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ON VECTOR EQUILIBRIUM PROBLEMS AND APPLICATIONS

Adela Capătă and Gábor Kassay

Abstract. The main purpose of this paper is the study of sufficient conditions
for the existence of solutions of vector equilibrium problems. Our main results
permit to obtain some existence results already established for the scalar case
and, to provide some applications in the area of vector optimization and vector
saddle point problems.

1. INTRODUCTION

Let A and B be two nonempty sets and ϕ : A × B → R a given function. A
problem which has been extensively studied in the recent literature (e.g., [1-3, 5, 8,
11]) is the so called scalar equilibrium problem:

(EP) find ā ∈ A such that ϕ(ā, b) ≥ 0, for all b ∈ B.

It is well-known (see for instance [5]) that this problem contains, in particular,
optimization problems, variational inequalities, saddle point problems, Nash equi-
librium, and other problems of interest in many practical applications. If the scalar
function ϕ is replaced by a vector-valued function, say ϕ : A × B → Z, where
Z is a topological vector space, partially ordered by a convex cone C ⊆ Z with
int C �= ∅, one may consider the so-called vector equilibrium problem in two ways:

(VEP) find ā ∈ A such that ϕ(ā, b) /∈ −C \ {0}, for all b ∈ B,

and

(WVEP) find ā ∈ A such that ϕ(ā, b) /∈ −int C, for all b ∈ B.

The first problem is called (strong) vector equilibrium problem, while the second
one is called weak vector equilibrium problem.

Received September 5, 2008, accepted July 17, 2009.
Communicated by F. Giannessi.
2000 Mathematics Subject Classification: 90C47, 49J35.
Key words and phrases: Vector equilibrium problem, Cone-lower semicontinuity, Subconvexlike func-
tion, Cone-saddle point.
Research supported by the Grant PN II, ID 523/2007.

365
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Vector equilibrium problems are natural extensions of several problems of prac-
tical interest like vector optimization problems or vector variational inequality prob-
lems.

The aim of this paper is to provide sufficient conditions for the existence of
solutions of (WVEP) in a general setting, and to apply the results for vector opti-
mization and vector saddle point problems. The paper is organized as follows. In
section 2 we present our main result (Theorem 2.4) which is based on a separa-
tion theorem of two disjoint convex sets in infinite dimensional topological vector
spaces. This theorem is a generalization to the vector case of a scalar result proved
in [10]. The last two sections are devoted to applications. In section 3 we apply
our existence results for vector optimization problems, while in section 4 we estab-
lished a so-called cone-saddle point theorem, related to a concept of saddle point
for vector-valued functions introduced in [14].

2. SUFFICIENT CONDITIONS FOR WEAK SOLUTIONS

Let us recall some concepts and properties needed in this sequel. Let E be a
topological space and Z be a real topological vector space such that Z is partially
ordered by a convex cone C with intC �= ∅, i.e., for any z1, z2 ∈ Z, z1 ≤C z2 iff
z2 − z1 ∈ C.

Let Z∗ be the dual space of Z, and let C∗ be the dual cone of C, i.e. C∗ =
{z∗ ∈ Z∗ | z∗(k) ≥ 0 for all k ∈ C}.

Definition 2.1. [7]. A function f : E → Z is said to be C-upper semicontinuous
at x ∈ E (C-usc in short) if it satisfies the following condition:

1◦ For any neighborhood Vf(x) ⊂ Z of f(x), there exists a neighborhood Ux ⊂
E of x such that f(u) ∈ Vf(x) − C for all u ∈ Ux.

Remark 2.2. By [14] condition 1◦ from the above definition is equivalent to:
2◦ For any k ∈ intC , there exists a neighborhood Ux ⊂ E of x such that

f(u) ∈ f(x) + k − intC for all u ∈ Ux.

Notice that in [7], this notion was termed −C-continuous function at x. The
function f is said to be C-lower semicontinuous (C-lsc in short) if −f is C-usc.

Recall the following well-known property, which is easy to prove.

Lemma 2.3. If z∗ ∈ C∗ is a nonzero functional, then z ∗(z) > 0 for all z ∈
int C.

Let A be a nonempty subset of E , B a nonempty set, and let ϕ : A × B → Z.
We study the following weak vector equilibrium problem:

(WVEP) find ā ∈ A such that ϕ(ā, b) /∈ −int C, for all b ∈ B.
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The next result provides sufficient conditions for the existence of solutions of
(WVEP).

Theorem 2.4. Let A be a compact set and let ϕ : A × B → Z be a function
such that

(i) for each b ∈ B, the function ϕ(·, b) : A → Z is C-usc on A;

(ii) for each a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with
m∑

i=1

λi = 1, b1, . . . , bn ∈ B

there exists u∗ ∈ C∗ \ {0} such that

min
1≤j≤n

m∑
i=1

λiu
∗(ϕ(ai, bj)

) ≤ sup
a∈A

min
1≤j≤n

u∗(ϕ(a, bj)
)
;

(iii) for each b1, . . . , bn ∈ B, z∗1 , . . . , z∗n ∈ C∗ not all zero one has

sup
a∈A

n∑
j=1

z∗j
(
ϕ(a, bj)

) ≥ 0.

Then the equilibrium problem (WVEP) admits a solution.

Proof. Suppose by contradiction that (WVEP) has no solution, i.e. for each
a ∈ A there exists b ∈ B with the property ϕ(a, b) ∈ −int C . This means that for
each a ∈ A there exist b ∈ B and k ∈ int C such that

ϕ(a, b) + k ∈ −int C.

Consider the sets

Ub,k := {a ∈ A | ϕ(a, b) + k ∈ −int C},

where b ∈ B and k ∈ intC . In what follows we show that the family of these sets
forms an open covering of the compact set A.

Let a0 ∈ Ub,k and k ∈ int C. Since a0 ∈ Ub,k we have that

ϕ(a0, b) + k ∈ −int C that is, −ϕ(a0, b)− k ∈ int C.

Denote k
′
:= −ϕ(a0, b)−k, so k

′ ∈ intC. Since the function ϕ(·, b) is C-usc at
a0 ∈ A, we obtain for k

′ that there exists a neighborhood Ua0 ⊂ E of a0 such that

ϕ(u, b) ∈ ϕ(a0, b) + k
′ − int C

= ϕ(a0, b)− ϕ(a0, b)− k − intC

= −k − int C, for all u ∈ Ua0 .
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Hence we have that ϕ(u, b) + k ∈ −int C for all u ∈ Ua0 , which means that
Ub,k is an open set.

Since the family {Ub,k} is an open covering of the compact set A, we can select
a finite subfamily which covers the same set A, i.e., there exist b1, . . . , bn ∈ B and
k1, . . . , kn ∈ int C such that

(1) A ⊆
n⋃

j=1

Ubj ,kj .

For these k1, . . . , kn ∈ int C, we have that there exist V1, . . . , Vn balanced
neighborhoods of the origin of Z such that kj + Vj ⊂ C for all j ∈ {1, . . . , n} (see
e.g. [13]).

Define V := V1 ∩ · · · ∩ Vn, thus V is a balanced neighborhood of the origin of
the space Z. Let k0 ∈ V ∩ intC , so we have −k0 ∈ V . Hence,

kj − k0 ∈ kj + V ⊆ kj + Vj ⊆ C, for all j ∈ {1, . . . , n},
which gives

(2) kj − k0 ∈ C, for all j ∈ {1, . . . , n}.
Now define the vector-valued function F : A → Zn by

F (a) :=
(
ϕ(a, b1) + k0, . . . , ϕ(a, bn) + k0

)
.

Assert that

(3) co F (A) ∩ (int C)n = ∅,
where co F (A) denotes the convex hull of the set F (A). Supposing the con-

trary, there exist a1, . . . , am ∈ A and λ1, . . . , λm ≥ 0 with
m∑

i=1

λi = 1 such that

m∑
i=1

λiF (ai) ∈ (intC)n, or equivalently,

m∑
i=1

λi[ϕ(ai, bj) + k0] ∈ intC, for each j ∈ {1, . . . , n}, which gives

(4)
m∑

i=1

λiϕ(ai, bj) + k0 ∈ int C, for each j ∈ {1, . . . , n}.

Let u∗ ∈ C∗ be a nonzero functional for which (ii) holds. Applying u∗ to the
relation above and taking into account Lemma 2.3 we obtain that

m∑
i=1

λiu
∗(ϕ(ai, bj)

)
+ u∗(k0) > 0.
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Passing to the minimum over j we have

(5) min
1≤j≤n

m∑
i=1

λiu
∗(ϕ(ai, bj)

)
> −u∗(k0),

thus, assumption (ii) and relation (5) imply that

(6) sup
a∈A

min
1≤j≤n

u∗(ϕ(a, bj)
)

> −u∗(k0).

For each a ∈ A, by relation (1) we have that there exists j0 ∈ {1, . . . , n} such
that a ∈ Ubj0 ,kj0

, i.e. ϕ(a, bj0) + kj0 ∈ −int C. This, together with (2) imply that

ϕ(a, bj0) + k0 ∈ −kj0 + k0 − intC ⊆ −int C.

By Lemma 2.3 and using the fact that u∗ ∈ C∗ we obtain that

u∗(ϕ(a, bj0)
)
+ u∗(k0) < 0.

Thus for each a ∈ A

min
1≤j≤n

u∗(ϕ(a, bj)
)

< −u∗(k0),

and passing to supremum over a we get a contradiction.
By the separation theorem of convex sets of Eidelheit (see for instance [13]),

we have that there exists z∗ ∈ (Zn)∗ a nonzero functional such that

z∗(u) ≤ 0, for all u ∈ co F (A) and(7)

z∗(c) ≥ 0, for all c ∈ (intC)n.(8)

Using the representation z∗ = (z∗1, ..., z∗n), by a standard argument we deduce
that z∗j ∈ C∗ for all j ∈ {1, . . . , n}.

In particular, by (7), we have z∗(u) ≤ 0 for all u ∈ F (A). This means that for
any a ∈ A, z∗(F (a)) ≤ 0, or equivalently,

n∑
j=1

z∗j
(
ϕ(a, bj) + k0

) ≤ 0.

Taking into account the linearity of z∗j ∈ C∗ for all j ∈ {1, . . . , n}, Lemma 2.3
and the fact that not all z∗

j are zero we obtain

n∑
j=1

z∗j
(
ϕ(a, bj)

) ≤ −
n∑

j=1

z∗j (k0) < 0.
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Passing to supremum over a ∈ A in the upper relation we deduce that

sup
a∈A

n∑
j=1

z∗j
(
ϕ(a, bj)

)
< 0,

which is a contradiction to assumption (iii). This completes the proof.

Assumption (ii) of Theorem 2.4 is a kind of generalized concavity of the function
ϕ in its first variable with respect to the cone C. To see this, we first recall
the following convexity notion given by V. Jeyakumar in [9] for a vector-valued
function and then adapt it for bifunctions. A function f : A → Z is said to be
C-subconvexlike (see [9], [12]) if there exists c ∈ intC such that for all ε > 0,
t ∈ [0, 1] and a1, a2 ∈ A there exists ā ∈ A such that

f(ā) ≤C tf(a1) + (1− t)f(a2) + εc.

Lemma 2.5. [12]. Let A ⊆ E be a nonempty set, f : A → Z a given function
and C a convex solid closed cone. The following assertions are equivalent:

(i) f is C-subconvexlike on A;
(ii) there exists c ∈ C such that for all ε > 0, t ∈ [0, 1] and a 1, a2 ∈ A there

exists ā ∈ A such that

f(ā) ≤C tf(a1) + (1− t)f(a2) + εc;

(iii) for each l ∈ intC, a1, a2 ∈ A and λ ∈ (0, 1) there exists ā ∈ A such that

f(ā) ≤C λf(a1) + (1− λ)f(a2) + l.

Definition 2.6. Let ϕ : A × B → Z be a function. The function ϕ is said to
be:

(i) C-subconcavelike in its first variable if for each l ∈ intC, a1, a2 ∈ A and
λ ∈ (0, 1) there exists ā ∈ A such that

ϕ(ā, b) ≥C λϕ(a1, b) + (1 − λ)ϕ(a2, b)− l, for all b ∈ B.

(ii) C-subconvexlike in its second variable if for each l ∈ intC, b1, b2 ∈ A and
λ ∈ (0, 1) there exists b̄ ∈ A such that

ϕ(a, b̄) ≤C λϕ(a, b1) + (1 − λ)ϕ(a, b2) + l, for all a ∈ A.

(iii) C-subconcavelike-subconvexlike on A×B if it is C-subconcavelike in its first
variable and C-subconvexlike in its second variable.



On Vector Equilibrium Problems and Applications 371

In case Z = R and C = R+ we use the terms subconcavelike, subconvexlike
and subconcavelike-subconvexlike for R+-subconcavelike, R+-subconvexlike and
R+-subconcavelike-subconvexlike, respectively.

It is easy to check by induction that the concept of C-subconcavelikeness can
be characterized as follows.

Proposition 2.7. The function ϕ : A × B → Z is C-subconcavelike in its first
variable if and only if for each l ∈ int C, a 1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with
m∑

i=1

λi = 1 there exists ā ∈ A such that

ϕ(ā, b) ≥C

m∑
i=1

λiϕ(ai, b)− l, for all b ∈ B.

Using Proposition 2.7 we obtain by Theorem 2.4 the following result.

Corollary 2.8. Let A be a compact set and let ϕ : A × B → Z be a function
such that

(i) ϕ is C-usc and C-subconcavelike in its first variable;
(ii) for each b1, . . . , bn ∈ B, z∗1 , . . . , z∗n ∈ C∗ not all zero one has

sup
a∈A

n∑
j=1

z∗j
(
ϕ(a, bj)

) ≥ 0.

Then the equilibrium problem (WVEP) admits a solution.

Proof. It is enough to show that assumption (ii) of Theorem 2.4 is satisfied.
Let us prove that the C-subconcavelikeness of the function ϕ implies assumption
(ii) of the above theorem.

Fix a1, . . . , am ∈ A, b1, . . . , bn ∈ B, λ1, . . . , λm ≥ 0 with
m∑

i=1

λi = 1, and

u∗ ∈ C∗\{0}.
By the C-subconcavelikeness of ϕ in its first variable, for each l ∈ intC there

exists ā ∈ A such that

(9)
m∑

i=1

λiϕ(ai, bj) ≤C ϕ(ā, bj) + l, for each j ∈ {1, . . . , n}.

Applying u∗, relation (9) becomes

(10)
m∑

i=1

λiu
∗ϕ(ai, bj) ≤ u∗(ϕ(ā, bj)

)
+ u∗(l), for each j ∈ {1, . . . , n},
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which, by passing to minimum over j yields

min
1≤j≤n

m∑
i=1

λiu
∗(ϕ(ai, bj)

) ≤ min
1≤j≤n

u∗(ϕ(ā, bj)
)

+ u∗(l)

≤ sup
a∈A

min
1≤j≤n

u∗(ϕ(a, bj)
)

+ u∗(l).

Since this relation holds for each l ∈ intC we obtain assumption (ii) of Theorem
2.4. Hence (WVEP) admits a solution.

In what follows we deal with the scalar case. Let Z = R and C = C∗ = R+.
Then our vector equilibrium problem (WVEP) becomes

(EP) find ā ∈ A such that ϕ(ā, b) ≥ 0, for all b ∈ B.

Theorem 2.4 permits us to reobtain an earlier result of existence of solutions for
(EP).

Corollary 2.9. [10]. Let A be a compact set, let B be a nonempty set and let
ϕ : A × B → R be a function such that

(i) for each b ∈ B, the function ϕ(·, b) : A → R is usc on A;

(ii) for each a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with
m∑

i=1

λi = 1, b1, . . . , bn ∈ B

min
1≤j≤n

m∑
i=1

λiϕ(ai, bj) ≤ sup
a∈A

min
1≤j≤n

ϕ(a, bj);

(iii) for each b1, . . . , bn ∈ B, µ1, . . . , µn ≥ 0 with
n∑

j=1

µj = 1

sup
a∈A

n∑
j=1

µjϕ(a, bj) ≥ 0.

Then the equilibrium problem (EP) admits a solution.

Proof. We show that the assumptions of Theorem 2.4 are satisfied. It is obvious
that conditions (i) and (ii) of Theorem 2.4 are satisfied (the latter with u∗ = 1).

Let b1, . . . , bn ∈ B, z∗1 , . . . , z∗n ∈ R+ not all zero and denote µj :=
z∗j
ν

for all

j ∈ {1, . . . , n}, where ν =
n∑

j=1

z∗j . Thus each µj ≥ 0 and
n∑

j=1

µj = 1. Hence by

assumption (iii) we obtain

1
ν

sup
a∈A

n∑
j=1

z∗j ϕ(a, bj) ≥ 0,
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i.e., assumption (iii) of Theorem 2.4. Thus the result follows by Theorem 2.4.

By Corollary 2.9 we can deduce a sufficient condition for (EP) using Definition
2.6 for a real-valued function.

Corollary 2.10. Let A be a compact set and let ϕ : A × B → R be a function
such that:

(i) for each b ∈ B, the function ϕ(·, b) : A → R is usc on A;
(ii) ϕ is subconcavelike-subconvexlike on A × B;
(iii) sup

a∈A
ϕ(a, b) ≥ 0, for each b ∈ B.

Then the equilibrium problem (EP) admits a solution.

Proof. It is obvious that assumption (i) of Corollary 2.9 is satisfied.
Also, following the same line of proof as in Corollary 2.8, it is easy to check

that assumption (ii) of Corollary 2.9 is satisfied.

Now, let b1, . . . , bn ∈ B and µ1, . . . , µn ≥ 0 with
n∑

j=1

µj = 1. By the subcon-

vexlikeness of function ϕ in its second variable, for each ε > 0, there exists b̄ ∈ B,
such that

ϕ(a, b̄) ≤
n∑

j=1

µjϕ(a, bj) + ε, for all a ∈ A.

Since the relation

0 ≤ sup
a∈A

ϕ(a, b̄) ≤ sup
a∈A

n∑
j=1

µjϕ(a, bj) + ε,

is satisfied for each ε > 0, we have that assumption (iii) of Corollary 2.9 is
verified.

3. APPLICATIONS TO MINIMIZATION PROBLEMS

Let S ⊆ Z. In what follows we shall denote by Minw S the set of weak minima
of S with respect to the cone C, i.e., z0 ∈ MinwS means z0 ∈ S and

S ∩ (z0 − int C) = ∅.
Similarly, the set Maxw S denotes the set of weak maxima of S with respect to the
cone C, i.e., z0 ∈ MaxwS means z0 ∈ S and

S ∩ (z0 + int C) = ∅.
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Let l (C) = C∩(−C). In what follows consider the vectors e ∈ C and e∗ ∈ C∗

satisfying the assumption

(D) e /∈ l(C) and 〈e∗, e〉 = 1.

Let F : A → Z be fixed. For every e, e∗ satisfying (D) consider the scalar
equilibrium problem:

(EP)e,e∗ find ā ∈ A such that f(ā, b) ≥ 0, for all b ∈ A,

where f : A × A → R is given by f(a, b) = 〈e∗, F (b)− F (a)〉.
Denoting by ϕ : A × A → Z the vector function defined by ϕ(a, b) := F (b)−

F (a), it is easy to see that (WVEP) for this ϕ becomes the weak vector minimization
problem:

(WVMP) find ā ∈ A such that F (b)− F (ā) /∈ −int C, for all b ∈ A.

The point ā is a solution of (WVMP) if and only if F (ā) ∈ MinwF (A). The
next statement is straightforward.

Proposition 3.1. For every e and e∗ satisfying assumption (D), the set of
solutions of (EP)e,e∗ is contained in the set of solutions of (WVMP).

Proof. Let ā be a solution of (EP )e,e∗ . Then we have

〈e∗, F (b)− F (ā)〉 ≥ 0, for all b ∈ A,

which implies that F (b) − F (ā) /∈ −int C. Hence ā is a solution for the problem
(WVMP).

Observe that the reverse implication in Proposition 3.1 is not true in general, as
the following example shows.

Example 3.2. Let F : R → R2 be the vector-valued function defined by

F (a) =




(−1,
1

| a |), if a �= 0

(0, 0), if a = 0.

Take e = e∗ = (1, 0) and C = R2
+. We have

f(0, b) = 〈(1, 0), F (b)〉=

{ −1, if b �= 0

0, if b = 0,
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thus 0 is not a solution of the scalar equilibrium problem (EP )e,e∗ .
We verify if a = 0 is a solution of (WVMP). Indeed,

ϕ(0, b) = F (b) − F (0) =




(−1,
1

| b | ), if b �= 0

(0, 0), if b = 0.

This relation shows that ϕ(0, b) /∈ −int C for each b ∈ R, which implies that a = 0
is a solution of (WVMP).

It is interesting to notice that in the previous example every a �= 0 is a solution
of (EP )e,e∗. Indeed,

f(a, b) = 〈(1, 0), F (b)− F (a)〉 =

{
0, if b �= 0

1, if b = 0,

hence f(a, b) ≥ 0 for all b ∈ R, i.e. a �= 0 is a solution of (EP )e,e∗. By Proposition
3.1 it follows that each real number is a solution of (WVMP).

The next result, well-known in vector optimization, is a consequence of Corollary
2.9.

Proposition 3.3. If F is C-lsc on a compact set A, then the scalar equilibrium
problem (EP)e,e∗ admits a solution for every e, e∗ satisfying (D).

Proof. We show that the assumptions of Corollary 2.9 are satisfied.
Fix b ∈ A, ε > 0 and let a ∈ A. Then by Lemma 2.3 we have that there exists

k ∈ int C such that ε = 〈e∗, k〉. For this k we obtain by the definition of the C-lsc
of F that there exists a neighborhood U of a such that

F (u) − F (a) + k ∈ int C, for all u ∈ U.

This is equivalent to

−[F (b)− F (u)] + [F (b)− F (a)] + k ∈ int C, for all u ∈ U.

By applying e∗ to the above relation and by Lemma 2.3 we obtain

〈e∗, ϕ(a, b)− ϕ(u, b)〉+ 〈e∗, k〉 > 0, for all u ∈ U,

giving that
f(a, b)− f(u, b) > −ε, for all u ∈ U,

which is equivalent to

f(u, b)− f(a, b) < ε, for all u ∈ U.
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Hence, we have obtained that f(·, b) is usc for each b ∈ A and assumption (i) of
Corollary 2.9 is satisfied.

To verify assumption (ii) of Corollary 2.9, choose a1, . . . , am ∈ A, λ1, . . . , λm ≥
0 with

m∑
i=1

λi = 1 and b1, . . . , bn ∈ B. Then the relation

min
1≤j≤n

m∑
i=1

λif(ai, bj) ≤ sup
a∈A

min
1≤j≤n

f(a, bj).

becomes

min
1≤j≤n

m∑
i=1

λi〈e∗, F (bj) − F (ai)〉 ≤ sup
a∈A

min
1≤j≤n

〈e∗, F (bj)− F (a)〉.

Taking into account that
m∑

i=1

λi = 1 and the linearity of e∗ we obtain

min
1≤j≤n

〈e∗, F (bj)〉 − 〈e∗,
m∑

i=1

λiF (ai)〉 ≤ min
1≤j≤n

〈e∗, F (bj)〉+ sup
a∈A

(−〈e∗, F (a)〉).

This implies

inf
a∈A

〈e∗, F (a)〉 ≤ 〈e∗,
m∑

i=1

λiF (ai)〉,

relation that is satisfied by any function F . So, F satisfies assumption (ii).

Finally, let b1, . . . , bn ∈ A, µ1, . . . , µn ≥ 0 not all zero with
n∑

j=1

µj = 1.

Relation (iii) of Corollary 2.9 is equivalent to

sup
a∈A

n∑
j=1

µj〈e∗, F (bj) − F (a)〉 ≥ 0,

or
sup
a∈A

[
〈e∗,

n∑
j=1

µjF (bj)〉 − 〈e∗, F (a)〉
]
≥ 0.

This relation can be written as

inf
a∈A

〈e∗, F (a)〉 ≤ 〈e∗,
n∑

j=1

λjF (aj)〉

and it is verified by any function F .
Therefore, by Corollary 2.9, we have that (EP )e,e∗ has a solution.
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Notice that in vector optimization different kind of lower semicontinuity concepts
have been used. The next concept introduced in [6] and [15] is a slight relaxation
of lower semicontinuity.

Definition 3.4. The function f : X → Z is said to be quasi-lower semicontinu-
ous at x0 ∈ X (q-lsc in short) if for each b ∈ Z such that b �C f(x0), there exists
a neighborhood U of x0 such that b �C f(u) for each u ∈ U .

The question whether the C-lsc in Proposition 3.3 can be weakened to q-lsc
arises naturally. The next example shows that the answer is negative.

Example 3.5. Let Z = R2, C = R2
+, and F : [0, 1] → R2 defined by

F (t) =

{ ( − 2
t
,
1
t

)
, if t �= 0

(0, 0), if t = 0.

It is easy to verify that F is q-lsc at 0 but not R2
+-lsc at 0.

For e = e∗ = ( 1√
2
, 1√

2
) ∈ int R2

+, we have that e∗(e) = 1 and (EP )e,e∗ does
not admit any solution.

If a �= 0, then

f(a, b) =
〈( 1√

2
,

1√
2

)
, F (b)− F (a)

〉
=




1√
2
(−1

b
+

1
a
), if b �= 0

1√
2a

, if b = 0,

therefore f(a, b) < 0 for all b < a. Therefore, a �= 0 is not a solution of (EP )e,e∗.
For a = 0, the function f becomes

f(0, b) =
〈( 1√

2
,

1√
2

)
, F (b)− F (0)

〉
=


 − 1√

2b
, if b �= 0

0, if b = 0.

We observe that for each b ∈ (0, 1], f(0, b) < 0. This means that a = 0 is not a
solution of (EP )e,e∗ . By consequence, (EP )e,e∗ has no solutions, although the set
of solutions of (WVMP) is [0, 1].

Proposition 3.6. If F is C-lsc on a compact set A, then the weak vector mini-
mization problem (WVMP) admits a solution.

4. APPLICATIONS TO CONE-SADDLE POINTS

Let X and Y be nonempty subsets of two topological spaces and f : X×Y → Z.
For x ∈ X and y ∈ Y we consider the sets
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f(x, Y ) := {f(x, y)| y ∈ Y } and f(X, y) := {f(x, y)| x ∈ X}.
We recall the following concept which extends the classical definition of a saddle
point for scalar functions.

Definition 4.1. [14] A point (x0, y0) ∈ X × Y is said to be a weak C-saddle
point of f on X × Y if

f(x0, y0) ∈ maxw f(X, y0) ∩ minw f(x0, Y ).

Proposition 4.2. Let A = B = X ×Y and the vector function ϕ : A×B → Z
defined by ϕ(a, b) = f(x, v)− f(u, y), for all a = (x, y) and b = (u, v) ∈ X × Y .
If ā is a solution for (WVEP) then ā is a weak C-saddle point of f.

Proof. Let ā = (x̄, ȳ) be a solution of the problem (WVEP). Then

ϕ(ā, b) /∈ −int C, for all b ∈ B.

This implies that f(x̄, v) − f(u, ȳ) /∈ −int C for all (u, v) ∈ X × Y . If we take
u := x̄ and v := y we obtain

(11) f(x̄, y) /∈ f(x̄, ȳ) − int C, for all y ∈ Y,

which leads to f(x̄, ȳ) ∈ Minw f(x̄, Y ).
Let u := x and v := ȳ. Then we have

(12) f(x, ȳ) /∈ f(x̄, ȳ) + int C, for all x ∈ X,

which gives us that f(x̄, ȳ) ∈ Maxw f(X, ȳ).
Relations (11) and (12) imply that (x̄, ȳ) is a weak C-saddle-point of f .

Theorem 4.3. Let X and Y be compact sets and f :X×Y →Z be a function.
If:

(i) f is C-usc with respect to its first variable and C-lsc with respect to its second
variable;

(ii) f is C-subconcavelike-subconvexlike on X × Y ,
then f admits a weak C-saddle-point.

Proof. Let e ∈ C \ l(C). Then there exists e∗ ∈ C∗ such that 〈e∗, e〉 = 1.
We define the sets A = B := X × Y and the function ϕ : A × B → R, by

ϕ(a, b) := 〈e∗, f(x, v)− f(u, y)〉, for all a = (x, y) ∈ A and b = (u, v) ∈ B.

It is easy to check that the assumptions of Corollary 2.10 are satisfied for this
function. By this corollary, Propositions 3.1 and 4.2 we obtain that f admits a weak
C-saddle point.
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