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RINGS WITH INDECOMPOSABLE RIGHT MODULES LOCAL

Surjeet Singh

Abstract. Every indecomposable module over a generalized uniserial ring
is uniserial, hence local. This motivates one to study rings R satisfying the
condition (*): R is a right artinian ring such that every finitely generated,
indecomposable right R-module is local. The rings R satisfying (*) have been
recently studied by Singh and Al-Bleahed (2004), they have proved some
results giving the structure of local right R-modules. In this paper some more
structure theorems for local right R-modules are proved. Examples given
in this paper show that a rich class of rings satisfying condition (*) can be
constructed. Using these results, it is proved that any ring R satisfying (*) is
such that mod-R is of finite representation type. It follows from a theorem
by Ringel and Tachikawa that any right R-module is a direct sum of local
modules. If M is right module over a right artinian ring such that any finitely
generated submodule of any homomorphic image of M is a direct sum of local
modules, it is proved that it is a direct sum of local modules. This provides
an alternative proof for that any right module over a right artinian ring R
satisfying (*) is a direct sum of local modules.

0. INTRODUCTION

It is well known that an artinian ring R is generalized uniserial if and only if
every finitely generated indecomposable right R-module is uniserial. Every uniserial
module is local. This motivated Tachikawa [10] to study a ring R satisfying the
condition (*): R is a right artinian ring such that every finitely generated indecom-
posable right R-module is local. Consider the dual condition (**): R is left artinian
such that every finitely generated indecomposable left R-module is uniform. If a
ring R satisfies (*), it is proved by Tachikawa that R admits a finitely generated
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injective cogenerator QR, then B = End(QR) satisfies (**). Tachikawa had stud-
ied a ring R satisfying (*) through the corresponding ring B, but he did not give
structure of local right R-modules. Singh and Al-Bleahed [8] have studied rings R

satisfying (*) without using the duality, and they have proved some structure theo-
rems on local right R-modules. In section 2, structure of a local right R-modules is
further investigated. By using these results it is proved in Theorem 2.14 that R is of
finite representation type. In section 3, general right R-modules are investigated. It
is well known that exceptional rings as defined by Dlab and Ringel (see [2] or [3])
are balanced ring, and any right module over an exceptional (1, 2)-ring is a direct
sum of local modules. It follows from [2, Proposition 3] and also from [8, Theorem
2.13] that any exceptional (1, 2)-ring also satisfies (*). It follows from [9, Corollary
4.4]., that any right R-module is a direct sum of local modules. A direct proof of
this result is given, by proving the following: If M is a right module over a right
artinian ring, such that any finitely generated submodule of any homomorphic image
of M is a direct sum of local modules, then M is a direct sum of local modules
(Theorem 3.4). As there is no known duality that can tell that a ring R satisfies (*)
if and only if it satisfies (**), it would be interesting to examine condition (**) by
itself. In section 4, some examples illustrating various results are given.

1. PRELIMINARIES

All rings considered here are with identity 1 �= 0 and all modules are unital right
modules unless otherwise stated. Let R be a ring and M be an R-module. J(M),
E(M) and socle(M) denote radical, injecitve hull and socle of M respectively,
however J(R) will be denoted by J . If R is right artinian, then J(M) = MJ .
Further, N � M denotes that N is a submodule of M . A ring R is called a local
ring, if R/J is a division ring. Given two positive integers n, m, a ring R is
called an (n.m)-ring if it is a local ring, J2 = 0 and for D = R/J , dim DJ =
n and dim JD = m. Any (1, 2) (or (2, 1)) ring R is called an exceptional ring
if E(RR) (respectively E(RR)) is of composition length 3 [4, p 446]. A module
in which the lattice of submodules is linearly ordered under inclusion, is called a
uniserial module, and module that is a direct sum of uniserial modules is called a
serial module [5, Chapter V]. If for a ring R, RR (RR) is serial, then R is called
a left (right) serial ring. A ring that is local, both serial and artinian, is called a
chain ring. A ring R is said to be of finite right representation type, if it admits
only finitely many non-isomorphic indecomposable right R-modules [5, p 109]. If a
module M has finite composition length, then d(M) denotes the composition length
of M . For definitions of M -injective and M -projective modules one may refer to
[1, p 184].
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2. LOCAL MODULES

Consider the following condition on a ring R: (*) R is a right artinian ring such
that any finitely generated indecomposable right R-module is local.

The following is proved in [8, Proposition 2.2]

Proposition 2.1. Let R be a right artinian ring. Then R satisfies (*) if and
only if for any two non-simple local right R-modules A, B, simple submodules
S, T of A, B respectively, and any R-isomorphism σ : S → T, either σ or σ −1

extends to an R-homomorphism from A to B or from B to A respectively.

Proposition 2.2. ([8]). Let R be a ring satisfying (∗).
(i) Any uniform right R-module is uniserial.
(ii) R is left serial.
(iii) Let A, B be two uniserial right R-modules each of composition length at

least three. Then M = A ⊕ B does not contain any local, non-uniserial
submodule of composition length 3.

(iv) Let C1, C2 be two uniserial R-modules such that for some k � 2, C 1/C1J
k ∼=

C2/C2J
k , and C1J

k , C2J
k are non-zero, then C1/C1J

k+1 ∼= C2/C2J
k+1.

(v) Let AR, BR be two local modules such that d(A) = d(B), AJ 2 = 0 = BJ2.
For any simple submodule S of A, any R-monomorphism σ : S → B extends
to an R-isomorphism from A onto B.

For any local module AR, AJ is a direct is a direct sum of uniserial modules
[8, Lemma 2.7].

Theorem 2.3. ([8, Theorem 2.10]). Let R be a ring satisfying (*) and AR be
a local module such that AJ = C1 ⊕C2 ⊕· · ·⊕Ct for some uniserial modules C i.
Then the following hold.

(i) Either all Ci/CiJ are isomorphic or t ≤ 2.

(ii) Any local submodule of AJ is uniserial.
(iii) If d(C1) ≥ 2, then either t ≤ 2 or any Ci is simple for i ≥ 2.

Proposition 2.4. Let R be a ring satisfying (*).
(i) Let A1 and A2 be any two uniserial right R-modules. Then A 1J ⊕A2J does

not contain a submodule that is local but not uniserial.
(ii) If a non-zero homomorphic image of a uniserial right R-module L is injective,

then L is injective.
(iii) Let AR be a local module, and AJ = C1 ⊕ D, where C1 is uniserial. Let

σ be an R-endomorphism of A such that kerσ ∩ C 1 = 0, and σ is not an
automorphism. Then σ(A) is a uniserial module of composition length more
than d(C1), A/D embeds in σ(A) and no homomorphic image of A/D is
injective. If a module BR embeds in C1, then no non-zero homomorphic
image of B is injective.
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(iv) Let AR be a local module, and AJ = C1 ⊕C2 ⊕ ....⊕Ct for some uniserial
submodules Ci. Let s = max{d(Ci) : 1 ≤ i ≤ t}. Then for any simple
submodule S of A, and any uniserial submodule B of A of composition
length s, any R-homomorphism σ : S → B extends to an R-endomorphism
of A; if in addition S is contained in a uniserial submodule of composition
length s, then σ is an automorphism.

Proof.

(i) On the contrary suppose that A1J ⊕ A2J contains a non-uniserial local sub-
module uR. Then u = u1 + u2, 0 �= ui ∈ AiJ, and uJ is a direct sum
of two non-zero uniserial submodules. As Ai are uniserial, without loss of
generality we take uiR = AiJ . Then uJ2 = A1J

3 ⊕ A2J
3. This gives that

(A1 ⊕ A2)/uJ2 = B1 ⊕ B2 for some uniserial modules with d(Bi) ≥ 3. But
uR/uJ2 is local, non-uniserial of composition length 3, and it embeds in
B1 ⊕ B2. This contradicts (2.2)(iii). Hence A1J ⊕ A2J does not contain a
non-uniserial, local submodule

(ii) It is immediate from the fact that any uniform right R-module is uniserial.

(iii) By (2.3)(ii), σ(A) is uniserial. As B = kerσ embeds in D, it is immediate
that d(σ(A)) ≥ d(A/D) = d(C1) + 1. As B ∩ C1 = 0, C1 embeds in σ(A).
Also, C1 embeds in A/D, it also follows that A/D embeds in σ(A). As
σ(A) is not injective, by (ii) no homomorphic image of A/D is injective.
The last part also follows from (ii)

(iv) Let C = socle(B) and σ : S → B be an R-homomorphism. Suppose the
contrary. As every uniserial R-module is quasi-injective, t ≥ 2, d(A) ≥ s+2
and AJ contains no uniserial submodule of composition length more than
s. By (2.1), σ−1 : C → S extends to an R-endomorphism λ of A. Then
λ is not an automorphism, and λ(A) ⊆ AJ. As λ is one-to-one on B, we
get d(λ(A)) ≥ s + 1. But by (2.3)(ii), λ(A) is uniserial, so we have a
contradiction. The last part again follows from (2.3)(ii).

(2.1) gives the following.

Proposition 2.5. Let a ring R satisfy (*). Let AR, BR be two local, modules
such that A is B-projective and B is A-projective. Let A 1 < A2 < A, B1 < B2 <

B be such that A2/A1 is simple and there exists an R-isomorphism σ : A 2/A1 →
B2/B1. Then either there exists an R-homomorphism λ of A → B inducing σ or
there exists an R-homomorphism λ : B → A inducing σ −1.

Henceforth, throughout this section R is a ring satisfying (*).

Lemma 2.6. Let AR be a local module.
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(i) If AJ = C1 ⊕ C2, where Ci are minimal submodules, then either A/C 1 or
A/C2 is injective.

(ii) If AJ = C1 ⊕C2, where Ci are uniserial, then either A/C1 or A/C2 is such
that its every non-simple homomorphic image is injective. .

(iii) Suppose AJ = C1 ⊕C2 ⊕ ....⊕Ct such that each Ci is uniserial and t ≥ 3.
For each 1 ≤ i ≤ t, let Li be the direct sum of all Cj with j �= i. Then every
non-simple homomorphic image of any A/L i is injective.

(iv) Let AJ = C1 ⊕ C2 ⊕ D with C1 and C2 both uniserial. Suppose for some
k, l, C1J

k/C1J
k+1 and C2J

l/C2J
l+1 are isomorphic, and for some u ≥ 1,

C1J
k+u �= 0 �= C2J

l+u , then C1J
k+u/C1J

k+u+1 and C2J
l+u/C2J

l+u+1

are isomorphic.

Proof.
(i) If none of A/Ci is injective, then A embeds in E(A/C1)J ⊕ E(A/C2)J,

which contradicts (2.4)(i). This proves (i).
(ii) By applying (i) to A/AJ2 and by using Proposition (2.4)(ii), it follows.
(iii) For t≥3, as all Ci/CiJ are isomorphic by (2.3), the result follows from (i).
(iv) It is enough to prove the result for u = 1. Suppose that C1J

k+1/C1J
k+2 and

C2J
l+1/C2J

l+2 are not isomorphic. For some indecomposable idempotent
e ∈ R, C1J

k/C1J
k+2 and C2J

l/C1J
l+2 both are homomorphic images of

eR. This gives a local, non-uniserial module BR of composition length 3 with
BJ = L1⊕L2 such that B/L1

∼= C1J
k/C1J

k+2 and B/L2
∼= C2J

l/C1J
l+2.

Let A = A/(C1J
k+2 ⊕ C2J

l+2). Then B embeds in the radical of the direct
sum of A/C1 ⊕ D and A/C2 ⊕ D, which is a contradiction to (2.4)(i). This
proves the result.

Lemma 2.7. Let AR be a local module and BR any module. For some C � B,
let σ : A → B/C be an R-homomorphism.

(i) There exists a local submodule D of A × B such that D = (a, b)R with aR
= A and σ(a) = b + C. If D is uniserial and d(B) � d(A),then σ can be
lifted to some R-homomorphism η : A → B

(ii) If A × B does not contain a local submodule D 1 with d(D1) > d(A), then
A is B-projective.

(iii) If A×B has no non-uniserial local submodule and d(B) � d(A), then A is
B-projective.

Proof. (i) Let N = {(x, y) ∈ A × B : σ(x) = y + C}. Let π : A × B → A
be the natural projection. Then π(N ) = A. There exists a local submodule D of N

such that π(D) = A. Clearly D = (a, b)R with A = aR and σ(a) = b + C. Now
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d(D) � d(A). Suppose d(D) = d(A). Then D ∼= A and η : A → B given by
η(ar) = br lifts σ. In case D is uniserial and d(B) � d(A), then D ∼= A, so once
again σ can be lifted. After this (ii) is immediate. Under the hypothesis in (iii), the
hypothsis in (ii) holds, so A is B-projective.

Lemma 2.8. Let AR and BR be two uniserial modules and σ : A → B/C be
an R-epimorphism for some C < B.

(i) If A is not injective and d(B) � d(A), then either B is injective or σ can be
lifted to some R-homomorphism η : A → B.

(ii) If d(B) � d(A) and neither A nor B is injective, then A is B-projective.
(iii) Any uniserial right R-module is either injective or quasi-projective.
(iv) Let C = socle(A), and C < D ≤ A with D/C a simple module. If C ∼=

D/C, then all the composition factors of A are isomorphic

Proof. By Lemma 2.7, there exists a local submodule D = (a, b)R ⊆ A × B
such that A = aR and σ(a) = b + C. Suppose d(B) ≤ d(A). If D is uniserial, it
follows from (2.7)(i) that σ lifts to an R-homomorphism η : A → B. Suppose D is
not uniserial. Then DJ = C1 ⊕C2 for some non-zero uniserial submodules Ci. Let
πA and πB be the natural projections of A × B onto A and B respectively. Then
for one of the Ci say C1, πA(C1) = AJ . But πB(C1) ⊆ BJ and d(B) � d(A), it
follows that C1 is isomorphic to AJ under πA. Therefore AJ×BJ = C1⊕(0×BJ),
DJ = C1 ⊕ (DJ ∩ (0× BJ)) and C2

∼= DJ ∩ (0× BJ). Suppose that neither A
nor B is injective, then D ⊆ E(A)J ⊕ E(B)J, therefore by (2.4), D is uniserial.
Then, by using (2.7)(i), we get A is B-projective. From this (i), (ii) and (iii) follow.
(iv) is immediate from the fact that the injective hull of A is uniserial.

Lemma 2.9. Let AR be a local module such that AJ = A1⊕A2 for some unis-
erial submodules Ai and there exists an R-isomorphism σ : soc(A 1) → soc(A2).
Let there exists an R-endomorphism µ of A that extends σ. Let M i be the maximal
submodule of Ai. Then:

(i) d(A1) ≤ d(A2), A/A1 is injective and A/M2 ⊕ A1 is injective.
(ii) If d(A1) < d(A2), then A/A2 is quasi-projective, A/(M1 ⊕A2) is not injec-

tive and A/(M2 ⊕ A1) is injective.
(iii) If d(A1) = d(A2), then A/M2 ⊕ A1

∼= A/M1 ⊕ A2 and both are injective.
(iv) If A1/A1J ∼= A2/A2J , then A1

∼= A2.

Proof. Suppose f : eR → A is the projective cover of A. We take A =
eR/B and Ai = Ci/B for some right ideals B < Ci < eR. Suppose there exists
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an R-endomorphism µ of A that extends σ. We can find an R-endomorphism λ of
eR that lifts µ. Then λ(B) ⊆ B, λ(socle(C1)) + B = socle(C2) + B � C1 + B.
Hence C1 is not invariant under the endomorphisms of eR, eR/C1 is not quasi-
projective, therefore A/A1 being isomorphic to eR/C1,is not quasi-projective. By
(2.8)(iii), A/A1 is injective. As µ(A1) ∼= A1 and µ(A1) ∩ A1 = 0, it follows that
d(A1) ≤ d(A2) and A1 embeds in A2. Let Mi <

max
Ai. Suppose d(A1) < d(A2), it

follows that A/A2 is isomorphic to a submodule A2, and hence A/(A2⊕M1) is not
injective. Therefore by (2.6)(i), A/(A1⊕M2) is injective. As A/A2 is not injective,
by (2.8)(iii), it is quasi-projective. If d(A1) = d(A2), then the isomorphism σ gives
that A/A1 ⊕ M2 and A/A2 ⊕ M1 are isomorphic, so once again, by (2.6)(i), both
are injective. The hypothesis in (iv) gives that A/(M2 ⊕ A1) ∼= A/(M1 ⊕ A2), so
they are injective by (i). By (ii), d(A1) = d(A2).. Hence A1

∼= A2.

Theorem 2.10. Let R be a local ring satisfying (*). If J 2 �= 0, then R is a
chain ring.

Proof. By (2.2), R is a left serial ring. If R is not right serial, we get a local,
right R-module A such that AJ = C1 ⊕ C2 with each Ci uniserial, d(C1) = 2,
d(C2) = 1. As every composition factor of A is isomorphic to R/J , it contradicts
(2.9)(iv). Hence R is a chain ring.

Lemma 2.11. Let AR be a local module such that AJ = A1 ⊕ A2 ⊕ L for
some uniserial modules A i, with d(A1) > 1, and L �= 0. Then no two composition
factors of A1 are isomorphic.

Proof. By (2.3), AJ/AJ2 is homogeneous. Suppose, A1 has two isomorphic
composition factors. Then for some s ≥ 1, A1/A1J ∼= A1J

s/A1J
s+1. Let B =

A/(A1J
s+1 + L). Then B contradicts (2.9)(ii).

Theorem 2.12. Let AR be a local module over a ring R satisfying (*) such
that AJ = C1 ⊕C2 ⊕ ....⊕Ct for some uniserial modules C i such that t ≥ 2, and
d(C1) ≥ 2. Let C1/C1J ∼= Ci/CiJ for some i > 1, then t = 2. If A is projective,
then C1

∼= C2

Proof. To start with, we take A = eR for some indecomposable idempotent
e. Suppose C1/C1J ∼= C2/C2J . So there exists an indecomposable idempotent
f ∈ R, such that for some u, v ∈ eJf , C1 = uR, C2 = vR. Then u, v ∈ eJf\J2.
As R is left serial, Rf = Ru = Rv. We get v = bu for some unit b in eRe,
C2 = bC1, d(C1) = d(C2). This contradicts (2.3)(iii) unless t = 2. By (2.6)(iv),
soc(C1) ∼= soc(C2), hence C1

∼= C2. In general, as A is a homomorphic image of
an eR, where e = e2 is indecomposable, the result follows.
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Theorem 2.13. Let AR be a local module such that AJ = C1 ⊕C2, where Ci

are uniserial, and C1J
k/C1J

k+1 ∼= C1J
l/C1J

l+1 �= 0, for some k < l.

(i) A/C1 has all its non-simple homomorphic images injective.
(ii) No two composition factors of C 2 are isomorphic.
(iii) No composition factor of C 2 is isomorphic to a composition factor of C 1.
(iv) A, A/C1 and A/C2 are all quasi-projective.

Proof. Let λ : eR → A give the projective cover of A. Then eJ = D1⊕D2⊕L,

where D1, D2 are uniserial and C1 = λ(D1). If L �= 0, by (2.11), D1has no two
composition factors isomorphic, which is a contradiction. Hence L = 0, and eJ =
D1 ⊕ D2. For some s ≥ 1, D1/D1J ∼= D1J

s/D1J
s+1. Thus eR/(D2 ⊕ D1J)

embeds in D1/D1J
s+1, therefore it is not injective. Consequently, by (2.6)(i),

eR/(D1 ⊕ D2J) is injective. Then, by (2.4)(ii), every non-simple homomorphic
image of eR/D1 is injective. If D2 has two isomorphic composition factors, the
interchange of the roles of D1, D2 will give that every non-simple homomorphic
image of eR/D2 is injective, in particular, eR/(D2 ⊕D1J) is injective, which is a
contradiction. Hence D2 has no two composition factors isomorphic.

Suppose eR/D2 is not quasi-projective. Then D2 is not invariant under the
R-endomorphisms of eR, consequently, there exists a non-zero homomorphism of
D2 into D1. Therefore D2/D2J ∼= D1J

v/D1J
v+1 for some v ≥ 0. If v > 0, we

get eR/D1 ⊕ D2J is not injective, which is a contradiction to (i) for eR. Hence
v = 0. Then eR/D2 ⊕ D1J is isomorphic to eR/D1 ⊕ D2J , so once again it is
injective, which is a contradiction. Hence eR/D2 is quasi-projective.

Suppose there exists an R-isomorphism σ : D1J
i/D1J

i+1 → D2J
j/D2J

j+1

for some i and j, with D1J
i �= 0. If j ≤ i, then D2/D2J ∼= D1J

u/D1J
u+1

for some u, and as in the above paragraph, we get a contradiction. Hence i < j.
Then D1J

s/D1J
s+1 ∼= D1/D1J ∼= D2J

u/D2J
u+1 for some u ≥ 1. Then eR/eJ

∼= D2J
u−1/D2J

u ∼= D1J
s−1/D1J

s. It follows that eR/eJ is isomorphic to the
top and bottom composition factors of eR/D2 ⊕ D1J

s, and to the top and bottom
composition factors of eR/D1⊕D2J

u . At the same time D2/D2J is isomorphic to
a composition factor of eR/D1⊕D2J

u. The periodicity of the composition factors
gives that D2/D2J is also isomorphic to a composition factor of eR/D2 ⊕ D1J

s.
Thus D2/D2J is either isomorphic to a composition factor of D1/D1J

s or it is
isomorphic to eR/eJ . In the former case, we get a contradiction to i < j, and in
the later case, every composition factor of eR/D1⊕D2J

u and of eR/D2⊕D1J
s is

isomorphic to eR/eJ , and therefore D1/D1J ∼= D2/D2J , which is a contradiction.
Hence D1 has no composition factor isomorphic to a composition factor of D2.
Hence C2 = λ(D2). It follows that any submodule of D1 ⊕ D2 is invariant under
any R-endomorphism of eR. Consequently, A, A/C1 and A/C2 are all quasi-
projective.
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Theorem 2.14. If a ring R satisfies (*), then there exist only finitely many
non-isomorphic, local right R-modules.

Proof. All indcomposabe finitely generated right R-modules are local. As R is
right artinian, there exists a bound on the composition lengths of the local modules
and on the number of possible semi-simple modules that occur as socles of the
local right R-modules. To prove the result it is enough to prove that given a triple
(SR, n, TR), where SR is simple, TR is semi-simple and n is a positive integer,
there do not exist more than two local modules AR such that S ∼= A/AJ , d(A) =
n and socle(A) ∼= T .

Fix a local module AR. Let BR be another local module such that A/AJ ∼=
B/BJ , d(A) = d(B) and socle(A) ∼= socle(B). If A is uniserial, then so is B,
and obviously AR

∼= BR. So we shall suppose that A is not uniserial. Now A, B

admit same projective cover, say eR.
Suppose AJ is semi-simple. Then BJ is also semi-simple. By (2.2)(v), A and

B are isomorphic.
Henceforth we shall suppose that AJ is not semi-simple. Then AJ = D1 ⊕

D2 ⊕ ....⊕Du, BJ = H1 ⊕H2 ⊕ ....⊕Hu and eJ = C1 ⊕C2 ⊕ ....⊕Ct for some
uniserial modules Di, Hj, Ck, with u ≤ t. We take d(D1) ≥ 2, d(H1) ≥ 2 and
D1 a homomorphic image of C1.

Suppose. t ≥ 3. Then all other Cj for j ≥ 2 are simple. As D1 and H1

have same composition length, and by (2.11), no two composition factors of C1 are
isomorphic, we get an isomorphicm σ : socle(D1) → socle(H1). Because of (2.1),
we can take σ such that it extends to an R-homomorphism λ : A → B. As in
(2.4)(iv), λ is an isomorphism. Hence AR

∼= BR.
Henceforth, we take t = 2. Then u = 2. It follows that A/(D1 ⊕ D2J) is

either isomorphic to eR/C1 ⊕C2J or to eR/C2 ⊕C1J . As socle(A) ∼= socle(B),
we take socle(Di) ∼= socle(Hi) for i = 1, 2. Suppose d(D1) = d(H1). By using
(2.1), we can suppose that there exists an R-homomorphsm λ : A → B such that
λ(socle(D1)) = socle(H1). If λ is not an isomorphism, then λ(A) is a uniserial
module contained in BJ such tha λ(A)∩H2 = 0, and d(λ(A)) > d(H1). Therefore
d(λ(A) + H2) > d(BJ), which is a contradiction. Hence AR

∼= BR.
Suppose d(D1) �= d(H1). Because of (2.6)(ii), we take D1 such that every

non-simple homomorphic image of A/D1 is injective. If d(D2) < d(H2), then as
socle(D2) ∼= socle(H2), A/D1 embeds in H2, so A/D1 is not injective, which
is a contradiction. Hence d(H2) < d(D2). Then B/H1 embeds in D2, therefore
B/H1 has no non-zero homomorphic image injective. Hence every non-simple
homomorphic image of B/H2 is injective. Therefore, A/D1 ⊕ D2J and B/H2 ⊕
H1J are isomorphic, that gives D2/D2J ∼= H1/H1J and D1/D1J ∼= H2/H2J .
Now d(D1) < d(H1), so D1 embeds in H1. Therefore D1/D1J is isomorphic to a
composition factor of H1. Thus D1/D1J is isomorphic to a composition factor of H1
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as well as of H2. Then by (2.13), no two composition factors of H1 are isomorphic
and no two composition factors of H2 are isomorphic. So there exists unique
positive integer t such that D1/D1J ∼= H1J

t/H1J
t+1. That gives D1

∼= H1J
t.

Thus d(D1) = d(H1) − t and d(D2) = d(H2) + t. Hence by the cases discussed
above, the result follows.

3. DECOMPOSITION THEOREM

Lemma 3.1. Let M be any right module over a ring R.
(i) Let L be a finitely generated submodule of M such that L is a summand of

any finitely generated submodule of M containing L. Let S < M be such
that S is finitely generated and in M = M/L, S is a summand of every
finitely generated submodule of M . Then L+S is a summand of any finitely
generated submodule of M containing L + S.

(ii) Let N � M such that N is finitely generated and is summand of any finitely
generated submodule of M containing N . Then NJ = MJ ∩ N.

(iii) If L is a finitely generated submodule of M such that it is a summand of
every finitely generated submodule of M containing L, then any summand K

of L is also a summand of any finitely generated submodule of M containing
K.

Proof.
(i) Let L + S � T , where T is a finitely generated submodule of M . Then T

= L ⊕ C , L + S = L ⊕ W for some C � M, W � M. Therefore S = W

and S � C in M = M/L. By the hypothesis, C = S ⊕ K for some K � M
containing L. Thus T = S + K = W + K and W ∩K ⊆ L. As K is finitely
generated, K = L⊕V for some V � K, T =(W +L)+V . Suppose for some
w ∈ W, x ∈ L, and v ∈ V , w + x = v. Then w ∈ W ∩ K ⊆ L, v ∈ L ∩ V
= 0. Hence (W + L)⊕ V = T =(S + L) ⊕ V .

(ii) Let x ∈ MJ ∩N . Then x =
∑
i
xiai for some finitely many xi ∈ M, ai ∈ J .

Set K =
∑
i
xiR + N . Then K is finitely generated, x ∈ KJ , K = N ⊕ P

for some P � K, and KJ = NJ ⊕ PJ . Hence x ∈ NJ.

(iii) Now L = K ⊕ S for some S � L. Suppose K � T, a finitely generated
submodule of M . Then T + S = L ⊕ V = K ⊕ (S ⊕ V ). This gives T =
K ⊕ W , where W = T ∩ (S ⊕ V ).

Definition 3.2. A module M is said to satisfy (�) if any finitely generated
submodule of any homomorphic image of M is a direct sum of local modules having
finite composition lengths.
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Lemma 3.3. Let MR be a module satisfying (�) and R be right artinian. Let
A = ⊕ ∑

α∈Λ

Aα � M such that, each Aα is finitely generated and for any finite

subset X of Λ, AX =
∑

α∈X

Aα is a summand of any finitely generated submodule

of M containing it. Let S be a local submodule of M such that S in M = M/A is
non-zero and is a summand of any finitely generated submodule of M containing
S.

(a) Let Γ be any finite subset of Λ such that S ∩ A = S ∩ C, where C = AΓ.
Then S in M/C is also a summand of any finitely generated submodule of
M/C containing S.

(b) There exists a local submodule S1 of M such that A ∩ S1 = 0, S1 = S in
M/A, and for any finite subset Γ of Λ, AΓ⊕S1 is a summand of any finitely
generated submodule of M containing it.

Proof.

(a) It follows from (3.1)(ii) that AJ = MJ ∩ A. Now S ∩ A = SJ ∩A = SJ ∩
(MJ ∩A) = S ∩AJ . As S is finitely generated, we get a finite subset Γof Λ
such that S∩A = S∩CJ, where C = AΓ. In M = M/C, let S be contained in
a finitely generated submodule T , with C � T . Then T is finitely generated.
Now A = C ⊕ D for some D � A. Consider T1 = T + D. In M/A, T1 =
T and S � T1. Therefore T1 = S ⊕ L for some A � L, S ∩ L = S ∩ A
= S ∩ CJ . We get T = S + (T ∩ L) with S ∩ (L ∩ T ) ⊆ CJ . This gives
(S + C) ∩ [(L ∩ T ) + C] = C + [(S + C) ∩ (L ∩ T )] = C, as C ⊆ L ∩ T .
Hence, S in M/C is a summand of T .

(b) Let Γ be a finite subset of Λ such that S ∩A = S ∩CJ , where C = AΓ. We
choose S to be of smallest composition length among those local submodules
S

′ for which S = S
′ . By the hypothesis, C + S = C ⊕ S1 for some local

submodule S1 of M . Then in M/A, S = S1 and d(S1) � d(S). That gives
d(S) = d(S1) and C + S = C ⊕ S. Hence A ∩ S = 0. Let X be any finite
subset of Λ. Now A ∩ S = AX ∩ S = 0. Let T be any finitely generated
submodule of M containing AX such that in M/AX , S ⊆ T , then by (a), S
is a summand of T . Now T = AX ⊕P for some P � T . In M/AX , S ⊆ P ,
P = S ⊕ Q for some Q � M containing AX . Therefore, T = S ⊕ Q , as
S ∩ Q ⊆ AX ∩ S = 0. But AX is also a summand of Q. Hence AX ⊕ S is
a summand of T . This proves the result.

Theorem 3.4. If a module MR satisfies satisfies (�), where R is right artinian,
then M is a direct sum of local modules. Any module over a ring R saisfying (*)
is a direct sum of local modules.
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Proof. Let xR be a local submodule of M of smallest composition length
such that xR � MJ . Let T be a finitely generated submodule of M containing

xR. Now T = ⊕
n∑

i=1
Ai for some local submodules Ai. Let πi : T → Ai be the

projections giving this decomposition of T . If for every i, either πi(xR) ⊆ AiJ or
Ai ⊆ MJ, then xR ⊆ MJ , which is a contradiction. Thus for some i, πi(xR) �
AiJ and Ai � MJ . Then πi(xR) = Ai, d(xiR) = Ai. Therefore πi maps xR

isomorphically onto Ai. Hence xR is a summand of T . Let F be the family of all
those local submodules of M that are summand of any finitely generated submodule
that contains them. Thus F is non-empty. A subfamily F

′ of F is said to satisfy
condition (S), if the sum of the members of F

′ is direct and the sum of any
finite subfamily of F

′ is a summand of any finitely generated submodule of M
containing that sum. The set of all such subfamilies is non-empty. Union of any
chain of subfamilies of F satisfying (S) satisfies (S). So, there exists a maximal
subfamily {Aα}α∈Λ of F satisfying (S). Thus {Aα}α∈Λ satisfies the hypothesis in
(3.3). Now N =

∑
α∈Λ

Aα = ⊕ ∑
α∈Λ

Aα. Suppose M �= N . Then as for M , M/N

has a local submodule B that is a summand of any finitely generated submodule of
M/N containing B. As seen in the proof of (3.3)(b), we can choose B such that
it is local, N ∩ B = 0 and the family {Aα}α∈Λ ∪ {B} satisfies (S), which is a
contradiction to the maximality of {Aα}α∈Λ. Hence M = N , a direct sum of local
submodules. As any module over a ring satisfying (*), satisfies (�), the second part
follows.

Theorem 3.5. Let R be a ring satisfying (*), and M be any right R-module.
Then any local submodule of MJ is uniserial and MJ is a direct sum of uniserial
submodules. R/r.ann(J) is a generalized uniserial ring.

Proof. Let T be a finitely generated submodule of MJ . Suppose T is not a
direct sum of uniserial submodules. So there exists a local submodule uR of T
that is not uniserial. There exists a finitely generated submodule K of M such that

T ⊆ KJ. Now K = ⊕
n∑

i=1
Ai for some local submodules Ai. Let πi : K → Ai be

the corresponding projections and Li = ker(πi | uR). As uR/Li embeds in AiJ ,
by (2.2), each uR/Li is uniserial. Therefore Li �= 0 for any i. However, ∩

i
Li = 0,

so we get, say L1, L2 such that L1 � L2 and L2 � L1. Let v = π1(u) + π2(u).
Then vR ∼= uR/(L1 ∩ L2), it is local but not uniserial. As π i(u)R ⊆ AiJ, by
[8, Lemma 2.7], πi(u)R is uniserial. For any local module AR, as AJ is a direct
sum of uniserial modules, any uniserial submodule wR of AJ embeds in a uniserial
summand of AJ . From this it follows that there exist two uniserial R-modules
Bi such that vR embeds in B1J ⊕ B2J , which contradicts (2.4)(i). Hence any
submodule of MJ is a direct sum of uniserial modules.
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Now R
′ = R/r.ann(J) embeds in a finite direct sum K of copies of JR. As

any local submodule of K is uniserial, R′ is right serial. As R′ is also left serial,
is a generalized uniserial ring.

4. SOME EXAMPLES

The following is easy to prove.

Lemma 4.1. Let A be a uniserial module over a generalized uniserial ring R,
such that no two composition factors of A are isomorphic. Then the module M =
A ⊕ A has the following properties.

(i) If L is any submodule of M , then L = L1 ⊕L2 and M = M1⊕M2 for some
uniserial modules L i, Mi such that Li ⊆ Mi.

(ii) If K < L ⊆ M such that K is maximal in L, then L = L 1 ⊕ L2, K =
K1 ⊕ L2 for some uniserial modules L i, K1 <

max
L1.

(iii) Let L = L1 ⊕L2 be a submodule of M such that L i are uniserial and d(L1)
= d(L2). Then K = L1 ⊕ L

′
1 is fully invariant in M .

Example A. Let F be a field admitting an endomorphism σ such that [F : σ(F )]
= 2. Consider matrix units {eij , 1 ≤ i ≤ j ≤ n} such that for i > 1, aeij = eija,
ae11 = e11a, e1ka = σ(a)e1k for any k > 1 and any a ∈ F. Let R be the set of all
upper triangular matrices over F . We write its members as

∑
i≤j

aijeij . Two member

of R are added componentwise, and multiplication is defined by using the above
specified laws for the matrix units. We also look at R as Tn(F ) the ring of n × n
upper triangular matrices over F . Using the fact that Tn(F ) is generalized uniserial,
we get that R is left serial. We see that for any 1 < k < n, a ∈ F, ae1k = e11(ae1k).
Hence the right ideal e11R is the set of all matrices in R, whose last n−1 rows are
zero rows. Now F = σ(F ) + uσ(F ), where u ∈ F\σ(F ). e11J = A ⊕ B, where
A, B are right ideals such that any member of A is of the form of

∑
k>1

σ(a1k)e1k,

and any member of B is of the form
∑
k>1

uσ(a1k)e1k. By comparing with the right

ideal
∑
j>1

e1jF in Tn(F ), we see that A and B are isomorphic uniserial right ideals

of R, such that they are quasi-injective and quasi-projective. They can be regarded
as modules over Tn(F ). No two composition factors of A are isomorphic. For
some submodules K, K

′ of e11J , consider M = e11R/K and N = e11R/K
′ . Let

L/K, L
′
/K

′ be simple submodules of M , N respectively and µ : L/K → L
′
/K

′

be an R-isomorphism. By (4.1), L = L1 ⊕ L2, K = K1 ⊕ L2, L
′ = L

′
1 ⊕ L

′
2,

K
′ = K

′
1 ⊕ L

′
2 for some unisrial modules Li, L

′
i, K1 <

max
L1and K

′
1 <

max
L

′
1. Let
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η : L1/K1 → L
′
1/K

′
1 be the R-isomorphism induced by µ. Write e11R = M1⊕M2 =

M
′
1⊕M

′
2where each Mi , M

′
i is uniserial, Li ⊆ Mi. and L

′
i ⊆ M

′
i . Then there exists

unique R- isomorphism λ : M1 → M
′
1 which induces η. Now soc(L1) = x1e1nF ,

soc(L
′
1) = x

′
1e1nF, for some x1, x′

1 ∈ F such that λ(x1e1n) = x
′
1e1n. Further

d(L1) = d(L2). Let soc(L2) = x2e1nF , soc(L
′
2) = x′

2e1nF, x2, x
′
2 ∈ F We can find

w ∈ F such that wx2 = x
′
2. Let λw be the R-automorphism of e11R given by left

multiplication by w. If λw extend λ, then λw lifts η. Otherwise, let λw(x1e1n) =
x

′
1e1na+x

′
2e1nb for some a, b ∈ F. If a = 0, then λw(soc(e11R)) = x

′
2e1nF which

is a contradiction. Hence a �= 0. Then φ the R-automorphism of e11R given by
left multiplication by wσ(a)−1 is such that φ(x1e1n) = x

′
1e1n + x

′
2e1nc for some

c ∈ F. Then φ lifts σ.
We verify the condition in (2.1) to prove that R satisfies (*). Let M , N be

any two local R-modules, and S be a simple submodule of M . Let φ : S → N
be an R-monomorphism. We can take M = errR/K, and N = essR/L for some
1 ≤ r, s ≤ n, K < errR, and L < essR. Now the case for r = s = 1, has been
discussed above. Notice that the last n − 1 rows of R constitute the ring R

′of
n − 1 × n − 1 upper triangular matrices over F , e11J being a direct sum of two
copies of the first row of R

′
, is injective as a right R

′-module. Using this it can be
verified that R satisfies the condition given in (2.1). Hence R satisfies (*) on the
right.

Example B. Let F be a field, R =
[

F F + Fx
0 F + Fx

]
, where x2 = 0. As

a left ideal, Je22 = Fxe22 + Fe12 + Fxe12 = C1 ⊕ C2, where C1 = Fe12, C2 =

Fxe22+Fxe12 = Rxe22, J2xe22 =
[

0 F + Fx
0 Fx

] [
0 F + Fx
0 Fx

]
=

[
0 Fx
0 0

]
∼= Re11

∼= C1. Observe that socle(Re22) = Fe12⊕Fxe12. As C2 is invariant under
all endomorphisms of Re22, Re22/C2 is quasi-projective. Also Re22/Fxe22 is
quasi-projective. Let M = Re22/C1 = Fxe12 + Fe22 + Fxe22. It is uniserial
and its proper submodules are C2 > B = Fxe12. Let σ be an endomorphism of
B. Suppose σ(xe12) = zxe12, z ∈ F. Then the R-endomorphism of M given by
multiplication by z extends σ. Similarly for C2, as any endomorphism of C2 is
given by multiplication by an elemeent of F.This gives M is quasi-injective. As
M contains a copy of Re11, M is Re11-injective. Let L be a left ideal properly
contained in Re22. If L = Fxe22 + Fxe12, then σ(xe22) = αxe22 for some α ∈ F

and σ is given by right multiplication by αe22 in M . If L = C1⊕C2, then σ(xe22) =
αxe22, σ(e12) = βxe12 for some α, β ∈ F , and σ is given by right multiplication by
(α + βx)e22. If L is any of Fxe12, Fe12, then L ∼= Re11, as M is Re11-injective,
σ is given by right multiplication by a member of M . if L = Fxe12 ⊕ Fe12 ,
then σ(e12) = αxe12 for some α ∈ F , and σ is given by right multiplication by
αxe22 . Hence M is Re22-injective. This proves that M is injective. Similarly, one
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can prove that any non-simple, uniserial, homomorphic image of Re22 is injective.
After this one can easily verify that R satisfies (*) on the left. Then the ring R

′

anti-isomorphic to R satisfies (*) on the right. Observe that in Je22 = C1 ⊕ C2,

C1
∼= JC2, but C1 � C2/JC2.

We are yet not aware of an example of a local module over a ring R satisfying
(*), for which t ≥ 3 as in (2.6).
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