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ON THE COMPLETE CONVERGENCE FOR NEGATIVELY
ASSOCIATED RANDOM FIELDS

Mi-Hwa Ko

Abstract. The aim of this note is to establish almost sure Marcinkiewicz-
Zygmund type result for a field of negatively associated random variables
indexed by Z

d
+ (d ≥ 2), the positive d-dimensional lattice points.

1. INTRODUCTION AND MAIN RESULT

Let Z
d
+ (d ≥ 2) denote the positive integer d-dimensional lattice with coordinate-

wise partial ordering ≤. The notation m ≤ n, where m = (m1, m2, · · · , md) and
n = (n1, n2, · · · , nd), thus means that mk ≤ nk for k = 1, 2, · · · , d. We also use
|n| for

∏d
k=1 nk, n → ∞ is to be interpreted as nk → ∞ for k = 1, 2, · · · , d

and 1 = (1, 1, · · · , 1). For d = 1 we use the notation Z+ instead of Z
1
+. Let

{Xn, n ∈ Z
d
+} be a field of random variables on a probability space (Ω,F ,P).

Set Sn =
∑

j≤n Xj for j ∈ Z
d
+. Then Sn is simply a sum of |n| random vari-

ables. The field {Xn, n ∈ Z
d
+} is called negatively associated, if for every pair

of disjoint subsets A, B of Z
d
+ and any pair of coordinatewise increasing functions

f(Xi; i ∈ A), g(Xj; j ∈ B) with Ef 2(Xi; i ∈ A) < ∞ and Eg2(Xj; j ∈ B) < ∞,
it holds that Cov(f(Xi; i ∈ A), g(Xj; j ∈ B)) ≤ 0. The concept of NA was intro-
duced by Alam and Saxena (1981) and Joag-Dev and Proschan (1983). As pointed
out and proved by Joag-Dev and Proschan (1983), a number of well-known mul-
tivariated distributions possess the NA property, such as multinomial distribution,
multivariate hypergeometric distribution, Dirichlet distribution, negatively correlated
normal distribution, permutation distribution, and joint distribution of ranks. Be-
cause of their wide applications in multivariate statistical analysis and reliability
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theory the concept of negatively associated random variables has received exten-
sive attention recently. We refer to Joag-Dev and Proschan (1983) for fundamental
properties. In the case of d = 1, we refer to Newman (1984) for the central limit
theorem, Matula (1992) for the three series theorem, Shao (2000) for the Rosenthal-
type inequality and complete convergence, Liang (2004) for complete convergence
of weighted sums, Li and Zhang (2004) for complete moment convergence, Fu and
Zhang (2007) for precise rate in the law of logarithm. In the case of d ≥ 2, Rous-
sas (1994) studied the central limit theorems for weak stationary NA random fields
and Zhang (2000) obtained the weak convergence under condition that the 2 + δth
moment is finite. Zhang and Wen (2001) investigated the weak convergence for a
centered stationary NA random field under finite second moments. Complete con-
vergence gives a convergence rate with respect to the strong law of large numbers.
One can refer to Hsu and Robbin (1947) and Baum and Katz (1965) for details. Ap-
plying the maximal inequality for NA random variables, one can get the following
result easily.

Theorem A. (Shao [2000]). Let 1
2 < α ≤ 1, pα ≥ 1 and let {Xn; n ≥ 1} be

a negatively associated sequence of identically distributed random variables with
EX1 = 0. Then the following statements are equivalent:

(i) E|X1|p < ∞,
(ii)

∑∞
n=1 npα−2P (max1≤j≤n |Sj| > εnα) for all ε > 0.

Inspired by Peligrad and Gut (1999) we wish to consider theorem A in the
random fields as follows.

Theorem 1.1. Let pα > 1 and α > 1
2 and let {Xn, n ∈ Z

d} be a field of
identically distributed NA random variables with EX 1 = 0. Then the following
statements are equivalent:

(i) E|X1|p(log+ |X1|)d−1 < ∞,
(ii)

∑
n |n|pα−2P (max1≤k≤n |Sk| > ε|n|α) < ∞ for all ε > 0 ,

where log+ x = max{1, logx}.

Theorem 1.2. Let {Xn, n ∈ Z
d
+} be a field of identically distributed NA

random variables with EX1 = 0. Then E|X1|(log+ |X1|)d−1 < ∞ implies that
Sn
|n| → 0 a.s.

2. PROOFS

Lemma 2.1. (Zhang and Wen [2001]). Let {Xk, k ∈ Z
d
+} be a field of centered

NA random variables. Then for all q ≥ 2, there exists a positive constant C = C q

such that
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(2.1.a) E|Sn|q ≤ C{
∑

1≤k≤n

EX2
k +

∑
1≤k≤n

E|Xk|q},

(2.1.b)

E max
1≤k≤n

|Sk|q ≤ C{(E max
1≤k≤n

|Sk|)q

+


 ∑

1≤k≤n

EX2
k




q/2

+
∑

1≤k≤n

E|Xk|q},

∀ n ∈ Z
d
+.

The following quantities and their asymptotic behavior turn out to be of impor-
tance(see e.g. Gut (1978) for details and further references).

(2.2) M(j) = Card{k : |k| ≤ j} � j(log j)d−1 as j → ∞

and

(2.3) d(j) = Card{k : |k| = j} = o(jδ) for any δ > 0 as j → ∞.

Lemma 2.2. (Gut [1978]). Let {Xn, n ∈ Z
d
+} be a field of identically dis-

tributed random variables with EX 1 = 0. Then

∑
n

|n|pα−1P (|X1| > |n|α) < ∞ if and only if E|X1|p(log+ |X1|)d−1 < ∞.

Proof of Theorem 1.1. In order to prove that (i) → (ii) we truncate at the level
|n|α, and set

Yi = −|n|αI(Xi < −|n|α) + XiI(|Xi| ≤ |n|α)

+|n|αI(Xi > |n|α) for 1 ≤ i ≤ n

and X
′
i = Yi − EYi, S

′
n =

∑
1≤i≤n X

′
i and Sn =

∑
1≤i≤n Xi.

In view of the fact that EX1 = 0 we obtain

(2.4) EX1I(|X1| ≤ |n|α) = −EX1I(|X1| > |n|α).

First, we obtain
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∑
n

|n|pα−2P ( max
1≤j≤n

|Sj| > ε|n|α)

≤
∑
n

|n|pα−2P ( max
1≤j≤n

|Xj|> |n|α)+
∑
n

|n|pα−2P ( max
1≤j≤n

|
∑

1≤i≤j

Yi| > ε|n|α)

≤
∑
n

|n|pα−2P ( max
1≤j≤n

|Xj| > |n|α)

+
∑
n

|n|pα−2P ( max
1≤j≤n

|
∑

1≤i≤j

(Yi − EYi)| > ε|n|α − max
1≤j≤n

|
∑

1≤i≤j

EYi|)

≤
∑
n

|n|pα−1P (|X1| > |n|α)

+
∑
n

|n|pα−2P ( max
1≤j≤n

|
∑

1≤i≤j

(Yi − EYi)| > ε|n|α − max
1≤j≤n

|
∑

1≤i≤j

EYi|)

= I1 + I2.

By Lemma 2.2 I1 < ∞. Hence it remains to show that I2 < ∞.
Since pα > 1 clearly, we also obtain

(2.5) |n|E|X1|I(|X1| > |n|α) = o(|n|α) as n → ∞.

It follows from (2.4) and (2.5) that

(2.6)

max
1≤j≤n

|
∑

1≤i≤j

EYi|

= max
1≤j≤n

|
∑

1≤i≤j

E{XiI(|Xi| ≤ |n|α)− |n|αI(Xi < −|n|α)

+|n|αI(Xi > |n|α)}|
≤

∑
1≤i≤n

E|Xi|I(|Xi| > |n|α) +
∑

1≤i≤n

|n|αEI(|Xi| > |n|α)

≤ 2
∑

1≤i≤n

E|Xi|I(|Xi| > |n|α)

= 2|n|E|X1|I(|X1| > |n|α) = o(|n|α) as n → ∞.

Hence, it follows from (2.6) that for |n| large enough

I2 ≤
∑
n

|n|pα−2P ( max
1≤j≤n

|
∑

1≤i≤j

(Yi − EYi) >
ε

2
|n|α).

By Lemma 2.1 and Chebyshev’s inequality for suitable large k which will be
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determined later, we first observe that

I2 ≤
∑
n

|n|pα−2P ( max
1≤j≤n

|S ′
j| >

ε

2
|n|α)

≤
∑
n

|n|pα−2−αkE( max
1≤j≤n

|S ′
j|)k

≤
∑
n

|n|pα−2−αk(|n|k(E|X ′
1|)k+|n| k

2 (E|X ′
1|2)

k
2 +|n|(E|X ′

1|k))=I3+I4+I5.

For I3, we have

(2.7) I3≤
∞∑
n

|n|pα−2−αk+k≤
∞∑

m=1

∑
|n|=m

|n|pα−2−αk+k =
∞∑

m=1

d(m)mpα−2−αk+k

which, in view of (2.3), is convergent if k is selected such that k > (pα−1)/(α−1).
Letting bj = P (j ≤ |X1| < j +1) we use partial summation and (2.2) to obtain

(2.8)

I5 ≤
∑
n

|n|pα−1−αk
∑

j≤|n|α
jkbj =

∞∑
m=1

∑
|n|=m

|n|pα−1−αk
∑

j≤mα

jkbj

=
∞∑

m=1

d(m)mpα−1−αk
∑

j≤mα

jkbj =
∞∑

j=1

{
∞∑

m≥j
1
α

d(m)mpα−1−αkjkbj}

≤
∞∑

j=1

M(j
1
α )j(pα−1−αk)/αjkbj

≤
∞∑

j=1

j
1
α (log+(j

1
α ))d−1j(p−k− 1

α
)jkbj

=
∞∑

j=1

j(log+ j)d−1bj < ∞,

since E|X1|p(log+ |X1|)d−1 < ∞.
As, for I4 we distinguish two cases.
(1) p ≥ 2, in which case

(2.9)

I4 ≤
∑
n

|n|pα−2−αk+k
2 E(X

′
1)

2)
k
2 ≤

∞∑
m=1

∑
|n|=m

|n|pα−2−αk+k
2

=
∞∑

m=1

d(m)mpα−2−αk+k
2

which, in view of (2.3), is convergent if k is selected such that k > (pα−1)/(α− 1
2 ).
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(2) 1 ≤ p < 2, in which case

(2.10) I4 ≤
∑
n

|n|pα−2−αk+k
2 E(X

′
1)

2 ≤
∑
n

|n|pα−2−αk+k
2
+α(2−p)( k

2
)

which is convergent for k > 2, provided pα > 1.
Hence from (2.7), (2.8), (2.9) and (2.10) we derive that I2 < ∞ and thus (ii)

follows.
Now we prove that (ii) implies (i). Obviously (ii) implies that

(2.11)
∑
n

|n|pα−2P ( max
1≤j≤n

|Xj| > |n|α) < ∞

and that

(2.12) P ( max
1≤j≤n

|Xj| > |n|α) → 0.

Let Aj = {|Xj| > |n|α, maxi�=j,1≤i≤n |Xi| ≤ |n|α}. Then {Aj} are disjoint
subsets. Since

P ( max
1≤j≤n

|Xj| > |n|α) =
∑

1≤j≤n

P (|Xj| > |n|α, max
i�=j,1≤i≤n

|Xi| ≤ |n|α)

= P (∪1≤j≤n{|Xj| > |n|α, max
i�=j,i∈n

|Xi| ≤ |n|α}),

we deduce, in view of the equidistribution , that

(2.13)

|n|P (|X1| > |n|α) =
∑

1≤j≤n

P (|Xj| > |n|α)

=
∑

1≤j≤n

P (|Xj| > |n|α, max
i�=j,i≤n

|Xi| ≤ |n|α)

+
∑

1≤j≤n

P (|Xj| > |n|α, max
i�=j,i≤n

|Xi| > |n|α)

= P ( max
1≤j≤n

|Xj|> |n|α)+
∑

1≤j≤n

P (|Xj| > |n|α, max
i�=j,1≤i≤n

|Xi|> |n|α).

By centering the second term we get

(2.14)

∑
1≤j≤n

P (|Xj| > |n|α, max
i�=j,1≤i≤n

|Xi| > |n|α)

=
∑

1≤j≤n

E[I(|Xj| > |n|α)I( max
i�=j,1≤i≤n

|Xi| > |n|α)]

≤ E
∑

1≤j≤n

[I(|Xj| > |n|α) − P (|X1| > |n|α)]I( max
1≤i≤n

|Xi| > |n|α)

+|n|P (|X1| > |n|α)P ( max
1≤i≤n

|Xi| > |n|α) = I + II.
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In order to estimate I we apply the Cauchy-Schwarz inequality and relation (2.1.a)
with q = 2 and we obtain

(2.15)

|I | ≤
√

V ar{
∑

1≤j≤n

I(|Xj| > |n|α)} · P ( max
1≤i≤n

|Xi| > |n|α)

≤
√

2{V ar[
∑

1≤j≤n

I(Xj > |n|α)] + V ar[
∑

1≤j≤n

I(Xj < −|n|α)]}

·
√

P ( max
1≤i≤n

|Xi| > |n|α)

≤
√

2[
∑

1≤j≤n

P (Xj > |n|α) +
∑

1≤j≤n

P (Xj < −|n|α)]

·
√

P ( max
1≤i≤n

|Xi| > |n|α)

=
√

2
∑

1≤j≤n

P (|Xj| > |n|α) · P ( max
1≤i≤n

|Xi| > |n|α)

≤ 1
2

∑
1≤j≤n

P (|Xj|> |n|α) + P ( max
1≤i≤n

|Xi|> |n|α) by
√

ab≤ a + b

2
.

From (2.13)-(2.15) we have

1
2
|n|P (X1 > |n|α) ≤ 2P ( max

1≤i≤n
|Xi| > |n|α)

+|n|P (|X1| > |n|α)P ( max
1≤i≤n

|Xi| > |n|α)

and by (2.12) there exists a positive constant C such that

(2.16) |n|P (|X1| > |n|α) ≤ CP ( max
1≤i≤n

|Xi| > |n|α)

for sufficiently large |n|. Relations (2.11) and (2.16) finally gives

(2.17)
∑
n

|n|pα−1P (|X1| > |n|α) < ∞.

Hence, from (2.17), (i) follows by Lemma 2.2.

Proof of Theorem 1.2. Note that {Xn, n ∈ Zd
+} is a field of pairwise negatively

quadrant dependent (NQD) random variables since NA implies NQD. Hence, the
proof follows Theorem 2 of Matula (1992).
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