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FIXED POINT THEOREMS AND WEAK CONVERGENCE THEOREMS
FOR GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES

Pavel Kocourek, Wataru Takahashi and Jen-Chih Yao*

Abstract. In this paper, we first consider a broad class of nonlinear mappings
containing the classes of nonexpansive mappings, nonspreading mappings, and
hybrid mappings in a Hilbert space. Then, we deal with fixed point theorems
and weak convergence theorems for these nonlinear mappings in a Hilbert
space.

1. INTRODUCTION

Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H . Then a mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤
‖x − y‖ for all x, y ∈ C. The set of fixed points of T is denoted by F (T ). From
Baillon [1] we know the following first nonlinear ergodic theorem in a Hilbert space.

Theorem 1.1. Let C be a nonempty bounded closed convex subset of H and
let T : C → C be nonexpansive. Then, for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element z ∈ F (T ).

An important example of nonexpansive mappings in a Hilbert space is a firmly
nonexpansive mapping. A mapping F is said to be firmly nonexpansive if

‖Fx − Fy‖2 ≤ 〈x − y, Fx− Fy〉
for all x, y ∈ C; see, for instance, Browder [3] and Goebel and Kirk [5]. It is
known that a firmly nonexpansive mapping F can be deduced from an equilibrium
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problem in a Hilbert space; see, for instance, [2] and [4]. Recently, Kohsaka and
Takahashi [11], and Takahashi [16] introduced the following nonlinear mappings
which are deduced from a firmly nonexpansive mapping in a Hilbert space. A
mapping T : C → C is called nonspreading [11] if

2‖Tx− Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2

for all x, y ∈ C. Similarly, a mapping T : C → C is called hybrid [16] if

3‖Tx− Ty‖2 ≤ ‖x − y‖2 + ‖Tx − y‖2 + ‖Ty − x‖2

for all x, y ∈ C. They proved fixed point theorems for such mappings; see also
Kohsaka and Takahashi [10] and Iemoto and Takahashi [8]. Very recently, Takahashi
and Yao [19] proved the following nonlinear ergodic theorem.

Theorem 1.2. Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let T be a mapping of C into itself such that F (T ) is nonempty.
Suppose that T satisfies one of the following conditions:

(i) T is nonspreading;
(ii) T is hybrid;
(iii) 2‖Tx− Ty‖2 ≤ ‖x − y‖2 + ‖Tx− y‖2, ∀x, y ∈ C.

Then, for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element z ∈ F (T ).

In this paper, motivated by Takahashi and Yao [19], we introduce a broad class
of mappings T : C → C such that for some α, β ∈ R,

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C. Such a class contains the classes of nonexpansive mappings,
nonspreading mappings, and hybrid mappings in a Hilbert space. Then, we prove
fixed point theorems for such nonlinear mappings in a Hilbert space. Furthermore,
we obtain a nonlinear ergodic theorem of Baillon’s type for this class of mappings
which generalizes Theorems 1.1 and 1.2 in a Hilbert space. Finally, we prove a
weak convergence theorem of Mann’s type [12] for this class of mappings.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by
R the set of real numbers. Let H be a (real) Hilbert space with inner product
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〈·, · 〉 and norm ‖ · ‖, respectively. We denote the strong convergence and the weak
convergence of {xn} to x ∈ H by xn → x and xn ⇀ x, respectively. From [15],
we know the following basic equalities. For x, y, u, v ∈ H and λ ∈ R, we have

(2.1) ‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2,

and

(2.2) 2 〈x − y, u− v〉 = ‖x− v‖2 + ‖y − u‖2 − ‖x− u‖2 − ‖y − v‖2.

From (2.2), we also have the following equality.

(2.3) ‖x − y + u − v‖2 = ‖x − y‖2 + ‖u− v‖2 + 2 〈x − y, u− v〉
= ‖x − y‖2 + ‖u − v‖2 + ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2.

Let C be a nonempty closed convex subset of H and let T be a mapping from
C into itself. Then, we denote by F (T ) the set of fixed points of T . A mapping
T : C → C with F (T ) �= ∅ is called quasi-nonexpansive if ‖x − Ty‖ ≤ ‖x − y‖
for all x ∈ F (T ) and y ∈ C. It is well-known that the set F (T ) of fixed points
of a quasi-nonexpansive mapping T is closed and convex; see Ito and Takahashi
[9]. In fact, for proving that F (T ) is closed, take a sequence {zn} ⊂ F (T ) with
zn → z. Since C is weakly closed, we have z ∈ C. Furthermore, from

‖z − Tz‖ ≤ ‖z − zn‖ + ‖zn − Tz‖ ≤ 2‖z − zn‖ → 0,

z is a fixed point of T and so F (T ) is closed. Let us show that F (T ) is convex.
For x, y∈F (T ) and α∈ [0, 1], put z=αx+(1−α)y. Then, we have from (2.1) that

‖z − Tz‖2 = ‖αx + (1 − α)y − Tz‖2

= α‖x − Tz‖2 + (1 − α)‖y − Tz‖2 − α(1− α)‖x− y‖2

≤ α‖x − z‖2 + (1− α)‖y − z‖2 − α(1 − α)‖x − y‖2

= α(1 − α)2‖x − y‖2 + (1− α)α2‖x − y‖2 − α(1 − α)‖x − y‖2

= α(1 − α)(1 − α + α − 1)‖x− y‖2

= 0.

This implies Tz = z. So, F (T ) is convex.
Let l∞ be the Banach space of bounded sequences with supremum norm. Let µ

be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the value
of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the value
µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ‖µ‖ = 1, where
e = (1, 1, 1, . . .). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞ xn ≤ µnxn ≤ lim sup

n→∞
xn.
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In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have
µ(f) = µnxn = a. For a proof of existence of a Banach limit and its other
elementary properties, see [14]. Using Banach limits, Takahashi and Yao [19]
proved the following fixed point theorem.

Theorem 2.1. Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let T be a mapping of C into itself. Suppose that there exists an
element x ∈ C such that {T nx} is bounded and

µn‖T nx − Ty‖2 ≤ µn‖T nx − y‖2, ∀y ∈ C

for some Banach limit µ. Then, T has a fixed point in C.

Let C be a nonempty closed convex subset of H and x ∈ H . Then, we know
that there exists a unique nearest point z ∈ C such that ‖x− z‖ = inf y∈C ‖x− y‖.
We denote such a correspondence by z = PCx. PC is called the metric projection
of H onto C. It is known that PC is nonexpansive and

〈x − PCx, PCx − u〉 ≥ 0

for all x ∈ H and u ∈ C; see [15] for more details.

3. FIXED POINT THEOREMS

In this section, we start with defining a broad class of nonlinear mappings con-
taining the classes of nonexpansive mappings, nonspreading mappings, and hybrid
mappings in a Hilbert space. Let H be a Hilbert space and let C be a nonempty
closed convex subset of H . Then, a mapping T : C → C is called generalized
hybrid if there are α, β ∈ R such that

(3.4) α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping. We
observe that the mapping above covers several well-known mappings. For example,
an (α, β)-generalized hybrid mapping is nonexpansive for α = 1 and β = 0,
nonspreading for α = 2 and β = 1, and hybrid for α = 3

2 and β = 1
2 . We can also

show that if x = Tx, then for any y ∈ C,

α‖x − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖x − y‖2 + (1 − β)‖x − y‖2

and hence ‖x − Ty‖ ≤ ‖x − y‖. This means that an (α, β)-generalized hybrid
mapping with a fixed point is quasi-nonexpansive. Now, we prove a fixed point
theorem for generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H
and let T : C → C be a generalized hybrid mapping. Then T has a fixed point in
C if and only if {T nz} is bounded for some z ∈ C.
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Proof. Since T : C → C is a generalized hybrid mapping, there are α, β ∈ R

such that

(3.5) α‖Tx − Ty‖2 + (1− α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C. If F (T ) �= ∅, then {Tnz} = {z} for z ∈ F (T ). So, {Tnz} is
bounded. We show the reverse. Take z ∈ C such that {T nz} is bounded. Let µ be
a Banach limit. Then, for any y ∈ C and n ∈ N ∪ {0}, we have

α‖T n+1z − Ty‖2 + (1− α)‖T nz − Ty‖2

≤ β‖T n+1z − y‖2 + (1− β)‖T nz − y‖2

for any y ∈ C. Since {Tnz} is bounded, we can apply a Banach limit µ to both
sides of the inequality. Then, we have

µn(α‖T n+1z − Ty‖2 + (1 − α)‖T nz − Ty‖2)

≤ µn(β‖T n+1z − y‖2 + (1− β)‖T nz − y‖2).

So, we obtain

αµn‖T n+1z − Ty‖2 + (1 − α)µn‖T nz − Ty‖2

≤ βµn‖T n+1z − y‖2 + (1 − β)µn‖T nz − y‖2

and hence

αµn‖T nz − Ty‖2 + (1− α)µn‖T nz − Ty‖2

≤ βµn‖T nz − y‖2 + (1− β)µn‖T nz − y‖2.

This implies
µn‖T nz − Ty‖2 ≤ µn‖T nz − y‖2

for all y ∈ C. By Theorem 2.1, we have a fixed point in C.
As a direct consequence of Theorem 3.1, we have the following result.

Theorem 3.2. Let C be nonempty bounded closed convex subset of a Hilbert
space H and let T be a generalized hybrid mapping from C to itself. Then T has
a fixed point.

Using Theorem 3.1, we can also prove the following well-known fixed point
theorems. We first prove a fixed point theorem for nonexpansive mappings in a
Hilbert space.

Theorem 3.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let T : C → C be a nonexpansive mapping, i.e.,

‖Tx− Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T

has a fixed point in C.
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Proof. In Theorem 3.1, a (1, 0)-generalized hybrid mapping of C into itself is
nonexpansive. By Theorem 3.1, T has a fixed point in C.

The following is a fixed point theorem for nonspreading mappings in a Hilbert
space.

Theorem 3.4. ([11]). Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let T : C → C be a nonspreading mapping, i.e.,

2‖Tx − Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T

has a fixed point in C.

Proof. In Theorem 3.1, a (2, 1)-generalized hybrid mapping of C into itself is
nonspreading. By Theorem 3.1, T has a fixed point in C.

The following is a fixed point theorem for hybrid mappings by Takahashi [16]
in a Hilbert space.

Theorem 3.5. ([16]). Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let T : C → C be a hybrid mapping, i.e.,

3‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖Tx − y‖2 + ‖Ty − x‖2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.1, a (3
2 , 1

2 )-generalized hybrid mapping of C into itself is
hybrid in the sense of Takahashi [16]. By Theorem 3.1,T has a fixed point in C.

We can also prove the following fixed point theorem in a Hilbert space.

Theorem 3.6. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let T : C → C be a mapping such that

2‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖Tx − y‖2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.1, a (1, 1
2 )-generalized hybrid mapping of C into itself

is the mapping in our theorem. By Theorem 3.1, T has a fixed point in C.

Let C be a nonempty closed convex subset of a Hilbert space H . A mapping
S : C → C is called super hybrid if there are α, β, γ ∈ R with γ ≥ 0 such that

(3.6)

α‖Sx − Sy‖2 + (1 − α + γ)‖x− Sy‖2

≤ (
β + (β − α)γ

)‖Sx − y‖2 +
(
1 − β − (β − α − 1)γ

)‖x − y‖2

+(α − β)γ‖x− Sx‖2 + γ‖y − Sy‖2
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for all x, y ∈ C. We call such a mapping an (α, β, γ)-super hybrid mapping. We
notice that an (α, β, 0)-super hybrid mapping is (α, β)-generalized hybrid. So, the
class of super hybrid mappings contains the class of generalized hybrid mappings.

Theorem 3.7. Let C be a nonempty closed convex subset of a Hilbert space H
and let α, β and γ be real numbers with γ ≥ 0. If a mapping S : C → C is (α, β,
γ)-super hybrid, then the mapping 1

1+γ S + γ
1+γ I is an (α, β)-generalized hybrid

mapping of C into itself.

Proof. Put λ = 1
1+γ �= 0 and T = λS + (1− λ)I . Let us consider

k := −α‖Tx − Ty‖2 − (1−α)‖x− Ty‖2 + β‖Tx− y‖2 + (1− β)‖x− y‖2.

Since T = λS + (1− λ)I , we have

k = −α‖λ(Sx−Sy)+(1−λ)(x−y)‖2− (1−α)‖λ(x−Sy)+(1−λ)(x−y)‖2

+ β‖λ(Sx− y) + (1 − λ)(x− y)‖2 + (1 − β)‖x − y‖2.

Applying the identity (2.1), we get

k = −α
{
λ‖Sx− Sy‖2 + (1− λ)‖x− y‖2 − λ(1− λ)‖Sx− Sy − x + y‖2

}
− (1− α)

{
λ‖x − Sy‖2 + (1− λ)‖x− y‖2 − λ(1− λ)‖y − Sy‖2

}
+β

{
λ‖Sx− y‖2 + (1− λ)‖x− y‖2 − λ(1− λ)‖x− Sx‖2

}
+(1−β)‖x−y‖2.

Adding four terms ‖x − y‖2 due to −α − (1− α) + β + (1− β) = 0 and dividing
by λ, we obtain

λ−1k = −α
{‖Sx − Sy‖2 − ‖x− y‖2 − (1− λ)‖Sx− Sy − x + y‖2

}
−(1 − α)

{‖x − Sy‖2 − ‖x − y‖2 − (1 − λ)‖y − Sy‖2
}

+β
{‖Sx− y‖2 − ‖x − y‖2 − (1 − λ)‖x− Sx‖2

}
.

So, we have

λ−1k = −α‖Sx − Sy‖2 − (1− α)‖x− Sy‖2

+β‖Sx − y‖2 + (1 − β)‖x − y‖2 − β(1 − λ)‖x− Sx‖2

+(1 − α)(1− λ)‖y − Sy‖2 + α(1 − λ)‖Sx− Sy − x + y‖2.

Dividing by λ, we have from λ−1 = γ + 1 that

λ−2k = −α(γ + 1)‖Sx− Sy‖2 − (1− α)(γ + 1)‖x− Sy‖2

+ β(γ + 1)‖Sx− y‖2 + (γ + 1)(1− β)‖x − y‖2 − βγ‖x− Sx‖2

+ (1 − α)γ‖y − Sy‖2 + αγ‖Sx− Sy − x + y‖2.
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We know from (2.3) that

‖Sx− Sy − x + y‖2 = ‖Sx− Sy‖2 − ‖x − Sy‖2 − ‖Sx − y‖2

+‖x − y‖2 + ‖Sx − x‖2 + ‖Sy − y‖2.

So, we obtain

λ−2k = −α‖Sx − Sy‖2 − {(1− α) + γ}‖x− Sy‖2

+{β + (β − α)γ}‖Sx− y‖2 + {1 − β − γ(β − α − 1)}‖x− y‖2

+(α − β)γ‖x− Sx‖2 + γ‖y − Sy‖2.

Since λ−2k ≥ 0 and λ−2 > 0, we obtain k ≥ 0. This completes the proof.

Using Theorem 3.7, we have the following fixed point theorem for super hybrid
mappings in a Hilbert space.

Theorem 3.8. Let C be a nonempty closed convex subset of a Hilbert space
H and let α, β and γ be real numbers with γ ≥ 0. Let S : C → C be an (α,
β, γ)-super hybrid mapping and suppose that C is bounded. Then, S has a fixed
point in C.

Proof. Since S : C → C is (α, β, γ)-super hybrid, we know from Theorem
3.7 that the mapping T = 1

1+γ S + γ
1+γ I : C → C is (α, β)-generalized hybrid.

Using Theorem 3.2, we have that T has a fixed point in C. From F (T ) = F (S),
S has a fixed point in C.

4. NONLINEAR ERGODIC THEOREM

In this section, using the technique developed by Takahashi [13], we prove a
nonlinear ergodic theorem of Baillon’s type [1] for generalized hybrid mappings in
a Hilbert space.

Theorem 4.1. Let H be a Hilbert space and let C be a closed convex subset
of H . Let T : C → C be a generalized hybrid mapping with F (T ) �= ∅ and let P
be the mertic projection of H onto F (T ). Then, for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element p of F (T ), where p = limn→∞ PT nx.

Proof. Since T : C → C is a generalized hybrid mapping, there are α, β ∈ R

such that

(4.1) α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2
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for all x, y ∈ C. Since T is an (α, β)-generalized hybrid mapping, T is quasi-
nonexpansive. So, we have that F (T ) is closed and convex. Let x ∈ C and let P
be the metric projection of H onto F (T ). Then, we have

‖PT nx − T nx‖ ≤ ‖PT n−1x − T nx‖
≤ ‖PT n−1x − T n−1x‖.

This implies that {‖PT nx − T nx‖} is nonincreasing. We also know that for any
v ∈ C and u ∈ F (T ),

〈v − Pv, Pv − u〉 ≥ 0

and hence
‖v − Pv‖2 ≤ 〈v − Pv, v − u〉.

So, we get

‖Pv − u‖2 = ‖Pv − v + v − u‖2

= ‖Pv − v‖2 − 2〈Pv − v, u− v〉+ ‖v − u‖2

≤ ‖v − u‖2 − ‖Pv − v‖2.

Let m, n ∈ N with m ≥ n. Putting v = T mx and u = PT nx, we have

‖PTmx − PT nx‖2 ≤ ‖Tmx − PT nx‖2 − ‖PTmx − Tmx‖2

≤ ‖T nx − PT nx‖2 − ‖PTmx − Tmx‖2.

So, {PTnx} is a Cauchy sequence. Since F (T ) is closed, {PTnx} converges
strongly to an element p of F (T ). Take u ∈ F (T ). Then we obtain, for any n ∈ N,

‖Snx − u‖ ≤ 1
n

n−1∑
k=0

‖T kx − u‖ ≤ ‖x − u‖.

So, {Snx} is bounded and hence there exists a weakly convergent subsequence
{Snix} of {Snx}. If Snix ⇀ v, then we have v ∈ F (T ). In fact, for any y ∈ C

and k ∈ N ∪ {0}, we have that

0 ≤ β‖T k+1x − y‖2 + (1 − β)‖T kx − y‖2

− α‖T k+1x − Ty‖2 − (1− α)‖T kx − Ty‖2

= β
{‖T k+1x − Ty‖2 + 2

〈
T k+1x − Ty, Ty − y

〉
+ ‖Ty − y‖2

}
+ (1 − β)

{‖T kx − Ty‖2 + 2
〈
T kx − Ty, Ty − y

〉
+ ‖Ty − y‖2

}
− α‖T k+1x − Ty‖2 − (1− α)‖T kx − Ty‖2

= ‖Ty − y‖2 + 2
〈
βT k+1x + (1− β)T kx − Ty, Ty − y

〉
+ (β − α)

{‖T k+1x − Ty‖2 − ‖T kx − Ty‖2
}
.
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Summing up these inequalities with respect to k = 0, 1, . . . , n − 1,

0 ≤ n‖Ty − y‖2 + 2

〈
n−1∑
k=0

T kx + β(T nx − x) − nTy, Ty − y

〉

+(β − α)
{‖T nx − Ty‖2 − ‖x − Ty‖2

}
.

Deviding this inequality by n, we have

0 ≤ ‖Ty − y‖2 + 2
〈

Snx +
1
n

β(T nx − x) − Ty, Ty − y

〉
+

1
n

(β − α)
{‖T nx − Ty‖2 − ‖x − Ty‖2

}
,

where Snx = 1
n

∑n−1
k=0 T kx. Replacing n by ni and letting ni → ∞, we obtain

from Snix ⇀ v that

0 ≤ ‖Ty − y‖2 + 2 〈v − Ty, Ty − y〉 .

Putting y = v, we have 0 ≤ −‖Tv − v‖2 and hence Tv = v. To complete the
proof, it is sufficient to show that if Snix ⇀ v, then v = p. We have that

〈T kx − PT kx, PT kx − u〉 ≥ 0

for all u ∈ F (T ). Since {‖T kx − PT kx‖} is nonincreasing, we have

〈u − p, T kx − PT kx〉 ≤ 〈PT kx − p, T kx − PT kx〉
≤ ‖PT kx − p‖ · ‖T kx − PT kx‖
≤ ‖PT kx − p‖ · ‖x− Px‖.

Adding these inequalities from k = 0 to k = n − 1 and dividing n, we have

〈u− p, Snx − 1
n

n−1∑
k=0

PT kx〉 ≤ ‖x − Px‖
n

n−1∑
k=0

‖PT kx − p‖.

Since Snix ⇀ v and PT kx → p, we have

〈u − p, v − p〉 ≤ 0.

We know v ∈ F (T ). So, putting u = v, we have 〈v − p, v − p〉 ≤ 0 and hence
‖v − p‖2 ≤ 0. So, we obtain v = p. This completes the proof.

Remark 1. From Theorem 4.1, we can prove Theorems 1.1 and 1.2. We do
not know whether a nonlinear ergodic theorem of Baillon’s type for super hybrid
mappings in a Hilbert space holds or not.
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5. WEAK CONVERGENCE THEOREM OF MANN’S TYPE

In this section, we prove a weak convergence theorem of Mann’s type [12] for
generalized hybrid mappings in a Hilbert space. Before proving the theorem, we
need the following lemma.

Lemma 5.1. Let H be a Hilbert space and let C be a closed convex subset of
H . Let T : C → C be a generalized hybrid mapping. Then, I − T is demiclosed,
i.e., xn ⇀ z and xn − Txn → 0 imply z ∈ F (T ).

Proof. Since T : C → C is a generalized hybrid mapping, there are α, β ∈ R

such that

(5.1) α‖Tx − Ty‖2 + (1− α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C. Suppose xn ⇀ z and xn − Txn → 0. Let us consider

(5.2) α‖Txn − Tz‖2 + (1−α)‖xn − Tz‖2 ≤ β‖Txn − z‖2 + (1− β)‖xn − z‖2.

From this inequality, we have

α‖Txn − xn + xn − Tz‖2 + (1 − α)‖xn − Tz‖2

≤ β‖Txn − xn + xn − z‖2 + (1 − β)‖xn − z‖2

and hence

α(‖Txn−xn‖2+‖xn−Tz‖2+2〈Txn−xn, xn−Tz〉)+(1−α)‖xn−Tz‖2

≤ β(‖Txn−xn‖2+‖xn−z‖2+2〈Txn−xn, xn−Tz〉)+(1−β)‖xn−z‖2.

We apply a Banach limit µ to both sides of the inequality. Then, we have

αµn(‖Txn−xn‖2+‖xn−Tz‖2+2〈Txn−xn, xn−Tz〉)+(1− α)µn‖xn−Tz‖2

≤ βµn(‖Txn−xn‖2+‖xn−z‖2+2〈Txn−xn, xn−Tz〉)+(1−β)µn‖xn−z‖2

and hence

αµn‖xn − Tz‖2 + (1 − α)µn‖xn − Tz‖2

≤ βµn‖xn − z‖2 + (1 − β)µn‖xn − z‖2.

So, we have µn‖xn − Tz‖2 ≤ µn‖xn − z‖2. From µn‖xn − z + z − Tz‖2 ≤
µn‖xn − z‖2, we also have

µn‖xn − z‖2 + µn‖z − Tz‖2 + 2µn〈xn − z, z − Tz〉 ≤ µn‖xn − z‖2.
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So, we obtain µn‖z − Tz‖2 ≤ 0 and hence ‖z − Tz‖2 ≤ 0. Then, Tz = z. This
implies that I − T is demiclosed.

Using Lemma 5.1 and Ibaraki and Takahashi [6], we can prove the following
theorem. The proof is due to the technique developed by Ibaraki and Takahashi [6]
and [7].

Theorem 5.2. Let H be a Hilbert space and let C be a closed convex subset
of H . Let T : C → C be a generalized hybrid mapping with F (T ) �= ∅ and let P
be the mertic projection of H onto F (T ). Let {αn} be a sequence of real numbers
such that 0 ≤ αn ≤ 1 and lim infn→∞ αn(1 − αn) > 0. Suppose {xn} is the
sequence generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Txn, n = 1, 2, . . . .

Then, the sequence {xn} converges weakly to an element v of F (T ), where v =
limn→∞ Pxn.

Proof. Let z ∈ F (T ). Since T is quasi-nonexpansive, we have

‖xn+1 − z‖2 = ‖αnxn + (1− αn)Txn − z‖2

≤ αn‖xn − z‖2 + (1− αn)‖Txn − z‖2

≤ αn‖xn − z‖2 + (1− αn)‖xn − z‖2

= ‖xn − z‖2

for all n ∈ N. Hence, limn→∞ ‖xn−z‖2 exists. So, we have that {xn} is bounded.
We also have from (2.1) that

‖xn+1 − z‖2 = ‖αnxn + (1 − αn)Txn − z‖2

= αn‖xn − z‖2 + (1 − αn)‖Txn − z‖2 − αn(1− αn)‖Txn − xn‖2

≤ αn‖xn − z‖2 + (1 − αn)‖xn − z‖2 − αn(1 − αn)‖Txn − xn‖2

= ‖xn − z‖2 − αn(1 − αn)‖Txn − xn‖2.

So, we have

αn(1 − αn)‖Txn − xn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2.

Since limn→∞ ‖xn − z‖2 exists and lim infn→∞ αn(1−αn) > 0, we have ‖Txn −
xn‖2 → 0. Since {xn} is bounded, there exists a subsequence {xni} of {xn} such
that xni ⇀ v. By Lemma 5.1, we obtain v ∈ F (T ). Let {xni} and {xnj} be two
subsequences of {xn} such that xni ⇀ v1 and xnj ⇀ v2. To complete the proof,
we show v1 = v2. We know v1, v2 ∈ F (T ) and hence limn→∞ ‖xn − v1‖2 and
limn→∞ ‖xn − v2‖2 exist. Put
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a = lim
n→∞(‖xn − v1‖2 − ‖xn − v2‖2).

Note that for n = 1, 2, . . . ,

‖xn − v1‖2 − ‖xn − v2‖2 = 2〈xn, v2 − v1〉 + ‖v1‖2 − ‖v2‖2.

From xni ⇀ v1 and xnj ⇀ v2, we have

(5.3) a = 2〈v1, v2 − v1〉 + ‖v1‖2 − ‖v2‖2

and

(5.4) a = 2〈v2, v2 − v1〉 + ‖v1‖2 − ‖v2‖2.

Combining (5.3) and (5.4), we obtain 0 = 2〈v2−v1, v2−v1〉 and hence ‖v2−v1‖2 =
0. So, we obtain v2 = v1. This implies that {xn} converges weakly to an element
v of F (T ). Since ‖xn+1 − z‖ ≤ ‖xn − z‖ for all z ∈ F (T ) and n ∈ N, we obtain
from Takahashi and Toyoda [18] that {Pxn} converges strongly to an element p of
F (T ). On the other hand, we have from the property of P that

〈xn − Pxn, Pxn − u〉 ≥ 0

for all u ∈ F (T ) and n ∈ N. Since xn ⇀ v and Pxn → p, we obtain

〈v − p, p− u〉 ≥ 0

for all u ∈ F (T ). Putting u = v, we obtain p = v. This means v = limn→∞ Pxn.
This completes the proof.
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