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NONOSCILLATORY PROPERTY OF
SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS

OF ADVANCED TYPE∗

Ming-Po Chen† and Bing Liu

Abstract. In this paper, we study the nonoscillatory property of the
second order nonlinear differential equation of advanced type:

(r(t)φ(x(t))x′(t))′ + p(t)f(x(g(t))) = 0.

We prove an existence theorem for nonoscillatory solutions and compare
the oscillation of nonlinear equations.

1. Introduction

Consider the second order nonlinear differential equation of advanced type:

(r(t)φ(x(t))x′(t))′ + p(t)f(x(g(t))) = 0, t ≥ t0 ≥ 0,(E)

where

(H1) r(t) ∈ C1([t0,∞), (0,∞)),
∫∞
t

ds
r(s) =∞;

(H2) p(t) ∈ C([t0,∞), [0,∞)), p 6≡ 0;

(H3) φ(x) ∈ C1([−∞,∞), (0,∞)), φ(x) 6= 0 (x 6= 0);

(H4) f(x) ∈ C1(−∞,∞), (−∞,∞)), xf(x) > 0 (x 6= 0);
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(H5) G(x) = f ′(x)
φ(x) > 0 (x 6= 0); G(x) is nondecreasing in (0,∞) and nonin-

creasing in (−∞, 0).

(H6) g(t) ∈ C([t0,∞)→ [0,∞)), and g(t) ≥ t.
A nontrivial solution x(t) is said to be oscillatory if it has arbitrarily large

zeros, otherwise x(t) is said to be nonoscillatory.
The aim of this note is to prove the following characterization of the ex-

istence of nonoscillatory solutions of (E). The proof is an adaptation of that
given in [1], where the special case g(t) = t was considered.

Theorem 1. Under the hypotheses (H1) – (H6), (E) has a nonoscillatory
solution if and only if there exists a positive differentiable function ϕ(t) defined
on [t0,∞) and some a 6= 0 such that

ϕ′(t) + ϕ2(t)
r(t) G

(
F−1

(
a,

∫ t

t1

ϕ(u)
r(u)

du

))

≤ −p(t) exp

(∫ g(t)

t

ϕ(s)
r(s)

G

(
F−1(a,

∫ s

t1

ϕ(u)
r(u)

du

))
ds, t ≥ t1 ≥ t0.

(1)

Here F denote the function F (a, x) =
∫ x
a
φ(u)
f(u)du, a 6= 0.

It is clear that when a > 0, F (a, x) is strictly increasing for x > 0; when
a < 0, F (a, x) is strictly decreasing for x < 0 (see [1] for further properties of
F (a, x)).

By (H1), (H5), (H6), and ϕ(t) > 0, we see that the integral
∫ g(t)
t · · · is

positive, which together with (1) implies that

ϕ′(t) +
ϕ2(t)
r(t)

G

(
F−1

(
a,

∫ t

t1

ϕ(u)
r(u)

du

))
≤ −p(t), t ≥ t1.

Then, by applying Theorem 1 to the case g(t) = t, we immediately deduce the
following corollary.

Corollary 1. If (E) has a nonoscillatory solution, then equation (E) with
g(t) = t also has a nonoscillatory solution.

According to Theorem 1 (with g(t) = t) and Corollary 1, we easily deduce
the following corollary which generalizes Hille-Wintner comparison theorem
[2, 3] and Theorem 2.3 of [4] to include nonlinear equations of advanced type.

Consider, together with (E), the following equation:

(r̄(t)φ(x(t))x′(t))′ + p̄(t)f(x(g(t))) = 0.(∗)
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Corollary 2. Suppose r̄ and p̄ also satisfy (H1) and (H2), and suppose
that 0 < r(t) ≤ r̄(t), 0 ≤ p̄(t) ≤ p(t), t ≥ t1 ≥ t0. If equation (E) has a
nonoscillatory solution, then the equation (∗) also has a nonoscillatory solu-
tion.

2. Proofs of Results

We will see later that all solutions of (E) oscillate when
∫∞ p(s)ds = ∞

(Remark 1). Hence we assume that P (t) =
∫∞
t p(s)ds <∞. First, we modify

the arguments in the proof of Lemma 1 of [1] (which is for the case g(t) = t)
to prove the next lemma.

Lemma 1. If (E) has an eventually positive solution x(t) > 0 (t ≥ t1 ≥ t0),
then ω(t) > 0, lim

x→+∞
w(t) = 0 and for t ≥ t1

w(t) =
∫ ∞
t

w2(s)
r(s)

G

(
F−1

(
x(t1),

∫ s

t1

w(u)
r(u)

du

))
ds

+
∫ ∞
t

p(s) exp

(∫ g(s)

s

w(u)
r(u)

G

(
F−1

(
x(t1),

∫ u

t1

w(v)
r(v)

dv

))
du

)
ds,

(2)

where w(t) = r(t)φ(x(t))x′(t)
f(x(t)) .

Proof. From (E), we have

w′(t) +
w2(t)
r(t)

f ′(x(t))
φ(x(t))

+ p(t)
f(x(g(t)))
f(x(t))

= 0, t ≥ t1.(3)

Since
w(t)
r(t)

f ′(x(t))
φ(x(t))

=
f ′(x(t))x′(t)
f(x(t))

= (`nf(x(t)))′,

we have

f(x(g(t)))
f(x(t))

= exp

(∫ g(t)

t

w(s)
r(s)

f ′(x(s))
φ(x(s))

ds

)
.(4)

Thus, from (3) and (4), we have

w′(t) +
w2(t)
r(t)

f ′(x(t))
φ(x(t))

+ p(t) exp

(∫ g(t)

t

w(s)
r(s)

f ′(x(s))
φ(x(s))

ds

)
= 0, t ≥ t1.(5)

From (5), we have w′(t) ≤ 0. Integrating the above equation from t to T (t1 ≤
t ≤ T ), we obtain
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w(T )− w(t)+
∫ T

t

w2(s)
r(s)

f ′(x(s))
φ(x(s))

ds

+
∫ T

t
p(s) exp

(∫ g(s)

s

w(u)
r(u)

f ′(x(u))
φ(x(u))

du

)
ds = 0, t ≥ t1.

(6)

Since ∫ t

t1

w(s)
r(s)

ds =
∫ t

t1

φ(x(s))x′(s)
f(x(s))

=
∫ x(t)

x(t1)

φ(x)
f(x)

dx, t ≥ t1,

we have

x(t) = F−1
(
x(t1),

∫ t

t1

w(s)
r(s)

ds

)
.

From (6), we have for t ≥ t1 ≥ t0

w(t) =
∫ ∞
t

w2(s)
r(s)

G

(
F−1

(
x(t1),

∫ s

t1

w(u)
r(u)

du

))
ds

+
∫ ∞
t

p(s) exp

(∫ g(s)

s

w(u)
r(u)

G

(
F−1

(
x(t1),

∫ u

t1

w(v)
r(v)

dv

))
du

)
ds.

Finally, the same arguments in Lemma 1 of [1] show that w(t) > 0 and lim
x→+∞

w(t) = 0.

Remark. Suppose
∫∞

p(t)dt = ∞. If (E) has an eventually positive solution
x(t), then from (5) we have w′(t) +p(t) ≤ 0, hence w(t)−w(t1) ≤ −

∫ t
t1
p(t)dt→ −∞

as t → ∞, which implies x′(t) < 0 eventually. Now following the proof in Lemma
1, we can get the contradictory conclusion that x(t) < 0 eventually. Hence every
solution of (E) oscillates if

∫∞
p(t)dt =∞ holds.

Proof of Theorem 1. The necessity part has been proved in Lemma 1. We now
prove the sufficiency part of the theorem. Without loss of generality, set a > 0. The
same argument as in Theorem 1 of [1] shows that lim

t→∞
ϕ(t) = 0. Integrating (1) from

t to ∞, we have for t ≥ t1

∫ ∞
t

ϕ2(s)
r(s)

G

(
F−1

(
a,

∫ s

t1

ϕ(u)
r(u)

du

))
ds

+
∫ ∞
t

p(s) exp

(∫ g(s)

s

ϕ(u)
r(u)

G

(
F−1

(
a,

∫ u

t1

ϕ(v)
r(v)

dv

))
du

)
ds ≤ ϕ(t).

(7)

Define a mapping T as follows:
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(Ty)(t) =
∫ ∞
t

y2(s)
r(s)

G

(
F−1

(
a,

∫ s

t1

y(u)
r(u)

du

))
ds

+
∫ ∞
t

p(s) exp

(∫ g(t)

t

y(u)
r(u)

G

(
F−1

(
a,

∫ u

t1

y(v)
r(v)

dv

))
du

)
ds

(8)

for t ≥ t1. Let x0(t) = 0, xn(t) = (Txn−1)(t), n = 1, 2, . . .. Then x0(t) ≤
x1(t) ≤ · · · ≤ xn(t) ≤ · · · ≤ ϕ(t). Hence lim

t→∞
xn(t) = w(t) ≤ ϕ(t). From (8),

we have

xn(t) =
∫ ∞
t

x2
n−1(s)
r(s)

G

(
F−1

(
a,

∫ s

t1

xn−1(u)
r(u)

du

))
ds

+
∫ ∞
t

p(s) exp

(∫ g(s)

s

xn−1(u)
r(u)

G

(
F−1

(
a,

∫ s

t1

xn−1(v)
r(v)

dv

))
du

)
ds.

(9)

According to Lebesgue’s theorem, letting n→∞ in (9), we get

w(t) =
∫ ∞
t

w2(s)
r(s)

G

(
F−1

(
a,

∫ s

t1

w(u)
r(u)

du

))
ds

+
∫ ∞
t

p(s) exp

(∫ g(s)

s

w(u)
r(u)

G

(
F−1

(
a,

∫ s

t1

w(v)
r(v)

dv

))
du

)
ds.

(10)

Let

x(t) = F−1
(
a,

∫ t

t1

w(u)
r(u)

du

)
, t ≥ t1.(11)

Then ∫ x(t)

a
F (a, x(t)) =

∫ t

t1

w(u)
r(u)

du, t ≥ t1,

and so
F ′x(a, x(t))x′(t) =

w(t)
r(t)

, t ≥ t1,

φ(x(t))x′(t)
f(x(t))

=
w(t)
r(t)

, t ≥ t1.(12)

From (10), we have

w′(t) +
w2(t)
r(t)

f ′(x(t))
φ(x(t))

+ p(t) exp

(∫ g(t)

t

w(s)f ′(x(s))
r(s)φ(x(s))

ds

)
= 0, t ≥ t1.(13)
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From (4), (12) and (13), we have

(r(t)φ(x(t))x′(t))′ + p(t)f(x(g(t)) = 0, t ≥ t1,

which implies that x(t) is a nonoscillatory solution of (E). The proof is com-
pleted.
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