of H1-integrable func-
tions with its relations to other classes of functions. A few important results have
been received in the latter direction, but, it seems, some investigation opportunities
remain, especially those related to characterizations of classes generated by some
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arithmetic operations with H1-integrable functions as one of the arguments (for a
sample problem see [12, Question 2.3]).

Since H1-integration is in fact a gauge integration with respect to some special
net of gauges, properties of H1-integrable functions help to understand better the
role of gauges in Riemann-type integration. Actually, the concept of new integration
that gave rise to the present work, gives a similar tribute to the theory.

The references contain the whole bibliography related to H1-integration that the
author is aware of [1-4, 7-14, 16].

1.2. Motivation

In our considerations on H1-integration in its Stieltjes version [13], we sought
for the widest possible (i.e., concerning also some integrators of unbounded vari-
ation) characterization theorem for integrable functions. Nevertheless, the class of
integrators covered by the characterization we gave in [13, Theorem 3.17], is lesser
than it was expected at first, as its members have to obey some constraints at discon-
tinuity points. In present paper, instead of modifying the characterizing condition
from [13], we make an attempt to provide another Stieltjes integration, for which
that condition becomes accurate for the class of integrators originally expected for
H1-integration, namely for all VBG∗-functions. Reduced to the non-Stieltjes case
(i.e., with the integrator being id), it results in an integration equivalent to the H1

one, so giving a nice (since simpler than the original) definition of that integration
process.

We shall refer to this new integration concept as just to new integration or our
new integration, thus suggesting that any name is rather auxiliary here, and this new
concept shall be referred to as some modification of H1-integral.

The work is structured as follows. In Section 2 we provide all necessary notions
and notation to be used. In Section 3 we prove a Riemann–Lebesgue type theorem:
a characterization of newly integrable functions; it is the main result of this paper.
Section 4 offers a direct proof that H1-integrability implies new integrability (in the
non-Stieltjes case).

2. PRELIMINARIES

Let E ⊂ R; by intE , cl E , Fr E , |E| we denote the interior, closure, boundary,
and Lebesgue outer measure of E , respectively. If F : E → R and A ⊂ E is
nonvoid, then we write ωF (A) = sup F (A)−inf F (A); i.e., ωF (A) is the oscillation
of F on A. If c, d ∈ E , I = [c, d], we write ∆F (I) for F (d) − F (c). We say that
F is Baire*1 if for every set A ⊂ E , closed in E , there is a portion I ∩ A �= ∅, I
an interval, of A such that F � (I∩A) is continuous. Recall that for E = cl E , F is
Baire*1 iff there exists a sequence (En)∞n=1 of closed sets, such that

⋃∞
n=1 En = E

and for each n, F � En is continuous, see [6, Theorem 2.3].
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By a tagged interval we mean a pair (I, x), where I = [c, d] ⊂ R, x ∈ R. Let
P be a finite collection of tagged intervals. We write UP for

⋃
(I,x)∈P I . Having

a function δ : R → (0,∞), called a gauge, we say that P is δ-fine if for each
(I, x) ∈ P we have I ⊂ (x− δ(x), x+ δ(x)). Let f, G : [a, b] → R. Let I ⊂ [a, b],
x ∈ [a, b] for each (I, x) ∈ P . We write

σG(P , f) =
∑

(I,x)∈P
f(x) · ∆G(I), |σG|(P , f) =

∑
(I,x)∈P

|f(x) · ∆G(I)|.

Also, σ(P , f) = σid(P , f), where id (x) = x, ∆G(P) = σG(P , 1), |∆|G(P) =
|σG|(P , 1).

By a division in a set E we mean a finite collection of tagged intervals (I, x),
where x ∈ I ⊂ E and intervals I are pairwise nonoverlapping. If for all (I, x) ∈ P
we have x ∈ E , then we say that a division P is anchored in E . A division P
in [a, b] is called a partition of [a, b] if UP = [a, b]. For two divisions P1 and P2

we will write P1 � P2 if for every (I, x) ∈ P1 there is a (J, y) ∈ P2 with I ⊂ J .
By |E|G we mean the variational measure of E ⊂ [a, b] induced by G : [a, b] →

R, see [15, Chapter 3]; i.e.,

|E|G = inf
δ

sup
P

|∆|G(P),

where sup is taken over all δ-fine divisions P in [a, b], anchored in E , while inf
ranges over all gauges δ. The family IG of subsets of [a, b] is defined as follows

E ∈ IG if there exists an A ∈ Fσ, |A|G = 0, A ⊃ E;

I = Iid. We will write that a condition holds G-almost everywhere if the exceptional
set E has |E|G = 0.

For classical notions of AC∗-, VB∗-, and VBG∗-functions, with their basic prop-
erties, let us refer the reader to [5, Chapter 6].

Definition 1. We call a function f : [a, b] → R, H-integrable with respect to
(w.r.t., for short) G : [a, b] → R, with the integral I ∈ R, if for each ε > 0 there
exists a gauge δ, such that for every δ-fine partition π of [a, b],

(1) |σG(π, f)− I| < ε.

Definition 2. We call a function f : [a, b] → R, H1-integrable w.r.t. G : [a, b] →
R, with the integral I ∈ R, if there exists a gauge δ such that for each ε > 0 there
is a partition π1 of [a, b], such that for every δ-fine partition π � π1 of [a, b] one
has (1).

Definition 3. We call a function f : [a, b] → R newly integrable w.r.t. G : [a, b] →
R, with the integral I ∈ R, if there exists a gauge δ such that for each ε > 0 there
is a constant c > 0, such that for every cδ-fine partition π of [a, b] one has (1).
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For both Definitions 2 and 3 we will say f is integrable using δ. The number I
will be denoted with

∫ b
a f dG or

∫ b
a f . Evidently,

Corollary 1. If an f : [a, b] → R is H1- or newly integrable w.r.t. G, then it is
H-integrable w.r.t. G.

Theorem 1. [13, Theorem 3.17]. Let f, G : [a, b] → R. Consider the following
two assertions: (i) f is H-integrable w.r.t. G and

(2) for some B ∈ IG the restriction f � ([a, b] \ B) is Baire*1 in its domain.

(ii) f is H1-integrable w.r.t. G.
If G ∈ VBG∗, one has (i)⇒(ii). The converse holds if G is normalized.

Recall that G : [a, b] → R is said to be normalized if 2G(x) = G(x+) + G(x−) at
each x ∈ (a, b).

3. RIEMANN-LEBESGUE THEOREM FOR OUR NEW INTEGRAL

The general line of reasoning in this section, actually follows the pattern of [13].
From now on, f, G : [a, b] → R unless otherwise stated.

Lemma 1. (Cauchy extension). Suppose that f is H-integrable w.r.t. G on
[a, b], and newly integrable w.r.t. G on every [c, d] ⊂ (a, b). Then, it is newly
integrable w.r.t. G on [a, b].

Proof. Routine argument.

The next lemma is a corollary from [15, Theorem 43.1].

Lemma 2. For each E ⊂ [a, b] one has |G(E)| � |E|G.

Lemma 3. [13, Lemma 3.6]. Let a set D ⊂ [a, b] be closed. Suppose that
G is AC∗ on D and |D|G = 0. Then, for each ε > 0 there are closed intervals
I1, . . . , In,

⋃n
i=1 Ii ⊃ D, such that for every division P in

⋃n
i=1 Ii, anchored in D,

one has |∆|G(P) < ε.

Lemma 4. (Harnack extension). Suppose that a set D ⊂ [a, b] is perfect and
(i) f is H-integrable w.r.t. G on [a, b],

(ii) f is newly integrable w.r.t. G on every [c, d] ⊂ [a, b] \ D,
(iii) G is VB∗ on D,
(iv) F is VB∗ on D, where F is the indefinite integral of f ; i.e.,

F (x) =
∫ x

a
f dG, x ∈ [a, b],
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(v) f � D is bounded and G-almost everywhere continuous on D.

Then, f is newly integrable w.r.t. G on [a, b].

Proof. Let I1, I2, . . . be closed intervals contiguous to D in [a, b]. Define a
gauge δ on [a, b] so that (x − δ(x), x + δ(x)) ⊂ Ii if x ∈ int Ii, and so that f is
newly integrable on each Ii using δ (Lemma 1). We may assume that δ < 1 and
that for every δ-fine division P in Ii the inequality

(3) |σG(P , f)− ∆F (P)| < 1
2i

.

holds.
Take an arbitrary ε > 0. Consider the set

Eε = {x ∈ D : ω(x) � ε};

ω(x) is the oscillation of f � D at x; i.e., ω(x) = inf
r>0

ωf

(
(x− r, x+ r)∩D

)
. The

set Eε ⊂ D is closed. Since by (v), |Eε|G = 0, the integrator G is continuous at
each point of Eε, and it satisfies the condition N on Eε (Lemma 2). By (iii), from
Banach–Zarecki lemma [5, Theorem 6.16] we get G is AC∗ on Eε. In virtue of
Lemma 3 there are closed intervals Jj , j = 1, . . . , m,

⋃m
j=1 Jj ⊃ Eε, such that for

each division P in
⋃m

j=1 Jj , anchored in Eε, we have |∆|G(P) < ε. Since G is
VB∗ on D, we can remove from each Jj finitely many open intervals, missing Eε

but not necessarily D, so that (after labelling the so obtained closed intervals again
as Jj , j = 1, . . . , m) |∆|G(P) < 2ε will hold for each division P in

⋃m
j=1 Jj ,

which is anchored in D. It is not hard to understand that we can assume D to miss
the boundary of

⋃m
j=1 Jj; i.e., that D̃ = D ∩

⋃m
j=1 Jj ⊂ int

⋃m
j=1 Jj = O. Put

c1 = dist (D̃, [a, b] \ O) > 0.
Since ω(x) < ε at each x ∈ D \ O, there exists a number c2 > 0 such that

ωf

(
(x − c2, x + c2) ∩ D

)
< 2ε

for all x ∈ D \ O.
As both F and G are VB∗ on D, there is an N with

(4)
∞∑

i=N+1

(
ωG(Ii) + ωF (Ii) +

1
2i

)
< ε.

For each i � N choose c′i so that for all c′iδ-fine divisions P in Ii,

(5) |σG(P , f)− ∆F (P)| < ε

N

(Saks–Henstock lemma for our new integral). Put c3 = min{c′1, . . . , c′N}.
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Denote Ii = [ai, bi]. There is an [a′i, b
′
i] ⊂ (ai, bi) such that∣∣∣∆F (Ii) − (F (β) − F (α))

− f(ai)(G(α)− G(ai)) − f(bi)(G(bi) − G(β))
∣∣∣ < ε

N
,

(6)

whenever ai < α � a′i, b′i � β < bi. Put

c4 = min
1�i�N

{
a′i − ai, bi − b′i

}
.

By (v), for each z ∈ D either f � D or G are continuous at z. Hence, since
f � D is bounded and G is VB∗ on D, there is a c5 > 0 such that

ωf

(
(z − c5, z + c5) ∩ D

)
· ωG

(
(z − c5, z + c5)

)
<

ε

N

for each z ∈ {a1, b1, . . . , aN , bN}.
Now, consider two arbitrary cδ-fine partitions π1, π2 of [a, b], where

c = min{c1, c2, c3, c4, c5, 1}.

We assume that all tags in π1, π2 are endpoints of the intervals attached.
Let P i

s = {(I, x) ∈ πs : I ⊂ Ii}, s = 1, 2, i = 1, 2, . . . . Each Pi
s �= ∅ is a

partition of a subinterval of Ii. Since πs is c4-fine,

(7) P i
s �= ∅ if i � N.

Now, divisions Qs = πs \
⋃N

i=1 P i
s, s = 1, 2, are to be replaced by some

collections Rs and R̃s according to the recipe that follows. Denote Q̃s = {(I, x) ∈
Qs : D∩ int I �= ∅}. Include each pair (I, x) ∈ Qs \ Q̃s into Rs. Let (I, x) ∈ Q̃s.
Notice that x ∈ D. If Fr I ⊂ D; i.e., if both endpoints of I are in D, include
(I, x) into an auxiliary division Os. In the opposite case, one of the endpoints of
I = [a′, b′], say the left one, belongs to some (ai, bi). Then, if i > N include the pair
([a′, bi], bi) into Rs, while if i � N put it into R̃s; let the pair ([bi, b

′ = x], b′ = x)
go to Os. Similarly for the right endpoint situation. For all (I, x) ∈ Os we have
Fr I ⊂ D. Include the collections{
(I∩J, x) : (I, x) ∈ O1, (J, y) ∈ O2

}
and

{
(I∩J, y) : (I, x) ∈ O1, (J, y) ∈ O2

}
,

where only nondegenerate intersections I ∩ J are considered, into R1 and R2 re-
spectively. Since D is perfect, UOs ⊃ D, s = 1, 2. Hence, for the closure J of any
compound interval of the set

UOs \UO3−s ,
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int J must miss D. Hence J = Il = [al, bl] for some l. By (7), l > N . Choose any
p ∈ (al, bl) and include into Rs tagged intervals ([al, p], al) and ([p, bl], bl). We
accomplished the construction of Rs and R̃s. Clearly, Rs need not be a division.
It is seen that

UQs = URs ∪ UR̃s

and

(8) {I : (I, x) ∈ S1} = {I : (I, x) ∈ S2},

where Ss = {(I, x) ∈ Rs : Fr I ⊂ D}. Moreover, if (I, x) ∈ Rs \ Ss then

(9) D ∩ int I = ∅.

Recall that in the passage from Qs to Rs&R̃s, each I , (I, x) ∈ Qs, has been
split into a number of segments. Some segments of the kind [ai, z] or [z, bi],
ai < z < bi, i = 1, 2, . . . , in place of x ∈ D have been given new tags: ai or bi.
Let us estimate how these changes contribute to σG(Qs, f). Tags’ change for all
(at most two) segments within Ii costs at most 4MωG(Ii), where M is an upper
bound of |f | � D. However, for i � N , since Qs is c5-fine, this cost does not
exceed 2N · ε

N = 2ε in total (i = 1, . . . , N ). Summarizing,

(10) σG(Qs, f) = rs + σG(R̃s, f) + σG(Rs, f),

where

(11) |rs| � 4M

∞∑
i=N+1

ωG(Ii) + 2ε
(4)
< (4M + 2)ε.

Now, we are to make use of (8). Denote Ts = {(I, x) ∈ Ss : I ⊂ O}. For each
(I, x) ∈ Ts we have I ∩D �= ∅, whence by the definition of O, |∆|G(Ts) < ε and
so (x ∈ D)

(12) |σG(Ts, f)| < Mε.

Observe that if (I, x) ∈ Ss, x is the tag I ’had’ in Qs. Therefore Ss is c1-fine,
whence if (I, x) ∈ Ss and I �⊂ O, then x ∈ D \ O. In consequence (Ss is c2-fine
too), ωf (I ∩ D) < 2ε. So,

(13) |σG(S1 \ T1, f)− σG(S2 \ T2, f)| < 2Wε,

where the number W comes from the VB∗ property of G on D (we use (8): the
intervals in S1 and S2, thus so in S1 \ T1 and S2 \ T2 are the same).
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Let U i
s = {(I, x) ∈ Rs \ Ss : I ⊂ Ii, x ∈ D}, V i

s = {(I, x) ∈ Rs \ Ss : I ⊂
Ii, x /∈ D}, i > N . By (9),

Rs \ Ss =
∞⋃

i=N+1

(U i
s ∪ V i

s).

Notice that V i
s ⊂ P i

s and so every Vi
s �= ∅ is a δ-fine partition of some subinterval

of Ii. Thus, by (3) and (4),

|σG(Rs \ Ss, f)|

�
∞∑

i=N+1

(
|σG(U i

s, f)|+ |σG(V i
s, f)− ∆F (V i

s)|+ |∆F (V i
s)|
)

<

∞∑
i=N+1

(
2MωG(Ii) +

1
2i

+ ωF (Ii)
)

< 2Mε.

(14)

For i � N let R̃i
s = {(I, x) ∈ R̃s : I ⊂ Ii}. Notice that each R̃i

s has at most
two members, R̃s =

⋃N
i=1 R̃i

s, and

P i
s ∪ R̃i

s

is a partition of Ii. Moreover, Pi
s is a c′iδ-fine partition of an [α, β] ⊃ [a′i, b

′
i]. As

ai and bi are tags in P i
s ∪ R̃i

s, from (5) and (6) we get

(15) |σG(P i
s ∪ R̃i

s, f)− ∆F (Ii)| < 2
ε

N
.

Summing these estimates up, we obtain

|σG(π1, f) − σG(π2, f)|

=
∣∣∣σG(Q1, f)− σG(Q2, f) +

N∑
i=1

(
σG(P i

1, f)− σG(P i
2, f)

)∣∣∣
(10)
�

2∑
s=1

(
|rs|+

N∑
i=1

(
|σG(P i

s ∪ R̃i
s, f)−∆F (Ii)|

))
+|σG(R1, f)−σG(R2, f)|

(11),(15)
� (8M + 4)ε + 4ε +

2∑
s=1

(
|σG(Rs \ Ss, f)|+ |σG(Ts, f)|

)
+

+ |σG(S1 \ T1, f)− σG(S2 \ T2, f)|
(14),(12),(13)

� (8M + 4)ε + 4ε + 4Mε + 2Mε + 2Wε = (14M + 2W + 8)ε.

Thus, f fulfils the Cauchy Criterion for new integrability.
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Lemma 5. [13, Lemma 3.12]. Let G ∈ VBG∗. Suppose that a function f is
H-integrable w.r.t. G. Then, the indefinite integral F of f has the VBG ∗ property
as well.

Remark 1. Let E ⊂ R and assume that f : E → R is bounded and continuous.
Define

g(x) =




f(x) if x ∈ E ,
lim inf
t→x, t∈E

f(t) if x ∈ cl E \E .

Then g : cl E → R is bounded and g is continuous at each x ∈ E .

Lemma 6. Let G be VBG∗ and E ∈ IG. Then, every function f is newly
integrable w.r.t. G on E .

Proof. Let E =
⋃∞

n=1 En, where G is VB∗ on En and |cl En|G = 0, n =
1, 2, . . . . We may assume that the sets En are pairwise disjoint and each restriction
f � En is bounded. G is continuous at each point of clEn and it satisfies N on cl En

(Lemma 2). So (Banach–Zarecki lemma [5, Theorem 6.16]), G is AC∗ on cl En.
Fix n and ε > 0. By Lemma 3, we can find intervals I1, . . . , Ik covering cl En, such
that for all divisions P in

⋃k
i=1 Ii, anchored in cl En, one has |∆|G(P) < ε/M ,

where M > 0 is an upper bound of |f | � En. Obviously, we may assume that
O = int

⋃k
i=1 Ii ⊃ cl En. Put cn(ε) = dist (En, [a, b] \O) and consider any cn(ε)-

fine division P anchored in En. Clearly, P is a division in O, whence

(16) |σG|(P , f) � |σG|(P , M) � M
ε

M
= ε.

Now, put δ(x) = min {cn(1/2n), 1} at x ∈ En, anything outside of E . There
is an N such that 1/2N < ε. Put

c = min
{
c1(ε/N ), . . . , cN(ε/N ), 1

}
.

Consider a cδ-fine partition π of [a, b] and denote Pn = {(I, x) ∈ π : x ∈ En},
n ∈ N. For each n, Pn is cn(1/2n)-fine, while for n � N it is also cn(ε/N )-fine.
Hence, by (16),

|σG(π, fχE)| �
N∑

n=1

|σG|(Pn, f) +
∞∑

n=N+1

|σG|(Pn, f) <

< N
ε

N
+

∞∑
n=N+1

1
2n

= ε +
1

2N
< 2ε.
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Lemma 7. [8, Lemma 3.1]. Let E =
⋃∞

n=1 En be a Gδ set and f : E → R.
If the sequence (En)∞n=1 is ascending and the restriction f � E n is continuous
for each n, then there exists an open interval J such that E ∩ J �= ∅ and the
restriction f � (E ∩ J) is continuous.

Theorem 2. Assume G ∈ VBG∗. For any f the following two assertions are
equivalent:

(i) f is H-integrable w.r.t. G and for each nonempty closed set D ⊂ [a, b],
one can find an A ∈ IG and an interval I , I ∩ D \ A �= ∅, such that
f � (I ∩ D \ A) is continuous;

(ii) f is newly integrable w.r.t. G.

Proof. (i)⇐(ii). Suppose that f does not satisfy the condition in bold. We
will show that f cannot be newly integrable w.r.t. G. Consider arbitrary gauge δ

on [a, b]. Let D be a closed subset of [a, b] such that for each A ∈ IG the set of
discontinuity points of f � (D \ A) is dense in D \ A �= ∅. Of course, D /∈ IG.
Put Dn = {x ∈ D : δ(x) > 1/n}, n ∈ N. In virtue of Lemma 7, there exists an n
such that

C =
{
x ∈ Dn : f � Dn is discontinuous at x

}
/∈ IG.

For x ∈ C, denote by ω(x) the oscillation of f � Dn at x; one has ω(x) > 0.
Since C /∈ IG, for some m the set Cm = {x ∈ C : ω(x) > 1/m} satisfies
|cl Cm|G > M > 0.

Take any c > 0. There is a c
2n -fine division P in [a, b], anchored in cl Cm, with

|∆|G(P) > M.

We can assume all intervals in P have tags at their endpoints. Thus, if P ′ ⊂ P is
the collection of all members of P that are tagged at their left endpoints,

|∆|G(P ′) >
M

2
or |∆|G(P \ P ′) >

M

2
.

We can assume the first case holds. Find a subdivision P ′′ ⊂ P ′ with segments
pairwise disjoint and such that

(17) |∆|G(P ′′) >
M

4
.

Consider any (I = [ζI , ξI], ζI) ∈ P ′′. Since ζI ∈ cl Cm, we can pick

xI ∈ Cm ∩
(
ζI −

c

2n
, ξI

)
, yI ∈ Dn ∩

(
ζI −

c

2n
, ξI

)
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such that |f(xI)−f(yI)| > 1/m. There are two cases to be considered: if ζI � xI ,
ζI < yI , we put I ′ = I . If yI < ζI , xI � ζI , we designate as I ′ one of the intervals

I ′ = [min(yI , xI), ζI] or I ′ = [min(yI , xI), ξI]

for which

(18) |∆G(I ′)| � 1
2
|∆G(I)|.

Clearly, xI ’s and yI ’s can be picked step by step so that the intervals I ′ chosen for
different I’s will not overlap; i.e.,

R1 = {(I ′, xI) : (I, ζI) ∈ P ′′}, R2 = {(I ′, yI) : (I, ζI) ∈ P ′′}

will form divisions in [a, b]. Since xI , yI ∈ Dn, ξI − min(xI , yI) < c
n , both R1

and R2 are cδ-fine. By (17) and (18)
∑

(I,ζI)∈P ′′
|f(xI) − f(yI)||∆G(I ′)| >

M

8m
.

M and m were found independently of c, whence Saks-Henstock lemma for our
new integral does not hold for f using δ. Thus, f is not newly integrable w.r.t. G.
(This part of proof follows for any G).

(i)⇒(ii). Suppose f is H-integrable, but not newly integrable w.r.t. G. Let P �=
∅ be the set of all points x ∈ [a, b] such that f is integrable on no neighbourhood
of x. Lemma 1 implies that P is perfect and that f is integrable on the closure
of every interval contiguous to P . Suppose that f satisfies the condition in bold.
There exists a portion I ∩ P �= ∅ of P such that for some A ∈ IG, the restriction
f � (I ∩ P \ A) is continuous and bounded, and both the integrator G and the H-
Stieltjes indefinite integral of f are VB∗ on I∩P (Lemma 5). Extend the restriction
f � (I ∩ P \ A) to a g on I ∩ P as it is described in Remark 1. Let f̃ = g on
I ∩ P , f̃ = f on I \ P . As f = f̃ outside of A, by Lemma 6 and Corollary 1, f̃

is H-integrable w.r.t. G on I . By Lemma 4, f̃ is newly integrable w.r.t. G on I ,
whence by Lemma 6 again, f is newly integrable w.r.t. G on I . This contradicts
the definition of P .

Lemma 8. [13, Lemma 3.16]. The condition in bold from Theorem 2 is equiv-
alent to the condition (2); i.e., the set A ∈ IG can be chosen independently of D.

Putting together Theorem 2 and Lemma 8 we obtain the following Riemann-
Lebesgue type theorem for our new integral. It resembles Theorem 1.

Theorem 3. Let G be VBG∗. The condition (i) of Theorem 1 is equivalent to
(ii’) f is newly integrable w.r.t. G.
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From Theorems 1 and 3 we deduce that for a VBG∗ integrator, each newly
integrable function is H1-integrable.

Problem 1. Does it stay true if the integrator is not assumed to be VBG∗?

This problem can be reduced to the question: is it possible for an f to satisfy the
condition in bold from Theorem 2, to be H-integrable w.r.t. a G /∈ VBG∗, and not to
be H1-integrable w.r.t. G? This question has already been asked [13, Problem 3.19].
From Theorems 1 and 3 we can deduce also that if G is normalized and VBG∗, then
each H1-integrand is an integrand in our new sense. But again,

Problem 2. Can we, for the latter statement, drop the assumption that G is
VBG∗?

This is not clear for a continuous integrator G, even though the proof in the next
section gives some hint how to handle this matter.

4. A DIRECT PROOF

Theorem 4. In the non-Stieltjes case, H1-integral and our new integral coin-
cide.

Proof. It follows from Theorems 1 and 3.

We would have liked to offer the reader a direct proof of the above theorem.
Alas, we are not able to show that new integrability implies H1-integrability without
referring to the two aforementioned theorems and the continuity property therein.
Perhaps such a direct proof would suggest how to answer in affirmative our Prob-
lem 1.

Proof. Assume a function f is H1-integrable using δ < 1. We will show it
is newly integrable using the same δ. Pick an ε and consider a partition πε =
{([ai−1, ai], xi)}n

i=1 of [a, b] such that for each δ-fine partition π � πε,∣∣∣∣σ(π, f)−
∫ b

a
f

∣∣∣∣ < ε.

Choose a ζi > 0, ai−1 < ai − ζi < ai < ai + ζi < ai+1, such that ωF ([ai − ζi, ai +
ζi]) < ε

n , i = 1, . . . , n− 1, F the indefinite integral of f . Put

ci = min{ζi, ai+1 − ai − ζi, 1}

and
c = min

1�i�n−1
ci.
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Consider a cδ-fine partition π of [a, b]. For each i = 1, . . . , n − 1 there is at most
one interval (Ji, ξi) ∈ π with ai ∈ int Ji = (αi, βi). By the definition of c, since
(Ji, ξi) is ci-fine,

ξi ∈ (ai − ζi, ai + ζi).

Moreover, Mi = [αi, ai] ⊂ [ai−ζi, ai], Li = [ai, βi] ⊂ [ai, ai+1] if ξi ∈ [ai, ai +ζi)
(1st case), and Li = [αi, ai] ⊂ [ai−1, ai], Mi = [ai, βi] ⊂ [ai, ai + ζi] if ξi ∈
(ai−ζi, ai) (2nd case). Let Is be the collection of i ∈ {1, . . . , n−1} for which the
sth case holds, s = 1, 2. For an i ∈ I1 take an interval Ki ⊂ [ai, ai + ζi] such that
Ki � ξi and |Ki| = |Mi|; it is possible since Mi ⊂ [ai − ζi, ai]. Symmetrically, for
an i ∈ I2 take an interval Ki ⊂ [ai − ζi, ai] with Ki � ξi and |Ki| = |Mi|. Write

(19)
∑

i∈I1∪I2

f(ξi)|Ji| =
∑

i∈I1∪I2

f(ξi)|Li| +
∑

i∈I1∪I2

f(ξi)|Ki|.

K = {(Ki, ξi)}i∈I1∪I2 is a δ-fine (since cδ-fine) division � πε. Denote P =
π ∪ {(Li, ξi)}i∈I1∪I2 \ {(Ji, ξi)}i∈I1∪I2; P � πε and P is also δ-fine. By (19),

σ(π, f) = σ(P , f)+ σ(K, f),

and so with Saks–Henstock lemma for the H1-integral,

|σ(π,f) − (F (b)− F (a))|
� |σ(P , f)− ∆F (P)|+ |σ(K, f)− ∆F (K)|+ |∆|F (K)

+
∑

i∈I1∪I2

|∆F (Mi)| < ε + ε + n · ε

n
+ n · ε

n
= 4ε.

It means f is newly integrable.
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