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THE Lp UNIQUE SOLVABILITY OF THE FIRST INITIAL
BOUNDARY-VALUE PROBLEM FOR HYPERBOLIC SYSTEMS

Nguyen Manh Hung and Vu Trong Luong

Abstract. The main purpose of the paper is to prove the existence, uniqueness
and smoothness with respect to time variable of the generalized Lp-solution
of the first initial boundary value problem for higher hyperbolic systems in
cylinders with non-smooth base. We also show that the smoothness with
respect to time variable of the generalized Lp-solution is independent of the
smoothness of base of cylinders.

1. INTRODUCTION

We are concerned with initial boundary value problems for higher hyperbolic
systems in non-smooth domains. These problems have been studied by many authors
[3-8], whose main results are on the unique existence of the solution and asymptotic
expansions of the solution. However, they are based on L2-theories.

In the present paper, we will establish the well-posedness and the regularity with
respect to time variable of Lp-solutions of the first initial boundary value problem for
higher hyperbolic systems, which bases on a generalization of Garding’s inequality
and the approximating boundary method [8]. First, we prove the lemma which
is denoted as ”approximating boundary lemma”, then we use it to establish the
existence and the uniqueness of the generalized Lp-solution with 1 < p < +∞.
After that, by modifying the arguments used in the section above, we can prove the
smoothness of the generalized Lp-solution with respect to time variable.

Our paper is organized as follows. In Section 2, we introduce some notation and
formulation of the problem, and we also state and prove the approximating boundary
theorem, the essential tool in solving the problem. The main results, Theorem 3.1,
3.2 and 3.3, are stated in Section 3, and the proofs of the main results are given in
Section 4.
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2. NOTATION AND FORMULATION OF PROBLEM

Let Ω be bounded domain in R
n, n ≥ 2, with boundary ∂Ω. Set QT =

Ω × (0, T ), 0 < T < +∞, ST = ∂Ω × (0, T ). Let u = (u1, . . . , us) be a complex
- valued vector function, we denote:

ujtk =
∂uj

∂tk
, utk =(u1tk , . . . , ustk), D

αuj =
∂|α|uj

∂xα1
1 . . . xαn

n
, Dαu=(Dαu1, . . . , D

αus),

for each multi index α = (α1, . . . , αn), |α| = α1 + · · ·+αn . Let p be a real number
with 1 < p < +∞.

We denote by Wm
p (Ω) the space of all functions u = u(x), x ∈ Ω that have

generalized derivatives Dαu ∈ Lp(Ω), |α| ≤ m. The norm in this space is defined
as follows: ∥∥u

∥∥
m;p

=
(∫

Ω

m∑
|α|=0

|Dαu|p dx

)1/p

.

In particular, W 0
p (Ω) ≡ Lp(Ω).

◦
Wm

p (Ω) is the completion of C∞
0 (Ω) in norm

of the space Wm
p (Ω). Wm,1

p (QT ) is the space consisting of all functions u =
u(x, t), (x, t) ∈ QT having generalized derivatives Dαu ∈ Lp(QT ), |α| ≤ m, and
ut ∈ Lp(QT ), with norm

∥∥u
∥∥

m,1;p
=

(∫
QT

( m∑
|α|=0

|Dαu|p + |ut|p
)

dx dt

)1/p

.

◦
Wm,1

p (QT ) is the closure in W m,1
p (QT ) of the set consisting of all functions in

C∞(QT ), vanish near ST denoted by C∞
0 (QT ).

We introduce the partial differential operator of order 2m

(2.1) L = L(x, t; D) =
m∑

|α|,|β|=0

Dα
(
aαβ(x, t)Dβ

)
,

where aαβ are s × s− matrices of functions with complex values, and aαβ are
infinity differentiable in QT and aαβ = a∗αβ, where a∗αβ denotes the transposed
conjugate matrix of aαβ. We have the following Green’s formula∫

Ω
Lu v dx = B(u, v ; t)

which is valid for all u, v ∈ C∞
0 (Ω) and a.e. t ∈ [0, T ), where

B(u, v ; t) =
m∑

|α|,|β|=0

∫
Ω

aαβ(., t)Dβu Dαv dx.
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We also suppose that the form B(., .; t) is W m
2 (Ω)- elliptic uniformly with

respect to t ∈ [0, T ), i.e., the inequality

(2.2) B(u, u, ; t) ≥ γ0‖u‖2
Wm

2 (Ω)

is valid for all u ∈
◦

Wm
2 (Ω) and all t ∈ [0, T ), where γ0 is a positive constant

independent of u and t.
From condition (2.2), we get the generalized Garding inequality

(2.3) sup
v∈Sq

∣∣∣B(u, v ; t)
∣∣∣ ≥ γ1‖u‖m,p

with a.e. t ∈ [0, T ), for every u ∈
◦

Wm
p (Ω), where the constant γ1 = γ1(n, m, p, Ω)

> 0, 1 < p, q < ∞ are real numbers with
1
p

+
1
q

= 1, and Sq is the unit ball in
◦

W m
q (Ω), (see [9, 10, 11]).
Set

B1(u, η) =
m∑

|α|,|β|=0

∫
QT

aαβDβu Dαη dxdt +
∫

QT

utηtdxdt.

for all u ∈
◦

Wm
p (QT ), η ∈

◦
W m

q (QT ).
If 1 < p < 2, then we have the following lemma:

Lemma 2.1. There exists a constant γ2 = γ2(p, n, m, |Ω|, T ) > 0, such that

(2.4) sup{∣∣B1(u, η)
∣∣ : η ∈

◦
Wm,1

q (QT ), ‖η‖m,1;q ≤ 1} ≥ γ2‖u‖m,1;p,

for every u ∈
◦
Wm,1

p (QT ).

Proof. We prove this result with u ∈ C∞
0 (QT ). Suppose that there is no

γ2 > 0 such that (2.4) holds true. Then there is a sequence {uk} ⊂ C∞
0 (QT ) with

‖uk‖m,1;p = 1 and

(2.5) sup{∣∣B1(uk, η)
∣∣ : η ∈

◦
W m,1

q (QT ), ‖η‖m,1;q ≤ 1} ≤ 1
k
, for every k ≥ 1.

Using condition (2.2), we obtain

∣∣B1(uk, uk)
∣∣ ≥ γ0‖uk‖2

m,0;2 +
∫

QT

|ukt|2dxdt ≥ C1‖u‖2
m,1;2.(2.6)
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On the other hand, by using Hölder’s inequality with 1 < p < 2, p∗ = 2
p , q∗ = 2

2−p ,
we have

‖uk‖p
m,1;p =

m∑
|α|=0

∫
QT

|Dαu|pdxdt +
∫

QT

|ut|p dx dt ≤ C2‖uk‖p
m,1;2(2.7)

C2 = C2(p, |Ω|, T ) > 0. Combining (2.6) and (2.7), we get∣∣B1(uk, uk)
∣∣ ≥ C‖uk‖2

m,1;p,

where C is a constant independent of k.
We get from the inequality above and (2.5) that

‖uk‖2
m,1;p ≤ 1

kC
, for every k = 1, 2, . . . .

which contradicts ‖uk‖m,1;p = 1. Therefore, there is a constant γ2 > 0 such that

(2.4) holds true. Since u ∈ C∞
0 (QT ) which is dense in

◦
Wm,1

p (QT ), this completes
the proof.

In this paper, we consider the following problem in the cylinder QT :

(2.8) Lu − utt = f, f ∈ Lp(QT )

with the initial conditions

(2.9) u
∣∣
t=0

= 0, ut

∣∣
t=0

= 0

and the boundary conditions

(2.10)
∂ju

∂νj

∣∣
ST

= 0; j = 0, 1, . . . , m− 1,

where
∂ju

∂νj
are derivatives with respect to the outer unit normal of ST .

Definition 2.1. A function u is called a generalized Lp-solution of problem

(2.8) -(2.10) if and only if u belongs to
◦

Wm,1
p (QT ), u(x, 0) = 0, and the equality

(2.11)
m∑

|α|,|β|=0

∫
QT

aαβDβ uDαη dx dt +
∫

QT

ut ηt dx dt =
∫

QT

fη dx dt

holds for all η ∈
◦

Wm,1
q (QT ).
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In the case p = 2, u is called a generalized L2-solution and its unique existence
is established in [7, 8]. To consider problem (2.8) -(2.10), we need to prove the
following approximating boundary result.

Lemma 2.2. Let Ω be a bounded domain in R
n. Then there exists a sequence

of smooth domains {Ωε} such that Ωε ⊂ Ω and limε→0 Ωε = Ω.

Proof. For ε > 0 arbitrary, set Sε = {x ∈ Ω : dist(x, ∂Ω) ≤ ε}, Ωε = Ω \ Sε

and ∂Ωε is the boundary of Ωε. Denote by J(x) the characteristic function of Ωε

and by Jh(x) the mollification of J(x), i.e.

Jh(x) =
∫

Rn

θh(x − y)J(y)dy,

where θh is a mollifier. If h < ε
2 , then Jh(x) has following properties:

(1) Jh(x) = 0 if x /∈ Ω
ε
2 ;

(2) 0 ≤ Jh(x) ≤ 1, ∀x ∈ Ω;

(3) Jh(x) = 1 in Ω2ε;

(4) Jh ∈ C∞
0 (Rn).

We now fix a constant c ∈ (0, 1), set Ωε
c = {x ∈ Ω : Jh(x) > c}. It is obvious

that Ω
ε
2 ⊃ Ωε

c ⊃ Ω2ε. Therefore, Ωε
c ⊂ Ω and lim

ε→0
Ωε

c = Ω.

Assume that K is the critical set of Jh, i.e. K consisting of all point x, such
that the gradient of Jh at x vanishes. A number c ∈ R such that J−1

h (c) contains
at least one x ∈ K is called a critical value. By Sard’s theorem then the set of
critical values of Jh is of measure zero (see[12, Theorem 1.30]), it implies that
there exists a constant c0 ∈ (0, 1) such that c0 is not a critical value of Jh. Denote
Ωε

c0
= {x ∈ Ω : Jh(x) > c0} and F (x) = Jh(x) − c0. For all x0 ∈ ∂Ωε

c0
, then

F (x0) = Jh(x0) − c0 = 0 and gradJh(x0) 
= 0. This implies that there exists a
∂Jh

∂xi
(x0) 
= 0, without loss of generality we can suppose that

∂Jh

∂xn
(x0) 
= 0. Using

the implicit function theorem, we obtain that there exists a neighbourhood W of
(x0

1, ..., x
0
n−1) in R

n−1 a neighbourhood V of x0
n in R and an infinitely differentiable

function z : W −→ R such that x ∈ Ux0 ∩ ∂Ωε
c0, where ∂Ωε

c = {x ∈ Ω : Jh(x) =
c}, Ux0 = W × V, if and only if x = (x1, ..., xn) ∈ Ux0 , xn = z(x1, ..., xn−1).
Hence, Ωε

c0 is smooth and lim
ε→0

Ωε
c0 = Ω. The lemma proved.

Suppose that {Ωε} is a smooth domain subsequence and lim
ε→0

Ωε = Ω. Set
Qε

T = Ωε × (0, T ), Sε
T = ∂Ωε × (0, T ).
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We consider the following problem in the cylinder Qε
T :



Luε − uε
tt = f, f ∈ C∞(Qε

T )

uε
∣∣
t=0

= 0, uε
t

∣∣
t=0

= 0

∂juε

∂νj

∣∣
Sε

T
= 0, for j = 0, 1, . . . , m− 1.

If ftk
∣∣
t=0

= 0, for k = 0, 1, . . . , then this problem has a unique function

uε(x, t) ∈ C∞(Qε
T ). Moreover, uε(., t) ∈

◦
Wm

2 (Ωε), for all t ∈ [0, T ], (see[3]). Set

ũε(x, t) =




uε(x, t) if (x, t) ∈ Qε
T

0 if (x, t) /∈ Qε
T

Then ũε(t) = ũε(., t) ∈
◦

Wm
p (Ω), ∀t ∈ [0, T ] and ũε ∈

◦
Wm,1

p (QT ), p > 1.

3. FORMULATION OF THE MAIN RESULTS

In this section, we give the main results of the present paper:

Theorem 3.1. Assume that there is a positive constant µ, such that coefficients
of operator 2.1 satisfy

sup
{|aαβ| : (x, t) ∈ QT , 0 ≤ |α|, |β| ≤ m

} ≤ µ

and f ∈ Lp(QT ). Then problem (2.8) -(2.10) has at most one generalized Lp-
solution.

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied.

(i) If 1 < p < 2 and f ∈ L(QT ), then problem (2.8)- (2.10) has a generalized

Lp-solution u ∈
◦

Wm,1
p (QT ), and the following estimate holds

(3.1) ‖u‖p
m,1;p ≤ C‖f‖p

0,p,

where C is a constant independent of u and f .

(ii) If 2 < p,
2n

n + 2m
≤ q and f, ft, ftt ∈ Lp(QT ), then problem (2.8)- (2.10) in

the cylinder QT has a unique generalized Lp-solution u ∈
◦

W m,1
p (QT ) and

the following estimate holds
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(3.2) ‖u‖p
m,1;p ≤ C

2∑
k=0

‖ftk‖p
0,p,

where C is a constant independent of u and f .

The following theorem shows that generalized Lp-solution u ∈
◦

W m,1
p (QT ) of

problem (2.8)-(2.10) is smooth with respect to time variable t if right hand-side f
and coefficients of operator (2.1) is smooth enough with respect to t.

Theorem 3.3. Let h be the nonnegative integer, and we assume that

(1) ftk ∈ Lp(QT ), k ≤ h + 2,

(2) ftk
∣∣
t=0

= 0, x ∈ Ω, k ≤ h,

(3) sup
{∣∣∣∂kaαβ

∂tk

∣∣∣, k < h + 1 : (x, t) ∈ QT , 0 ≤ |α|, |β| ≤ m
} ≤ µ,

(4) 1 < p < 2 or 2 < p,
2n

n + 2m
≤ q.

Then the generalized solution u ∈
◦

Wm,1
p (QT ) of problem (2.8)-(2.10) has gener-

alized derivatives with respect to t up to oder h in
◦
Wm,1

p (QT ) and satisfies the
estimate

(3.3) ‖uth‖p
m,1;p ≤ C

h+2∑
k=0

‖ftk‖p
Lp(QT ),

where C is a constant independent of u and f .

4. PROOFS OF THE MAIN RESULTS

4.1. Proof of Theorem 3.1
Firstly, we will prove the theorem in the cases p > 2. Since p > 2,

◦
W

m,1
p (QT ) ⊂

◦
W m,1

2 (QT ), implying that if u is a generalized Lp-solution, and then u is a gener-
alized L2-solution. Hence, we obtain the uniqueness of a generalized Lp-solution
from the uniqueness of a generalized L2-solution.

Further, we will prove the theorem in the case 1 < p < 2. Suppose that problem
(2.8) -(2.10) has two generalized Lp-solutions u1, u2. Put u = u1 −u2, then (2.11)
implies that

(4.1) B1(u, η) =
m∑

|α|,|β|=0

∫
QT

aαβ(x, t)Dβ uDαη dx dt +
∫

QT

ut ηt dx dt = 0
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holds for all η ∈
◦

Wm,1
q (QT ).

Combining inequality (2.4) with equality (4.1), we obtain

γ2‖u‖m,1;p ≤ sup{∣∣B1(u, η)
∣∣ : η ∈

◦
Wm,1

q (QT ), ‖η‖m,1;q ≤ 1} = 0.

Hence, u ≡ 0 in QT . This completes the proof of theorem.

4.2. Proof of Theorem 3.2

4.2.1. In the case 1 < p < 2
We need the following assertion:

Proposition 4.1. Suppose that f ∈ C∞(QT ), ftk
∣∣
t=0

= 0, for k = 0, 1, . . . and

sup
{|aαβ| : (x, t) ∈ QT , 0 ≤ |α|, |β| ≤ m

} ≤ µ.

Then ũε is a generalized Lp-solution of problem (2.8) -(2.9) in Qε
T satisfying

‖ũε‖p
m,1;p ≤ C‖f‖p

0,p

where the constant C is independent of ε, u and f .

Proof. From ũε satisfying system (2.8) in QT replacing f by f̃ , where

f̃ =




f(x, t), (x, t) ∈ Qε
T

0, (x, t) /∈ Qε
T

after multiplying (2.8) by η, η ∈
◦

W m,1
q (QT ), integrating on QT , we get∫

QT

Lũε η dxdt −
∫

QT

ũε
tt η dxdt =

∫
QT

f̃ηdxdt

By using Green’s formula and integrating by parts with respect to t, we obtain from
the equality above that

(4.2) B1(ũε, η) =
∫

QT

f̃ηdxdt

This clearly shows that ũε is a generalized Lp-solutions of problem (2.8) -(2.9) in
Qε

T ; otherwise, using Hölder’s inequality and inequality (2.4), we conclude from
(4.2) that

‖ũε‖p
m,1;p ≤ C‖f‖p

0,p.

Now we prove the existence of the generalized Lp-solution of problem (2.8)−
(2.10) in QT , when the assumptions of Proposition 4.1 are satisfied.



The Lp Unique Solvability for Hyperbolic Systems 2373

Proposition 4.2. Let the assumptions of Proposition 4.1 be satisfied. Then

problem (2.8)-(2.10) in cylinder QT has a generalized Lp-solution u ∈
◦

Wm,1
p (QT )

which satisfies

(4.3) ‖u‖p
m,1;p ≤ C‖f‖p

0,p

where C is a constant independent of u and f .

Proof. By Proposition 4.1 we have

(4.4) ‖ũε‖p
m,1;p ≤ C‖f‖p

0,p

where the constant C does not depend on ε. It means that the set {ũε}ε>0 is

uniformly bounded in the space
◦

Wm,1
p (QT ). So we can take a subsequence, denoted

also by ũε for convenience, which converges weakly to a function u ∈
◦
Wm,1

p (QT ).
We will show that u is a generalized Lp-solution of problem (2.8)- (2.10) in cylinder

QT . In fact for all η ∈
◦
Wm,1

p (QT ), there exists ηδ ∈ C∞(QT ) such that ηδ ≡ 0 in
QT \Qε

T , and ‖ηδ − η‖m,1;p −→ 0 when δ → 0. Since ũε is a generalized solution
of problem (2.8)- (2.10) in the smooth cylinder Qε

T , we have

m∑
|α|,|β|=0

∫
Qε

T

aαβDβ ũεDαηδ dx dt +
∫

Qε
T

ũε
tηδt dx dt =

∫
Qε

T

fηδ dx dt.

Reforming this equality in to
m∑

|α|,|β|=0

∫
QT

aαβDβũεDαηδ dx dt +
∫

QT

ũε
tηδt dx dt =

∫
Qε

T

fηδ dx dt.

Passing to the limit when ε → 0, δ → 0 for the weakly convergent sequence,
we get

m∑
|α|,|β|=0

∫
QT

aαβDβuDαη dx dt +
∫

QT

utηt dx dt =
∫

QT

fη dx dt.

Since
◦

Wm,1
p (QT ) is imbedded continuously into Lp(Ω), the trace sequence

{ũε(x, 0)} of {ũε(x, t)} converges weakly to the trace u(x, 0) of u(x, t) in Lp(Ω).
On the other hand, ũε(x, 0) = 0, so that u(x, 0) = 0. Hence, u(x, t) is a generalized
Lp-solution of problem (2.8)- (2.10). Moreover, from (4.7) we have

‖u‖p
m,1;p ≤ lim

ε→0
‖ũε‖p

m,1;p ≤ C‖f‖p
0,p.
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Proposition 4.2 stated the existence of generalized Lp-solutions of problem (2.8)-

(2.10) in
◦

Wm,1
p (QT ) when f ∈ C∞(QT ) and ftk

∣∣
t=0

= 0, for k = 0, 1, . . . . We
now establish the problem when f ∈ Lp(QT ).

Proof of Theorem 3.2.
Denote

fh(x, t) =




0 if (x, t) 
= QT

f(x, t) if (x, t) ∈ QT , t > h

0 if (x, t) ∈ QT , t ≤ h

for all h > 0. We will denote by gh
2

the mollification of fh, then g h
2
∈ C∞(QT ), gh

2
≡

0, t < h
2 and g h

2
→ f in Lp(QT ). By Proposition 4.2, problem (2.8)-(2.10) has a

generalized Lp-solution uh ∈
◦

W
m,1

p (QT ) with replacing f by gh
2
, and the following

estimates holds

(4.5) ‖uh‖p
m,1;p ≤ C‖gh

2
‖p
0,p

where C is a constant independent of h, u and f . Since {g h
2
} is a Cauchy sequence

in Lp(QT ) and inequality (4.5), it follows that {uh} is a Cauchy sequence in
◦

W
m,1

p (QT ). Hence, uh → u ∈
◦

W
m,1

p (QT ), then u is a generalized Lp-solutions of
problem (2.8)- (2.10) and satisfies

‖u‖p
m,1;p ≤ C‖f‖p

0,p .

Thus, the theorem is proved in the case 1 < p < 2.

4.2.2. In the case 2 < p < ∞
Analogous to cases above 1 < p < 2, we need prove the following assertion:

Proposition 4.3. Suppose that f ∈ C∞(QT ), ftk
∣∣
t=0

= 0, for k = 0, 1, . . . and

sup
{∣∣∂aαβ

∂t

∣∣, |aαβ| : (x, t) ∈ QT , 0 ≤ |α|, |β| ≤ m
} ≤ µ.

Then ũε satisfies

‖ũε‖p
m,1;p ≤ C

2∑
k=0

‖ftk‖p
0,p.

where the constant C is independent of ε, u and f .
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Proof. We have that ũε satisfies system (2.8) in QT with replacing f by f̃ ;
therefore, after multiplying (2.8) by v, v ∈

◦
C∞(Ω), integrating with respect to x on

Ω, we get ∫
Ω

Lũε(t) v dx =
∫

Ω

(
f̃(t) + ũε

tt(t)
)
v dx

where we set f(t) = f(., t). By using Green’s formula, we obtain

(4.6) B(ũε(t), v; t) =
( ∫

Ω

f̃(t)v dx +
∫

Ω

ũε
tt(t)v dx

)
.

By the equality above, it is easy to see that

(4.7)
∣∣∣B(ũε(t), v; t)

∣∣∣ ≤ ∣∣∣ ∫
Ω

f̃ (t)v dx
∣∣∣ +

∣∣∣ ∫
Ω

ũε
tt(t)v dx

∣∣∣.
Set

F (v) =
∫

Ω
ũε

tt(t)v dx, ∀v ∈ C∞
0 (Ω), for a.e. t ∈ (0, T )

and using Höl der’s inequality, we have∣∣∣F (v)
∣∣∣ ≤ ‖ũε

tt(t)‖0,2‖v‖0,2.

Since
2n

n + 2m
≤ q < 2, it is easy to check validity of the following inequalities:

n ≤ mq or




mq < n

2 ≤ nq

n − mq
.

Therefore,
◦

Wm
q (Ω) is imbedded continuously into L2(Ω) (see[1]). Hence, we have

‖v‖0,2 ≤ C0‖v‖0,q.

It implies

|F (v)| ≤ ‖ũε
tt(t)‖0,2‖v‖0,q ≤ C0‖uε

tt(t)‖0,2, ∀v ∈ Sq.

Using the estimates for the generalized L2−solution (see[7, 8]), we get

‖uε
tt(t)‖0,2 ≤ C1

(
‖f(t)‖0,2 + ‖ft(t)‖0,2

)
, for a.e. t ∈ (0, T ).

As p > 2 and Hölder’s inequality, we obtain

‖f(t)‖2
0,2 =

∫
Ω
|f(t)|2 dx ≤

( ∫
Ω
(|f(t)|2) p

2 dx
) 2

p |Ω| p
p−2 .
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Therefore, ‖f(t)‖0,2 ≤ |Ω|
p

2(p−2) ‖f(t)‖0,p. It implies

‖uε
tt(t)‖0,2 ≤ C2

(
‖f(t)‖0,p + ‖ft(t)‖0,p

)
.

It means that

(4.8) |F (v)| ≤ C2

(
‖f(t)‖0,p + ‖ft(t)‖0,p

)
, ∀v ∈ Sq.

Otherwise, by using Hölder’s inequality, we have the following inequality:

(4.9)
∣∣∣ ∫

Ω

f̃ (t) v dx
∣∣∣ ≤ ‖f(t)‖0,p‖v‖0,q ≤ ‖f(t)‖0,p, ∀v ∈ Sq.

Because
◦

C∞(Ω) is dense in
◦

Wm
q (Ω), (4.8) and (4.9) holds for all v ∈

◦
W m

q (Ω).
Substituting (4.8) and (4.9) into (4.7), we get

sup
v∈Sq

∣∣∣B(ũε(t), v; t)
∣∣∣ ≤ C3

(
‖f(t)‖0,p + ‖ft(t)‖0,p

)
.

From the inequality above and Garding’s inequality (2.3), we obtain

γ1‖ũε(t)‖m,p ≤ C3

(
‖f(t)‖0,p + ‖ft(t)‖0,p

)
.

Therefore,

(4.10) ‖ũε(t)‖m,p ≤ C4

(
‖f(t)‖0,p + ‖ft(t)‖0,p

)

where C4 =
C3

γ1
is a constant independent of ε. Due to the use of Hölder’s inequality

again ∣∣∣ r∑
k=0

akbk

∣∣∣ ≤ ( r∑
k=0

|ak|p
) 1

p
( r∑

k=0

|bk|q
) 1

q

and putting bk = 1 in this inequality, we get

(4.11)
(
‖f(t)‖0,p + ‖ft(t)‖0,p

)p

≤ 2
p
q

(
‖f(t)‖p

0,p + ‖ft(t)‖p
0,p

)
.

Combining (4.10), (4.11), we conclude that

(4.12) ‖ũε(t)‖p
m,p ≤ C5

(
‖f(t)‖p

0,p + ‖ft(t)‖p
0,p

)
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where the constant C5 does not depend on ε.
By the derivation of the equality (4.6) with respect to t and the arguments

analogous to the estimates above, we obtain

(4.13) ‖ũε
t(t)‖p

0,p ≤ C6

(
‖ft(t)‖p

0,p + ‖ftt(t)‖p
0,p

)

From (4.12), (4.13), it implies

(4.14) ‖ũε(t)‖p
m,p + ‖ũε

t(t)‖p
0,p ≤ C

2∑
k=0

‖ftk(., t)‖p
0,p, for a.e. t ∈ (0, T )

where constant C does not depend on ε. So by integrating with respect to t from 0
to T we get

‖ũε‖p
m,1;p ≤ C

2∑
k=0

‖ftk‖p
0,p.

This completes the proof.

By the arguments analogous to the proof of the case 1 < p < 2, we get proof
of Theorem 3.2 in the case p > 2.

4.3. Proof of Theorem 3.3
We only need to prove the theorem in the condition f ∈ C∞(QT ), ftk|t=0 = 0,

for k = 0, 1, . . . ; in other conditions, the theorem is proved by arguments analogous
to the proof of Proposition 4.2 and Theorem 3.2.

4.3.1. In the case 1 < p < 2
The theorem is proved by the induction on h. According to Theorem 3.2, the

theorem is valid for h = 0. Now let the theorem be true for h − 1; we will prove
that this also holds for h.

From ũε satisfies system (2.8) in QT with replacing f by f̃ , we have

(4.15) Luε − uε
tt = f̃ .

After differentiating equality (4.15) h times with respect to t and multiplying that
retrieved equality by η, η ∈ C∞

0 (QT ), we integrate this equality on QT , and the
obtained equality will be

h∑
k=0

(
h

k

)∫
QT

m∑
|α|,|β|=0

Dα(aαβth−kDβ ũε
tk

)η dx dt−
∫

QT

ũε
th+1η dx dt =

∫
QT

f̃thη dx dt.
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By using Green’s formula and integrating by parts, we get

B1(ũε
th

, η) =
∫

QT

f̃thη dx dt−
h−1∑
k=0

(
h − 1

k

)∫
QT

m∑
|α|,|β|=0

aαβth−kDβũε
tk

Dαη dx dt.

Therefore,

|B1(ũε
th

, η)|≤ ∣∣∫
QT

f̃thη dx dt
∣∣+∣∣ h−1∑

k=0

(
h−1

k

)∫
QT

m∑
|α|,|β|=0

aαβth−kDβũε
tk

Dαη dx dt
∣∣.

From the inequality above and Hölder’s inequality, we have

(4.16) |B1(ũε
th

, η)| ≤ C(‖fth‖0,p +
h−1∑
k=0

‖ũε
tk
‖m,1;p)‖η‖m,1;q

Since C∞
0 (QT ) is dense in

◦
Wm,1

q (QT ), (4.16) holds for all η ∈
◦

Wm,1
q (QT ). By

using equality (2.4) and the induction assumption, we obtain

‖ũε
th
‖p

m,1;p ≤ C′
h∑

k=0

‖ftk‖p
0,p

where C is a constant independent of ε, u.
Since ũε converges weakly to the generalized solution u ∈

◦
Wm,1

p (QT ), the u

has generalized derivatives with respect to t up to oder h in
◦

Wm,1
p (QT ) and

‖uth‖p
m,1;p ≤ lim

ε→0
‖ũε

th‖p
m,1;p ≤ C

h∑
k=0

‖ftk‖p
Lp(QT ).

4.3.2. In the case 2 < p < ∞
The theorem is proved by the induction on h, a similar method used to prove

the theorem in the cases 1 < p < 2. According to Theorem 3.2, the theorem is
valid for h = 0. Now let the theorem be true for h− 1; we will prove that this also
holds for h.

Differentiating equality (4.6) h times with respect to t, we get∫
Ω

m∑
|α|,|β|=0

aαβ(x, t)Dβũε
th

Dαv dx

=
h−1∑
k=0

(
h − 1

k

)∫
Ω

m∑
|α|,|β|=0

(aαβ)th−kDβũε
tk

Dαv dx

+
( ∫

Ω
f̃thv dx +

∫
Ω

ũε
th+2v dx

)
.
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It follows that

(4.17)

∣∣∣B(ũε
th , v; t)

∣∣∣ ≤ ∣∣∣ ∫
Ω

f̃thv dx
∣∣∣ +

∣∣∣ ∫
Ω

ũε
th+2v dx

∣∣∣
+

∣∣∣ h−1∑
k=0

(
h

k

) ∫
Ω

m∑
|α|,|β|=0

(aαβ)th−kDβũε
tk

Dαv dx
∣∣∣.

By the arguments analogous to the proof of Proposition 4.3, we have inequalities

(4.18)
∣∣∣ ∫

Ω
ũε

th+2v dx
∣∣∣ ≤ C1

h+1∑
k=0

‖ftk(t)‖0,p, ∀v ∈ Sq,

and

(4.19)
∣∣∣ ∫

Ω
f̃thv dx

∣∣∣ ≤ ‖fth(t)‖0,p, ∀v ∈ Sq.

By using Hölder’s inequality, it is easy to see that

(4.20)

∣∣∣ h−1∑
k=0

(
h

k

)∫
Ω

m∑
|α|,|β|=0

(aαβ)th−kDβũε
tk

Dαv dx
∣∣∣

≤
h−1∑
k=0

µ

(
h

k

) m∑
|α|,|β|=0

∣∣∣ ∫
Ω

Dβ ũε
tk

Dαv dx
∣∣∣

≤
h−1∑
k=0

µ

(
h

k

) m∑
|α|,|β|=0

‖Dβũε
tk

(t)‖0,p‖Dαv‖0,q

≤ C2

h−1∑
k=0

‖ũε
tk

(t)‖m,p‖v‖m,q ≤ C2

h−1∑
k=0

‖ũε
tk

(t)‖m,p, ∀v ∈ Sq.

Substituting (4.18), (4.19) and (4.20) into (4.17), we obtain

(4.21)
∣∣∣B(ũε

th(t), v; t)
∣∣∣ ≤ C3

( h−1∑
k=0

‖ũε
tk

(t)‖m,p +
h+1∑
k=0

‖ftk(t)‖0,p

)
, ∀v ∈ Sq.

Because
◦

C∞(Ω) is dense in
◦

W m
q (Ω), (4.17) holds for all v ∈

◦
Wm

q (Ω). By using
Garding’s inequality (2.3), we obtain

γ1‖ũε
th(t)‖m,p ≤ sup

v∈Sq

∣∣∣B(ũε
th , v; t)

∣∣∣ ≤ C3

( h−1∑
k=0

‖ũε
tk

(t)‖m,p +
h+1∑
k=0

‖ftk(t)‖0,p

)
.
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Therefore,

‖ũε
th(t)‖m,p ≤ C4

( h−1∑
k=0

‖ũε
tk

(t)‖m,p +
h+1∑
k=0

‖ftk(t)‖0,p

)

for all most everywhere t ∈ (0, T ), where the constant C4 does not depend on ε.
From the inequality above and Hölder’s inequality, we get

(4.22) ‖ũε
th(t)‖p

m,p ≤ C5

( h−1∑
k=0

‖ũε
tk

(t)‖p
m,p +

h+1∑
k=0

‖ftk(t)‖p
0,p

)
.

where the constant C5 does not depend on ε. So by integrating with respect to t

from 0 to T and using the induction assumption, we have the inequality

(4.23)
∫ T

0
‖ũε

th(t)‖p
m,pdt ≤ C6

h+1∑
k=0

‖ftk‖p
Lp(QT ).

By differentiating equality (4.6) repeatedly h + 1 times with respect to t and the
arguments analogous to estimates above, we have the inequality

(4.24)
∫ T

0
‖ũε

th+1(t)‖p
m,pdt ≤ C7

h+2∑
k=0

‖ftk‖p
Lp(QT ).

Combining (4.23) with(4.24), we obtain

‖ũε
th‖p

m,1;p ≤ C

h+2∑
k=0

‖ftk‖p
Lp(QT ),

where C is a constant independent of ε, u and f . Since ũε converges weakly to
generalized solution u ∈

◦
W m,1

p (QT ), the u has generalized derivatives with respect

to t up to oder h in
◦

W m,1
p (QT ) and

‖uth‖p
m,1;p ≤ lim

ε→0
‖ũε

th‖p
m,1;p ≤ C

h+2∑
k=0

‖ftk‖p
Lp(QT )

.
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