TAIWANESE JOURNAL OF MATHEMATICS Vol. 15, No. 1, pp. 165-169, February 2011 This paper is available online at http://www.tjm.nsysu.edu.tw/

AN EQUALITY CONDITION OF ARHIPPAINEN-MÜLLER'S ESTIMATE AND ITS RELATED PROBLEM

Sin-Ei Takahasi, Takeshi Miura and Takahiro Hayata

Dedicated to Professor Wataru Takahashi for his retirement from TIT with respect and affection

Abstract. J. Arhippainen and V. Muller showed that $||a + \lambda e||_1 \leq 3 ||a + \lambda e||_{\text{op}}$ for all $a + \lambda e \in \tilde{A}$, where \tilde{A} is the unitization of an arbitrary non-unital Banach algebra A with regular norm. In this note, we present a necessary and sufficient condition for the equality of this estimate and its related problem.

1. INTRODUCTION

Let A be a Banach algebra with regular norm $\|\cdot\|$. Here we shall say that $\|\cdot\|$ is regular if

$$||a|| = \sup\{||ax||, ||xa|| : x \in A, ||x|| = 1\}$$

holds for all $a \in A$. Let $\tilde{A} = \{a + \lambda e : a \in A, \lambda \in \mathbb{C}\}$ be the unitization of A with the identity element denoted by e. The norm $\|\cdot\|$ of A can be extended to \tilde{A} in many ways, however, all regular extensions are equivalent. Denote by $\|\cdot\|_1$ the ℓ_1 -norm on \tilde{A} : $\|a + \lambda e\|_1 = \|a\| + |\lambda|$, and by $\|\cdot\|_{op}$ the operator seminorm on \tilde{A} :

$$||a + \lambda e||_{op} = \sup\{||ax + \lambda x||, ||xa + \lambda x|| : x \in A, ||x|| = 1\}.$$

Note that $\|\cdot\|_{op}$ becomes a norm if and only if A has no identity element. In fact, suppose that $\|\cdot\|_{op}$ becomes a norm and A has an identity element e_A . Then

$$||e_A - e||_{op} = \sup\{||e_A x - x||, ||xe_A - x|| : x \in A, ||x|| = 1\} = 0$$

Communicated by W. Takahashi.

Received May 1, 2009, accepted June 30, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 46H05.

Key words and phrases: Regular norm, Unitization, C*-algebra.

The first and second authors were partly supported by the Grant-in-Aid for Scientific Research.

and hence $e_A - e = 0$, so $e \in A$, a contradiction. Conversely, suppose that $\|\cdot\|_{op}$ does not become a norm. Then there exists a nonzero element $c + \mu e \in \tilde{A}$ such that $\|c + \mu e\|_{op} = 0$, that is, $cx = xc = -\mu x$ for all $x \in A$. If $\mu = 0$, then cx = xc = 0 for all $x \in A$ and hence c = 0 since $\|\cdot\|$ is regular. This contradicts $c + \mu e \neq 0$. Therefore, we have $\mu \neq 0$ and we see that $-c/\mu$ becomes an identity element of A.

In the remainder of this note, we assume that A is non-unital. In 1991, A. K. Gaur and Z. V. Kovárík [3] showed that the ℓ_1 -norm on \tilde{A} is the maximal and the operator norm on \tilde{A} is the minimal among all regular extensions of $\|\cdot\|$. Moreover, they [4] showed in 1993 that

$$\|a + \lambda e\|_1 \le 6 \exp(1) \|a + \lambda e\|_{\text{op}}$$

holds for all $a + \lambda e \in \tilde{A}$ and that if A is a C^* -algebra, then

$$\|a + \lambda e\|_1 \le 3 \|a + \lambda e\|_{\text{op}}$$

holds for all Hermitian element $a \in A$ and $\lambda \in \mathbb{C}$ and the constant 3 is best possible. Also T. W. Palmer [5] pointed out that $||a + \lambda e||_1 \le (1 + \exp(1)) ||a + \lambda e||_{op}$ holds for all $(a, \lambda) \in \tilde{A}$ in his review on Gaur-Kovárík's paper. In 1997, J. Arhippainen and V. Müller [1] showed the following final version.

Theorem A-M. Let A be a non-unital Banach algebra with regular norm. Then $||a + \lambda e||_1 \leq 3 ||a + \lambda e||_{op}$ holds for all $a + \lambda e \in \tilde{A}$.

In this note, our purpose is to present a necessary and sufficient condition for the equality of Arhippainen-Müller's estimate above and its related problem.

2. MAIN RESULTS

The following is our main result and this can be shown by applying a technique used in [1].

Proposition 2.1. Let A be a non-unital Banach algebra with regular norm $\|\cdot\|$ and $a + \lambda e \in \tilde{A}$. Then $\|a + \lambda e\|_1 = 3 \|a + \lambda e\|_{op}$ if and only if $\|a\| = 2 \|a + \lambda e\|_{op} = 2|\lambda|$.

Proof. Since A is a proper two-sided ideal of the Banach algebra $(\tilde{A}, \|\cdot\|_{\text{op}})$ with identity element e, it follows that $\|b - e\|_{\text{op}} \ge 1$ for all $b \in A$ and hence we have

$$|\lambda| \le \|a + \lambda e\|_{\text{op}}.$$

By (2.1), we have $||a + \lambda e||_{\text{op}} \ge ||a||_{\text{op}} - ||\lambda e||_{\text{op}} = ||a|| - |\lambda| \ge ||a|| - ||a + \lambda e||_{\text{op}}$ and hence

$$\|a\| \le 2 \|a + \lambda e\|_{\text{op}}.$$

By (2.1) and (2.2), we have $||a+\lambda e||_1 \leq 3 ||a+\lambda e||_{\text{op}}$ and the equality holds if and only if $|\lambda| = ||a+\lambda e||_{\text{op}}$ and $||a|| = 2 ||a+\lambda e||_{\text{op}}$. This completes the proof.

We want to say that the equality condition $||a|| = 2 ||a + \lambda e||_{op} = 2|\lambda|$ in the above proposition asserts that a point $-a/\lambda \in A$ belongs to the intersection of the sphere with center 0 and radius 2 and the sphere with center e and radius 1 in $(\tilde{A}, ||\cdot||_{op})$. Also the proper two-sided ideal A of \tilde{A} is the kernel of the homomorphism φ_A of \tilde{A} onto \mathbb{C} defined by $\varphi_A(a + \lambda e) = \lambda$ for each $a + \lambda e \in \tilde{A}$. Therefore, we shall pose the following.

Question. Given a unital Banach algebra B with identity element e_B and a homomorphism φ of B onto \mathbb{C} , can one find an element $x \in B$ having the property

(#)
$$\varphi(x) = 0, \quad ||x|| = 2 \text{ and } ||x - e_B|| = 1?$$

We can not find an element of \tilde{A} which has the property (\sharp) for the pair $\{(\tilde{A}, \|\cdot\|_1), \varphi_A\}$. In fact, suppose that there exists an element $x_0 + \lambda_0 e \in \tilde{A}$ having the property (\sharp) . Then $\lambda_0 = \varphi_A(x_0 + \lambda_0 e) = 0$ and hence $\|x_0\| = \|x_0 + \lambda_0 e\|_1 = 2$. Also we have $1 = \|x_0 + \lambda_0 e - e\|_1 = \|x_0 - e\|_1 = \|x_0\| + 1$ and then $x_0 = 0$, a contradiction. However, the following result gives an affirmative answer to the above question in cases of unital C^* -algebra or unital group algebra.

Proposition 2.2. Let B be a C^* -algebra or group algebra of a discrete Abelian group G and φ be a homomorphism of B onto \mathbb{C} . Then there exists an element $x \in B$ having the property (\sharp) : $\varphi(x) = 0$, ||x|| = 2 and $||x - e_B|| = 1$, where e_B is the identity element of B.

Proof.

(1) Suppose B is a unital C*-algebra and φ be a homomorphism of B onto C. Take a norm one positive element b ∈ B with φ(b) = 0. Denote by σ(b) the spectrum of b ∈ B. Then 0, 1 ∈ σ(b) and σ(b) is contained in the closed unit interval [0, 1] in ℝ. Also the C*-subalgebra of B generated by b and the identity element e_B is isometrically isomorphic to the commutative C*-algebra of all continuous complex-valued functions on σ(b). Set f(t) = 2t for each t ∈ σ(a). Then f(0) = 0, ||f||_∞ = 2 and ||f - 1||_∞ = 1, where ||·||_∞ denotes the supremum norm on σ(b). Therefore the corresponding element x of B has the property (\$).

(2) Let B be a group algebra $L^1(G)$ of a discrete Abelian group G and φ be a homomorphism of B onto \mathbb{C} . Let γ be the corresponding character of G and then ker $\varphi = \{f \in L^1(G) : \hat{f}(\gamma) = 0\}$. Take an element $x_0 \in G$ which is different from 0 and define

$$f(x) = \begin{cases} 1 & \text{if } x = 0\\ -\gamma(x_0) & \text{if } x = x_0\\ 0 & \text{otherwise} \end{cases}$$

Then $||f||_1 = 1 + |-\gamma(x_0)| = 2$. Let δ_0 be the Dirac measure at $0 \in G$. Then δ_0 is an identity element of $L^1(G)$ and we have $||f - \delta_0||_1 = |-\gamma(x_0)| = 1$. Also we have

$$\hat{f}(\gamma) = \sum_{x \in G} f(x)\overline{\gamma(x)} = f(0)\overline{\gamma(0)} + f(x_0)\overline{\gamma(x_0)}$$
$$= 1 - \gamma(x_0)\overline{\gamma(x_0)} = 1 - |\gamma(x_0)|^2 = 0$$

and then the function f has the property (\sharp).

Remark 1. The regular norms are sometimes defined as those satisfying

$$||a|| = \sup\{||ax|| : x \in A, ||x|| = 1\}$$

for all $a \in A$. Both Theorem A-M and Proposition 2.1 remain true for this definition without any change (cf. [1, 3, 4]).

Remark 2. If we can find an element of \tilde{A} which has the property (\sharp) for the pair $\{(\tilde{A}, \|\cdot\|_{op}), \varphi_A\}$, then the constant 3 in Theorem A-M is best possible. In fact, suppose that there exists $a_0 + \lambda_0 e \in \tilde{A}$ such that $\varphi_A(a_0 + \lambda_0 e) = 0$, $\|a_0 + \lambda_0 e\|_{op} = 2$ and $\|a_0 + \lambda_0 e - e\|_{op} = 1$. Then we have $\lambda_0 = 0$, hence $\|a_0\| = \|a_0\|_{op} = 2$ and $\|a_0 - e\|_{op} = 1$. Therefore, $\|a_0 - e\|_1 = 3 \|a_0 - e\|_{op}$ by Proposition 2.1. This implies that the constant 3 in Theorem A-M is best possible.

Remark 3. Let A be a non-unital C^* -algebra and put

$$||a + \lambda e||_{lm} = \sup\{||ax + \lambda x|| : x \in A, ||x|| = 1\}$$

for each $a + \lambda e \in \tilde{A}$. Then $(\tilde{A}, \|\cdot\|_{lm})$ becomes a unital C^* -algebra by [2, 1.3.8]. Similarly, we can show that $(\tilde{A}, \|\cdot\|_{op})$ becomes a C^* -algebra and then we have from the uniqueness of C^* -norm that

$$\|a + \lambda e\|_{lm} = \|a + \lambda e\|_{op}$$

for each $a + \lambda e \in \hat{A}$. Therefore we see from Proposition 2.2 and Remark 2 that the constant 3 in Theorem A-M is best possible in case C^* -algebras. This improves Gaur-Kovárík's result [4] stated above.

168

An Equality Condition

REFERENCES

- 1. J. Arhippainen and V. Muller, Norms on unitizations of Banach algebras revisited, *Acta Math. Hungar.*, **114** (2007), 201-204.
- 2. J. Dixmier, *Les C*-algèbres et leurs représentations*, Cahiers Scientifique 24 (Gauthier-Villars, Paris, 1964).
- 3. A. K. Gaur and Z. V. Kovárík, Norms, states and numerical ranges on direct sums, *Analysis*, **11** (1991), 155-164.
- 4. A. K. Gaur and Z. V. Kovárík, Norms on unitizations of Banach algebras, *Proc. Amer. Math. Soc.*, **117** (1993), 111-113.
- 5. T. W. Palmer, review MR1104395, Mathematical Reviews, 93c:46082.

Sin-Ei Takahasi Department of Applied Mathematics and Physics, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan E-mail: sin-ei@emperor.yz.yamagata-u.ac.jp

Takeshi Miura Department of Applied Mathematics and Physics, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan E-mail: miura@yz.yamagata-u.ac.jp

Takahiro Hayata Department of Informatics, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan E-mail: hayata@yz.yamagata-u.ac.jp