TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 6, pp. 2497-2511, December 2010 This paper is available online at http://www.tjm.nsysu.edu.tw/

FIXED POINT THEOREMS AND WEAK CONVERGENCE THEOREMS FOR GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES

Pavel Kocourek, Wataru Takahashi and Jen-Chih Yao*

Abstract. In this paper, we first consider a broad class of nonlinear mappings containing the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert space. Then, we deal with fixed point theorems and weak convergence theorems for these nonlinear mappings in a Hilbert space.

1. INTRODUCTION

Let *H* be a real Hilbert space and let *C* be a nonempty closed convex subset of *H*. Then a mapping $T : C \to C$ is said to be *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. The set of fixed points of *T* is denoted by F(T). From Baillon [1] we know the following first nonlinear ergodic theorem in a Hilbert space.

Theorem 1.1. Let C be a nonempty bounded closed convex subset of H and let $T: C \to C$ be nonexpansive. Then, for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to an element $z \in F(T)$.

An important example of nonexpansive mappings in a Hilbert space is a firmly nonexpansive mapping. A mapping F is said to be *firmly nonexpansive* if

$$||Fx - Fy||^2 \le \langle x - y, Fx - Fy \rangle$$

for all $x, y \in C$; see, for instance, Browder [3] and Goebel and Kirk [5]. It is known that a firmly nonexpansive mapping F can be deduced from an equilibrium

*Corresponding author.

Received May 1, 2010.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47H10; Secondary 47H05.

Key words and phrases: Hilbert space, Nonexpansive mapping, Nonspreading mapping, Hybrid mapping, Fixed point, Mean convergence.

problem in a Hilbert space; see, for instance, [2] and [4]. Recently, Kohsaka and Takahashi [11], and Takahashi [16] introduced the following nonlinear mappings which are deduced from a firmly nonexpansive mapping in a Hilbert space. A mapping $T: C \to C$ is called *nonspreading* [11] if

$$2||Tx - Ty||^{2} \le ||Tx - y||^{2} + ||Ty - x||^{2}$$

for all $x, y \in C$. Similarly, a mapping $T : C \to C$ is called *hybrid* [16] if

$$3||Tx - Ty||^{2} \le ||x - y||^{2} + ||Tx - y||^{2} + ||Ty - x||^{2}$$

for all $x, y \in C$. They proved fixed point theorems for such mappings; see also Kohsaka and Takahashi [10] and Iemoto and Takahashi [8]. Very recently, Takahashi and Yao [19] proved the following nonlinear ergodic theorem.

Theorem 1.2. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let T be a mapping of C into itself such that F(T) is nonempty. Suppose that T satisfies one of the following conditions:

- (*i*) T is nonspreading;
- (ii) T is hybrid;
- (iii) $2||Tx Ty||^2 \le ||x y||^2 + ||Tx y||^2$, $\forall x, y \in C$.

Then, for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to an element $z \in F(T)$.

In this paper, motivated by Takahashi and Yao [19], we introduce a broad class of mappings $T: C \to C$ such that for some $\alpha, \beta \in \mathbb{R}$,

$$\alpha ||Tx - Ty||^{2} + (1 - \alpha) ||x - Ty||^{2} \le \beta ||Tx - y||^{2} + (1 - \beta) ||x - y||^{2}$$

for all $x, y \in C$. Such a class contains the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert space. Then, we prove fixed point theorems for such nonlinear mappings in a Hilbert space. Furthermore, we obtain a nonlinear ergodic theorem of Baillon's type for this class of mappings which generalizes Theorems 1.1 and 1.2 in a Hilbert space. Finally, we prove a weak convergence theorem of Mann's type [12] for this class of mappings.

2. PRELIMINARIES

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a (real) Hilbert space with inner product

 $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, respectively. We denote the strong convergence and the weak convergence of $\{x_n\}$ to $x \in H$ by $x_n \to x$ and $x_n \rightharpoonup x$, respectively. From [15], we know the following basic equalities. For $x, y, u, v \in H$ and $\lambda \in \mathbb{R}$, we have

(2.1)
$$\|\lambda x + (1-\lambda)y\|^2 = \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\|x-y\|^2,$$

and

(2.2)
$$2\langle x-y, u-v \rangle = \|x-v\|^2 + \|y-u\|^2 - \|x-u\|^2 - \|y-v\|^2.$$

From (2.2), we also have the following equality.

(2.3)
$$\|x - y + u - v\|^{2} = \|x - y\|^{2} + \|u - v\|^{2} + 2\langle x - y, u - v \rangle$$
$$= \|x - y\|^{2} + \|u - v\|^{2} + \|x - v\|^{2} + \|y - u\|^{2} - \|x - u\|^{2} - \|y - v\|^{2}.$$

Let C be a nonempty closed convex subset of H and let T be a mapping from C into itself. Then, we denote by F(T) the set of fixed points of T. A mapping $T: C \to C$ with $F(T) \neq \emptyset$ is called *quasi-nonexpansive* if $||x - Ty|| \le ||x - y||$ for all $x \in F(T)$ and $y \in C$. It is well-known that the set F(T) of fixed points of a quasi-nonexpansive mapping T is closed and convex; see Ito and Takahashi [9]. In fact, for proving that F(T) is closed, take a sequence $\{z_n\} \subset F(T)$ with $z_n \to z$. Since C is weakly closed, we have $z \in C$. Furthermore, from

$$||z - Tz|| \le ||z - z_n|| + ||z_n - Tz|| \le 2||z - z_n|| \to 0,$$

z is a fixed point of T and so F(T) is closed. Let us show that F(T) is convex. For $x, y \in F(T)$ and $\alpha \in [0, 1]$, put $z = \alpha x + (1 - \alpha)y$. Then, we have from (2.1) that

$$\begin{aligned} \|z - Tz\|^2 &= \|\alpha x + (1 - \alpha)y - Tz\|^2 \\ &= \alpha \|x - Tz\|^2 + (1 - \alpha)\|y - Tz\|^2 - \alpha(1 - \alpha)\|x - y\|^2 \\ &\leq \alpha \|x - z\|^2 + (1 - \alpha)\|y - z\|^2 - \alpha(1 - \alpha)\|x - y\|^2 \\ &= \alpha(1 - \alpha)^2 \|x - y\|^2 + (1 - \alpha)\alpha^2 \|x - y\|^2 - \alpha(1 - \alpha)\|x - y\|^2 \\ &= \alpha(1 - \alpha)(1 - \alpha + \alpha - 1)\|x - y\|^2 \\ &= 0 \end{aligned}$$

= 0.

This implies Tz = z. So, F(T) is convex.

Let l^{∞} be the Banach space of bounded sequences with supremum norm. Let μ be an element of $(l^{\infty})^*$ (the dual space of l^{∞}). Then, we denote by $\mu(f)$ the value of μ at $f = (x_1, x_2, x_3, \ldots) \in l^{\infty}$. Sometimes, we denote by $\mu_n(x_n)$ the value $\mu(f)$. A linear functional μ on l^{∞} is called a *mean* if $\mu(e) = ||\mu|| = 1$, where $e = (1, 1, 1, \ldots)$. A mean μ is called a *Banach limit* on l^{∞} if $\mu_n(x_{n+1}) = \mu_n(x_n)$. We know that there exists a Banach limit on l^{∞} . If μ is a Banach limit on l^{∞} , then for $f = (x_1, x_2, x_3, \ldots) \in l^{\infty}$,

$$\liminf_{n \to \infty} x_n \le \mu_n x_n \le \limsup_{n \to \infty} x_n.$$

In particular, if $f = (x_1, x_2, x_3, ...) \in l^{\infty}$ and $x_n \to a \in \mathbb{R}$, then we have $\mu(f) = \mu_n x_n = a$. For a proof of existence of a Banach limit and its other elementary properties, see [14]. Using Banach limits, Takahashi and Yao [19] proved the following fixed point theorem.

Theorem 2.1. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let T be a mapping of C into itself. Suppose that there exists an element $x \in C$ such that $\{T^nx\}$ is bounded and

$$\|\mu_n\|T^n x - Ty\|^2 \le \|\mu_n\|T^n x - y\|^2, \quad \forall y \in C$$

for some Banach limit μ . Then, T has a fixed point in C.

Let C be a nonempty closed convex subset of H and $x \in H$. Then, we know that there exists a unique nearest point $z \in C$ such that $||x - z|| = \inf_{y \in C} ||x - y||$. We denote such a correspondence by $z = P_C x$. P_C is called the metric projection of H onto C. It is known that P_C is nonexpansive and

$$\langle x - P_C x, P_C x - u \rangle \ge 0$$

for all $x \in H$ and $u \in C$; see [15] for more details.

3. FIXED POINT THEOREMS

In this section, we start with defining a broad class of nonlinear mappings containing the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert space. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Then, a mapping $T : C \to C$ is called *generalized* hybrid if there are $\alpha, \beta \in \mathbb{R}$ such that

(3.4)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. We call such a mapping an (α, β) -generalized hybrid mapping. We observe that the mapping above covers several well-known mappings. For example, an (α, β) -generalized hybrid mapping is nonexpansive for $\alpha = 1$ and $\beta = 0$, nonspreading for $\alpha = 2$ and $\beta = 1$, and hybrid for $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$. We can also show that if x = Tx, then for any $y \in C$,

$$\alpha \|x - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|x - y\|^2 + (1 - \beta)\|x - y\|^2$$

and hence $||x - Ty|| \le ||x - y||$. This means that an (α, β) -generalized hybrid mapping with a fixed point is quasi-nonexpansive. Now, we prove a fixed point theorem for generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and let $T : C \to C$ be a generalized hybrid mapping. Then T has a fixed point in C if and only if $\{T^n z\}$ is bounded for some $z \in C$.

Proof. Since $T: C \to C$ is a generalized hybrid mapping, there are $\alpha, \beta \in \mathbb{R}$ such that

(3.5)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. If $F(T) \ne \emptyset$, then $\{T^n z\} = \{z\}$ for $z \in F(T)$. So, $\{T^n z\}$ is bounded. We show the reverse. Take $z \in C$ such that $\{T^n z\}$ is bounded. Let μ be a Banach limit. Then, for any $y \in C$ and $n \in \mathbb{N} \cup \{0\}$, we have

$$\alpha \|T^{n+1}z - Ty\|^{2} + (1 - \alpha)\|T^{n}z - Ty\|^{2}$$

$$\leq \beta \|T^{n+1}z - y\|^{2} + (1 - \beta)\|T^{n}z - y\|^{2}$$

for any $y \in C$. Since $\{T^n z\}$ is bounded, we can apply a Banach limit μ to both sides of the inequality. Then, we have

$$\mu_n(\alpha \|T^{n+1}z - Ty\|^2 + (1 - \alpha)\|T^n z - Ty\|^2) \\\leq \mu_n(\beta \|T^{n+1}z - y\|^2 + (1 - \beta)\|T^n z - y\|^2).$$

So, we obtain

$$\alpha \mu_n \|T^{n+1}z - Ty\|^2 + (1 - \alpha)\mu_n \|T^n z - Ty\|^2 \leq \beta \mu_n \|T^{n+1}z - y\|^2 + (1 - \beta)\mu_n \|T^n z - y\|^2$$

and hence

$$\begin{aligned} \alpha \mu_n \|T^n z - Ty\|^2 + (1 - \alpha)\mu_n \|T^n z - Ty\|^2 \\ &\leq \beta \mu_n \|T^n z - y\|^2 + (1 - \beta)\mu_n \|T^n z - y\|^2. \end{aligned}$$

This implies

$$\mu_n \|T^n z - Ty\|^2 \le \mu_n \|T^n z - y\|^2$$

for all $y \in C$. By Theorem 2.1, we have a fixed point in C. As a direct consequence of Theorem 3.1, we have the following result.

Theorem 3.2. Let C be nonempty bounded closed convex subset of a Hilbert space H and let T be a generalized hybrid mapping from C to itself. Then T has a fixed point.

Using Theorem 3.1, we can also prove the following well-known fixed point theorems. We first prove a fixed point theorem for nonexpansive mappings in a Hilbert space.

Theorem 3.3. Let *H* be a Hilbert space and let *C* be a nonempty closed convex subset of *H*. Let $T : C \to C$ be a nonexpansive mapping, i.e.,

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.1, a (1, 0)-generalized hybrid mapping of C into itself is nonexpansive. By Theorem 3.1, T has a fixed point in C.

The following is a fixed point theorem for nonspreading mappings in a Hilbert space.

Theorem 3.4. ([11]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T : C \to C$ be a nonspreading mapping, i.e.,

 $2\|Tx - Ty\|^2 \le \|Tx - y\|^2 + \|Ty - x\|^2, \quad \forall x, y \in C.$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.1, a (2, 1)-generalized hybrid mapping of C into itself is nonspreading. By Theorem 3.1, T has a fixed point in C.

The following is a fixed point theorem for hybrid mappings by Takahashi [16] in a Hilbert space.

Theorem 3.5. ([16]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T : C \to C$ be a hybrid mapping, i.e.,

$$3||Tx - Ty||^{2} \le ||x - y||^{2} + ||Tx - y||^{2} + ||Ty - x||^{2}, \quad \forall x, y \in C.$$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.1, a $(\frac{3}{2}, \frac{1}{2})$ -generalized hybrid mapping of C into itself is hybrid in the sense of Takahashi [16]. By Theorem 3.1, T has a fixed point in C.

We can also prove the following fixed point theorem in a Hilbert space.

Theorem 3.6. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T : C \to C$ be a mapping such that

$$2||Tx - Ty||^{2} \le ||x - y||^{2} + ||Tx - y||^{2}, \quad \forall x, y \in C.$$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.1, a $(1, \frac{1}{2})$ -generalized hybrid mapping of C into itself is the mapping in our theorem. By Theorem 3.1, T has a fixed point in C.

Let C be a nonempty closed convex subset of a Hilbert space H. A mapping $S: C \to C$ is called *super hybrid* if there are $\alpha, \beta, \gamma \in \mathbb{R}$ with $\gamma \ge 0$ such that

$$\alpha \|Sx - Sy\|^2 + (1 - \alpha + \gamma)\|x - Sy\|^2$$

(3.6)
$$\leq (\beta + (\beta - \alpha)\gamma) \|Sx - y\|^2 + (1 - \beta - (\beta - \alpha - 1)\gamma) \|x - y\|^2 + (\alpha - \beta)\gamma \|x - Sx\|^2 + \gamma \|y - Sy\|^2$$

for all $x, y \in C$. We call such a mapping an (α, β, γ) -super hybrid mapping. We notice that an $(\alpha, \beta, 0)$ -super hybrid mapping is (α, β) -generalized hybrid. So, the class of super hybrid mappings contains the class of generalized hybrid mappings.

Theorem 3.7. Let C be a nonempty closed convex subset of a Hilbert space H and let α , β and γ be real numbers with $\gamma \ge 0$. If a mapping $S: C \to C$ is (α, β, γ) -super hybrid, then the mapping $\frac{1}{1+\gamma}S + \frac{\gamma}{1+\gamma}I$ is an (α, β) -generalized hybrid mapping of C into itself.

Proof. Put $\lambda = \frac{1}{1+\gamma} \neq 0$ and $T = \lambda S + (1-\lambda)I$. Let us consider

$$k := -\alpha \|Tx - Ty\|^{2} - (1 - \alpha)\|x - Ty\|^{2} + \beta \|Tx - y\|^{2} + (1 - \beta)\|x - y\|^{2}.$$

Since $T = \lambda S + (1 - \lambda)I$, we have

$$k = -\alpha \|\lambda(Sx - Sy) + (1 - \lambda)(x - y)\|^2 - (1 - \alpha)\|\lambda(x - Sy) + (1 - \lambda)(x - y)\|^2 + \beta \|\lambda(Sx - y) + (1 - \lambda)(x - y)\|^2 + (1 - \beta)\|x - y\|^2.$$

Applying the identity (2.1), we get

$$k = -\alpha \left\{ \lambda \|Sx - Sy\|^{2} + (1 - \lambda) \|x - y\|^{2} - \lambda(1 - \lambda) \|Sx - Sy - x + y\|^{2} \right\}$$
$$- (1 - \alpha) \left\{ \lambda \|x - Sy\|^{2} + (1 - \lambda) \|x - y\|^{2} - \lambda(1 - \lambda) \|y - Sy\|^{2} \right\}$$
$$+ \beta \left\{ \lambda \|Sx - y\|^{2} + (1 - \lambda) \|x - y\|^{2} - \lambda(1 - \lambda) \|x - Sx\|^{2} \right\} + (1 - \beta) \|x - y\|^{2}.$$

Adding four terms $||x - y||^2$ due to $-\alpha - (1 - \alpha) + \beta + (1 - \beta) = 0$ and dividing by λ , we obtain

$$\begin{split} \lambda^{-1}k &= -\alpha \left\{ \|Sx - Sy\|^2 - \|x - y\|^2 - (1 - \lambda) \|Sx - Sy - x + y\|^2 \right\} \\ &- (1 - \alpha) \left\{ \|x - Sy\|^2 - \|x - y\|^2 - (1 - \lambda) \|y - Sy\|^2 \right\} \\ &+ \beta \left\{ \|Sx - y\|^2 - \|x - y\|^2 - (1 - \lambda) \|x - Sx\|^2 \right\}. \end{split}$$

So, we have

$$\begin{split} \lambda^{-1}k &= -\alpha \|Sx - Sy\|^2 - (1 - \alpha) \|x - Sy\|^2 \\ &+ \beta \|Sx - y\|^2 + (1 - \beta) \|x - y\|^2 - \beta (1 - \lambda) \|x - Sx\|^2 \\ &+ (1 - \alpha)(1 - \lambda) \|y - Sy\|^2 + \alpha (1 - \lambda) \|Sx - Sy - x + y\|^2. \end{split}$$

Dividing by λ , we have from $\lambda^{-1} = \gamma + 1$ that

$$\lambda^{-2}k = -\alpha(\gamma+1)\|Sx - Sy\|^2 - (1-\alpha)(\gamma+1)\|x - Sy\|^2 + \beta(\gamma+1)\|Sx - y\|^2 + (\gamma+1)(1-\beta)\|x - y\|^2 - \beta\gamma\|x - Sx\|^2 + (1-\alpha)\gamma\|y - Sy\|^2 + \alpha\gamma\|Sx - Sy - x + y\|^2.$$

We know from (2.3) that

$$||Sx - Sy - x + y||^{2} = ||Sx - Sy||^{2} - ||x - Sy||^{2} - ||Sx - y||^{2} + ||x - y||^{2} + ||Sx - x||^{2} + ||Sy - y||^{2}.$$

So, we obtain

$$\begin{split} \lambda^{-2}k &= -\alpha \|Sx - Sy\|^2 - \{(1 - \alpha) + \gamma\} \|x - Sy\|^2 \\ &+ \{\beta + (\beta - \alpha)\gamma\} \|Sx - y\|^2 + \{1 - \beta - \gamma(\beta - \alpha - 1)\} \|x - y\|^2 \\ &+ (\alpha - \beta)\gamma \|x - Sx\|^2 + \gamma \|y - Sy\|^2. \end{split}$$

Since $\lambda^{-2}k \ge 0$ and $\lambda^{-2} > 0$, we obtain $k \ge 0$. This completes the proof.

Using Theorem 3.7, we have the following fixed point theorem for super hybrid mappings in a Hilbert space.

Theorem 3.8. Let C be a nonempty closed convex subset of a Hilbert space H and let α , β and γ be real numbers with $\gamma \ge 0$. Let $S : C \to C$ be an (α, β, γ) -super hybrid mapping and suppose that C is bounded. Then, S has a fixed point in C.

Proof. Since $S: C \to C$ is (α, β, γ) -super hybrid, we know from Theorem 3.7 that the mapping $T = \frac{1}{1+\gamma}S + \frac{\gamma}{1+\gamma}I : C \to C$ is (α, β) -generalized hybrid. Using Theorem 3.2, we have that T has a fixed point in C. From F(T) = F(S), S has a fixed point in C.

4. Nonlinear Ergodic Theorem

In this section, using the technique developed by Takahashi [13], we prove a nonlinear ergodic theorem of Baillon's type [1] for generalized hybrid mappings in a Hilbert space.

Theorem 4.1. Let H be a Hilbert space and let C be a closed convex subset of H. Let $T : C \to C$ be a generalized hybrid mapping with $F(T) \neq \emptyset$ and let Pbe the mertic projection of H onto F(T). Then, for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to an element p of F(T), where $p = \lim_{n \to \infty} PT^n x$.

Proof. Since $T: C \to C$ is a generalized hybrid mapping, there are $\alpha, \beta \in \mathbb{R}$ such that

(4.1)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. Since T is an (α, β) -generalized hybrid mapping, T is quasinonexpansive. So, we have that F(T) is closed and convex. Let $x \in C$ and let P be the metric projection of H onto F(T). Then, we have

$$||PT^{n}x - T^{n}x|| \le ||PT^{n-1}x - T^{n}x|| \le ||PT^{n-1}x - T^{n-1}x||.$$

This implies that $\{\|PT^nx - T^nx\|\}$ is nonincreasing. We also know that for any $v \in C$ and $u \in F(T)$, $\langle v - Pv, Pv - u \rangle \ge 0$

and hence

$$||v - Pv||^2 \le \langle v - Pv, v - u \rangle.$$

So, we get

$$\begin{split} \|Pv - u\|^2 &= \|Pv - v + v - u\|^2 \\ &= \|Pv - v\|^2 - 2\langle Pv - v, u - v \rangle + \|v - u\|^2 \\ &\leq \|v - u\|^2 - \|Pv - v\|^2. \end{split}$$

Let $m, n \in \mathbb{N}$ with $m \ge n$. Putting $v = T^m x$ and $u = PT^n x$, we have

$$||PT^{m}x - PT^{n}x||^{2} \le ||T^{m}x - PT^{n}x||^{2} - ||PT^{m}x - T^{m}x||^{2} \le ||T^{n}x - PT^{n}x||^{2} - ||PT^{m}x - T^{m}x||^{2}.$$

So, $\{PT^nx\}$ is a Cauchy sequence. Since F(T) is closed, $\{PT^nx\}$ converges strongly to an element p of F(T). Take $u \in F(T)$. Then we obtain, for any $n \in \mathbb{N}$,

$$||S_n x - u|| \le \frac{1}{n} \sum_{k=0}^{n-1} ||T^k x - u|| \le ||x - u||.$$

So, $\{S_nx\}$ is bounded and hence there exists a weakly convergent subsequence $\{S_{n_i}x\}$ of $\{S_nx\}$. If $S_{n_i}x \rightarrow v$, then we have $v \in F(T)$. In fact, for any $y \in C$ and $k \in \mathbb{N} \cup \{0\}$, we have that

$$\begin{split} 0 &\leq \beta \|T^{k+1}x - y\|^2 + (1-\beta)\|T^kx - y\|^2 \\ &- \alpha \|T^{k+1}x - Ty\|^2 - (1-\alpha)\|T^kx - Ty\|^2 \\ &= \beta \big\{ \|T^{k+1}x - Ty\|^2 + 2\left\langle T^{k+1}x - Ty, Ty - y\right\rangle + \|Ty - y\|^2 \big\} \\ &+ (1-\beta) \big\{ \|T^kx - Ty\|^2 + 2\left\langle T^kx - Ty, Ty - y\right\rangle + \|Ty - y\|^2 \big\} \\ &- \alpha \|T^{k+1}x - Ty\|^2 - (1-\alpha)\|T^kx - Ty\|^2 \\ &= \|Ty - y\|^2 + 2\left\langle \beta T^{k+1}x + (1-\beta)T^kx - Ty, Ty - y\right\rangle \\ &+ (\beta - \alpha) \big\{ \|T^{k+1}x - Ty\|^2 - \|T^kx - Ty\|^2 \big\}. \end{split}$$

Summing up these inequalities with respect to k = 0, 1, ..., n - 1,

$$0 \le n \|Ty - y\|^2 + 2 \left\langle \sum_{k=0}^{n-1} T^k x + \beta (T^n x - x) - nTy, Ty - y \right\rangle \\ + (\beta - \alpha) \{ \|T^n x - Ty\|^2 - \|x - Ty\|^2 \}.$$

Deviding this inequality by n, we have

$$0 \leq ||Ty - y||^{2} + 2\left\langle S_{n}x + \frac{1}{n}\beta(T^{n}x - x) - Ty, Ty - y\right\rangle \\ + \frac{1}{n}(\beta - \alpha)\{||T^{n}x - Ty||^{2} - ||x - Ty||^{2}\},$$

where $S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$. Replacing n by n_i and letting $n_i \to \infty$, we obtain from $S_{n_i} x \to v$ that

$$0 \le ||Ty - y||^2 + 2 \langle v - Ty, Ty - y \rangle.$$

Putting y = v, we have $0 \leq -||Tv - v||^2$ and hence Tv = v. To complete the proof, it is sufficient to show that if $S_{n_i}x \rightarrow v$, then v = p. We have that

$$\langle T^k x - PT^k x, PT^k x - u \rangle \ge 0$$

for all $u \in F(T)$. Since $\{||T^kx - PT^kx||\}$ is nonincreasing, we have

$$\langle u - p, T^k x - PT^k x \rangle \leq \langle PT^k x - p, T^k x - PT^k x \rangle$$

$$\leq \|PT^k x - p\| \cdot \|T^k x - PT^k x\|$$

$$\leq \|PT^k x - p\| \cdot \|x - Px\|.$$

Adding these inequalities from k = 0 to k = n - 1 and dividing n, we have

$$\langle u - p, S_n x - \frac{1}{n} \sum_{k=0}^{n-1} PT^k x \rangle \le \frac{\|x - Px\|}{n} \sum_{k=0}^{n-1} \|PT^k x - p\|.$$

Since $S_{n_i}x \rightharpoonup v$ and $PT^kx \rightarrow p$, we have

$$\langle u - p, v - p \rangle \le 0.$$

We know $v \in F(T)$. So, putting u = v, we have $\langle v - p, v - p \rangle \leq 0$ and hence $||v - p||^2 \leq 0$. So, we obtain v = p. This completes the proof.

Remark 1. From Theorem 4.1, we can prove Theorems 1.1 and 1.2. We do not know whether a nonlinear ergodic theorem of Baillon's type for super hybrid mappings in a Hilbert space holds or not.

5. WEAK CONVERGENCE THEOREM OF MANN'S TYPE

In this section, we prove a weak convergence theorem of Mann's type [12] for generalized hybrid mappings in a Hilbert space. Before proving the theorem, we need the following lemma.

Lemma 5.1. Let H be a Hilbert space and let C be a closed convex subset of H. Let $T : C \to C$ be a generalized hybrid mapping. Then, I - T is demiclosed, i.e., $x_n \rightharpoonup z$ and $x_n - Tx_n \rightarrow 0$ imply $z \in F(T)$.

Proof. Since $T: C \to C$ is a generalized hybrid mapping, there are $\alpha, \beta \in \mathbb{R}$ such that

(5.1)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. Suppose $x_n \rightharpoonup z$ and $x_n - Tx_n \rightarrow 0$. Let us consider

(5.2)
$$\alpha \|Tx_n - Tz\|^2 + (1 - \alpha)\|x_n - Tz\|^2 \le \beta \|Tx_n - z\|^2 + (1 - \beta)\|x_n - z\|^2.$$

From this inequality, we have

$$\alpha \|Tx_n - x_n + x_n - Tz\|^2 + (1 - \alpha) \|x_n - Tz\|^2$$

$$\leq \beta \|Tx_n - x_n + x_n - z\|^2 + (1 - \beta) \|x_n - z\|^2$$

and hence

$$\alpha(\|Tx_n - x_n\|^2 + \|x_n - Tz\|^2 + 2\langle Tx_n - x_n, x_n - Tz \rangle) + (1 - \alpha)\|x_n - Tz\|^2$$

$$\leq \beta(\|Tx_n - x_n\|^2 + \|x_n - z\|^2 + 2\langle Tx_n - x_n, x_n - Tz \rangle) + (1 - \beta)\|x_n - z\|^2.$$

We apply a Banach limit μ to both sides of the inequality. Then, we have

$$\alpha \mu_n(\|Tx_n - x_n\|^2 + \|x_n - Tz\|^2 + 2\langle Tx_n - x_n, x_n - Tz \rangle) + (1 - \alpha)\mu_n \|x_n - Tz\|^2$$

$$\leq \beta \mu_n(\|Tx_n - x_n\|^2 + \|x_n - z\|^2 + 2\langle Tx_n - x_n, x_n - Tz \rangle) + (1 - \beta)\mu_n \|x_n - z\|^2$$

and hence

$$\begin{aligned} \alpha \mu_n \|x_n - Tz\|^2 + (1 - \alpha)\mu_n \|x_n - Tz\|^2 \\ &\leq \beta \mu_n \|x_n - z\|^2 + (1 - \beta)\mu_n \|x_n - z\|^2. \end{aligned}$$

So, we have $\mu_n ||x_n - Tz||^2 \le \mu_n ||x_n - z||^2$. From $\mu_n ||x_n - z + z - Tz||^2 \le \mu_n ||x_n - z||^2$, we also have

$$\mu_n \|x_n - z\|^2 + \mu_n \|z - Tz\|^2 + 2\mu_n \langle x_n - z, z - Tz \rangle \le \mu_n \|x_n - z\|^2.$$

So, we obtain $\mu_n ||z - Tz||^2 \le 0$ and hence $||z - Tz||^2 \le 0$. Then, Tz = z. This implies that I - T is demiclosed.

Using Lemma 5.1 and Ibaraki and Takahashi [6], we can prove the following theorem. The proof is due to the technique developed by Ibaraki and Takahashi [6] and [7].

Theorem 5.2. Let H be a Hilbert space and let C be a closed convex subset of H. Let $T : C \to C$ be a generalized hybrid mapping with $F(T) \neq \emptyset$ and let Pbe the mertic projection of H onto F(T). Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \le \alpha_n \le 1$ and $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$. Suppose $\{x_n\}$ is the sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \quad n = 1, 2, \dots$$

Then, the sequence $\{x_n\}$ converges weakly to an element v of F(T), where $v = \lim_{n \to \infty} Px_n$.

Proof. Let $z \in F(T)$. Since T is quasi-nonexpansive, we have

$$||x_{n+1} - z||^2 = ||\alpha_n x_n + (1 - \alpha_n)Tx_n - z||^2$$

$$\leq \alpha_n ||x_n - z||^2 + (1 - \alpha_n)||Tx_n - z||^2$$

$$\leq \alpha_n ||x_n - z||^2 + (1 - \alpha_n)||x_n - z||^2$$

$$= ||x_n - z||^2$$

for all $n \in \mathbb{N}$. Hence, $\lim_{n\to\infty} ||x_n - z||^2$ exists. So, we have that $\{x_n\}$ is bounded. We also have from (2.1) that

$$\begin{aligned} \|x_{n+1} - z\|^2 &= \|\alpha_n x_n + (1 - \alpha_n) T x_n - z\|^2 \\ &= \alpha_n \|x_n - z\|^2 + (1 - \alpha_n) \|T x_n - z\|^2 - \alpha_n (1 - \alpha_n) \|T x_n - x_n\|^2 \\ &\leq \alpha_n \|x_n - z\|^2 + (1 - \alpha_n) \|x_n - z\|^2 - \alpha_n (1 - \alpha_n) \|T x_n - x_n\|^2 \\ &= \|x_n - z\|^2 - \alpha_n (1 - \alpha_n) \|T x_n - x_n\|^2. \end{aligned}$$

So, we have

$$\alpha_n(1-\alpha_n)\|Tx_n-x_n\|^2 \le \|x_n-z\|^2 - \|x_{n+1}-z\|^2$$

Since $\lim_{n\to\infty} ||x_n - z||^2$ exists and $\lim \inf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$, we have $||Tx_n - x_n||^2 \to 0$. Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \rightharpoonup v$. By Lemma 5.1, we obtain $v \in F(T)$. Let $\{x_{n_i}\}$ and $\{x_{n_j}\}$ be two subsequences of $\{x_n\}$ such that $x_{n_i} \rightharpoonup v_1$ and $x_{n_j} \rightharpoonup v_2$. To complete the proof, we show $v_1 = v_2$. We know $v_1, v_2 \in F(T)$ and hence $\lim_{n\to\infty} ||x_n - v_1||^2$ and $\lim_{n\to\infty} ||x_n - v_2||^2$ exist. Put

$$a = \lim_{n \to \infty} (\|x_n - v_1\|^2 - \|x_n - v_2\|^2).$$

Note that for $n = 1, 2, \ldots$,

$$||x_n - v_1||^2 - ||x_n - v_2||^2 = 2\langle x_n, v_2 - v_1 \rangle + ||v_1||^2 - ||v_2||^2.$$

From $x_{n_i} \rightharpoonup v_1$ and $x_{n_j} \rightharpoonup v_2$, we have

(5.3)
$$a = 2\langle v_1, v_2 - v_1 \rangle + ||v_1||^2 - ||v_2||^2$$

and

(5.4)
$$a = 2\langle v_2, v_2 - v_1 \rangle + ||v_1||^2 - ||v_2||^2.$$

Combining (5.3) and (5.4), we obtain $0 = 2\langle v_2 - v_1, v_2 - v_1 \rangle$ and hence $||v_2 - v_1||^2 = 0$. So, we obtain $v_2 = v_1$. This implies that $\{x_n\}$ converges weakly to an element v of F(T). Since $||x_{n+1} - z|| \le ||x_n - z||$ for all $z \in F(T)$ and $n \in \mathbb{N}$, we obtain from Takahashi and Toyoda [18] that $\{Px_n\}$ converges strongly to an element p of F(T). On the other hand, we have from the property of P that

$$\langle x_n - Px_n, Px_n - u \rangle \ge 0$$

for all $u \in F(T)$ and $n \in \mathbb{N}$. Since $x_n \rightarrow v$ and $Px_n \rightarrow p$, we obtain

$$\langle v - p, p - u \rangle \ge 0$$

for all $u \in F(T)$. Putting u = v, we obtain p = v. This means $v = \lim_{n \to \infty} Px_n$. This completes the proof.

ACKNOWLEDGMENTS

The second author and the third author are partially supported by Grant-in-Aid for Scientific Research No. 19540167 from Japan Society for the Promotion of Science and by the grant NSC 98-2115-M-110-001, respectively.

REFERENCES

- 1. J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Ser. A-B, 280 (1975), 1511-1514.
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, *Math. Student*, 63 (1994), 123-145.
- 3. F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, *Math. Z.*, **100** (1967), 201-225.
- P. L. Combettes and A. Hirstoaga, Equilibrium problems in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.

- 5. K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- 6. T. Ibaraki and W. Takahashi, Weak convergence theorem for new nonexpansive mappings in Banach spaces and its applications, *Taiwanese J. Math.*, **11** (2007), 929-944.
- 7. T. Ibaraki and W. Takahashi, Fixed point theorems for nonlinear mappings of nonexpansive type in Banach spaces, J. Nonlinear Convex Anal., 10 (2009), 21-32.
- 8. S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, *Nonlinear Anal.*, **71**(2009), 2082-2089.
- 9. S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, *Pacific J. Math.*, **79** (1978), 493-508.
- 10. F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, *SIAM. J. Optim.*, **19** (2008), 824-835.
- 11. F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, *Arch. Math.*, **91** (2008), 166-177.
- 12. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
- 13. W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, *Proc. Amer. Math. Soc.*, **81** (1981), 253-256.
- 14. W. Takahashi, *Nonlinear Functional Analysis*, Yokohoma Publishers, Yokohoma, 2000.
- 15. W. Takahashi, *Introduction to Nonlinear and Convex Analysis*, Yokohoma Publishers, Yokohoma, 2009.
- 16. W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, *J. Nonlinea Convex Anal.*, **11** (2010), 79-88.
- 17. W. Takahashi, Nonlinear operators and fixed point theorems in Hilbert spaces, *RIMS Kokyuroku*, **1685** (2010), to appear.
- 18. W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, *J. Optim. Theory Appl.*, **118** (2003), 417-428.
- 19. W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, *Taiwanese J. Math.*, to appear.

Pavel Kocourek Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan E-mail: pakocica@gmail.com Wataru Takashi Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan E-mail: wataru@is.titech.ac.jp

Jen-Chih Yao Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan E-mail: yaojc@math.nsysu.edu.tw