TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 6, pp. 2261-2275, December 2010 This paper is available online at http://www.tjm.nsysu.edu.tw/

RINGS WITH INDECOMPOSABLE RIGHT MODULES LOCAL

Surjeet Singh

Abstract. Every indecomposable module over a generalized uniserial ring is uniserial, hence local. This motivates one to study rings R satisfying the condition (*): R is a right artinian ring such that every finitely generated, indecomposable right R-module is local. The rings R satisfying (*) have been recently studied by Singh and Al-Bleahed (2004), they have proved some results giving the structure of local right R-modules. In this paper some more structure theorems for local right R-modules are proved. Examples given in this paper show that a rich class of rings satisfying condition (*) can be constructed. Using these results, it is proved that any ring R satisfying (*) is such that mod-R is of finite representation type. It follows from a theorem by Ringel and Tachikawa that any right R-module is a direct sum of local modules. If M is right module over a right artinian ring such that any finitely generated submodule of any homomorphic image of M is a direct sum of local modules, it is proved that it is a direct sum of local modules. This provides an alternative proof for that any right module over a right artinian ring R satisfying (*) is a direct sum of local modules.

0. INTRODUCTION

It is well known that an artinian ring R is generalized uniserial if and only if every finitely generated indecomposable right R-module is uniserial. Every uniserial module is local. This motivated Tachikawa [10] to study a ring R satisfying the condition (*): R is a right artinian ring such that every finitely generated indecomposable right R-module is local. Consider the dual condition (**): R is left artinian such that every finitely generated indecomposable left R-module is uniform. If a ring R satisfies (*), it is proved by Tachikawa that R admits a finitely generated

Received June 28, 2007, accepted April 11, 2009.

Communicated by Wen-Fong Ke.

²⁰⁰⁰ Mathematics Subject Classification: 16G10, 16G70.

Key words and phrases: Left serial rings, Generalized uniserial rings, exceptional rings, Rings of finite representation type, *M*-injective modules and *M*-projective modules.

injective cogenerator Q_R , then $B = End(Q_R)$ satisfies (**). Tachikawa had studied a ring R satisfying (*) through the corresponding ring B, but he did not give structure of local right *R*-modules. Singh and Al-Bleahed [8] have studied rings Rsatisfying (*) without using the duality, and they have proved some structure theorems on local right R-modules. In section 2, structure of a local right R-modules is further investigated. By using these results it is proved in Theorem 2.14 that R is of finite representation type. In section 3, general right *R*-modules are investigated. It is well known that exceptional rings as defined by Dlab and Ringel (see [2] or [3]) are balanced ring, and any right module over an exceptional (1, 2)-ring is a direct sum of local modules. It follows from [2, Proposition 3] and also from [8, Theorem 2.13] that any exceptional (1, 2)-ring also satisfies (*). It follows from [9, Corollary 4.4]., that any right *R*-module is a direct sum of local modules. A direct proof of this result is given, by proving the following: If M is a right module over a right artinian ring, such that any finitely generated submodule of any homomorphic image of M is a direct sum of local modules, then M is a direct sum of local modules (Theorem 3.4). As there is no known duality that can tell that a ring R satisfies (*) if and only if it satisfies (**), it would be interesting to examine condition (**) by itself. In section 4, some examples illustrating various results are given.

1. PRELIMINARIES

All rings considered here are with identity $1 \neq 0$ and all modules are unital right modules unless otherwise stated. Let R be a ring and M be an R-module. J(M), E(M) and socle(M) denote radical, injective hull and socle of M respectively, however J(R) will be denoted by J. If R is right artinian, then J(M) = MJ. Further, $N \leq M$ denotes that N is a submodule of M. A ring R is called a *local* ring, if R/J is a division ring. Given two positive integers n, m, a ring R is called an (n.m)-ring if it is a local ring, $J^2 = 0$ and for D = R/J, $\dim_D J =$ n and dim $J_D = m$. Any (1,2) (or (2,1)) ring R is called an *exceptional ring* if E(R) (respectively $E(R_R)$) is of composition length 3 [4, p 446]. A module in which the lattice of submodules is linearly ordered under inclusion, is called a uniserial module, and module that is a direct sum of uniserial modules is called a serial module [5, Chapter V]. If for a ring R, $_RR(R_R)$ is serial, then R is called a left (right) serial ring. A ring that is local, both serial and artinian, is called a chain ring. A ring R is said to be of finite right representation type, if it admits only finitely many non-isomorphic indecomposable right *R*-modules [5, p 109]. If a module M has finite composition length, then d(M) denotes the composition length of M. For definitions of M-injective and M-projective modules one may refer to [1, p 184].

2. LOCAL MODULES

Consider the following condition on a ring R: (*) R is a right artinian ring such that any finitely generated indecomposable right R-module is local.

The following is proved in [8, Proposition 2.2]

Proposition 2.1. Let R be a right artinian ring. Then R satisfies (*) if and only if for any two non-simple local right R-modules A, B, simple submodules S, T of A, B respectively, and any R-isomorphism $\sigma : S \to T$, either σ or σ^{-1} extends to an R-homomorphism from A to B or from B to A respectively.

Proposition 2.2. ([8]). Let R be a ring satisfying (*).

- (i) Any uniform right R-module is uniserial.
- (*ii*) R is left serial.
- (iii) Let A, B be two uniserial right R-modules each of composition length at least three. Then $M = A \oplus B$ does not contain any local, non-uniserial submodule of composition length 3.
- (iv) Let C_1, C_2 be two uniserial R-modules such that for some $k \ge 2, C_1/C_1J^k \cong C_2/C_2J^k$, and C_1J^k , C_2J^k are non-zero, then $C_1/C_1J^{k+1} \cong C_2/C_2J^{k+1}$.
- (v) Let A_R , B_R be two local modules such that d(A) = d(B), $AJ^2 = 0 = BJ^2$. For any simple submodule S of A, any R-monomorphism $\sigma : S \to B$ extends to an R-isomorphism from A onto B.

For any local module A_R , AJ is a direct is a direct sum of uniserial modules [8, Lemma 2.7].

Theorem 2.3. ([8, Theorem 2.10]). Let R be a ring satisfying (*) and A_R be a local module such that $AJ = C_1 \oplus C_2 \oplus \cdots \oplus C_t$ for some uniserial modules C_i . Then the following hold.

- (i) Either all C_i/C_iJ are isomorphic or $t \leq 2$.
- (ii) Any local submodule of AJ is uniserial.
- (iii) If $d(C_1) \ge 2$, then either $t \le 2$ or any C_i is simple for $i \ge 2$.

Proposition 2.4. Let R be a ring satisfying (*).

- (i) Let A_1 and A_2 be any two uniserial right *R*-modules. Then $A_1J \oplus A_2J$ does not contain a submodule that is local but not uniserial.
- (ii) If a non-zero homomorphic image of a uniserial right R-module L is injective, then L is injective.
- (iii) Let A_R be a local module, and $AJ = C_1 \oplus D$, where C_1 is uniserial. Let σ be an R-endomorphism of A such that $\ker \sigma \cap C_1 = 0$, and σ is not an automorphism. Then $\sigma(A)$ is a uniserial module of composition length more than $d(C_1)$, A/D embeds in $\sigma(A)$ and no homomorphic image of A/D is injective. If a module B_R embeds in C_1 , then no non-zero homomorphic image of B is injective.

(iv) Let A_R be a local module, and $AJ = C_1 \oplus C_2 \oplus ... \oplus C_t$ for some uniserial submodules C_i . Let $s = max\{d(C_i) : 1 \le i \le t\}$. Then for any simple submodule S of A, and any uniserial submodule B of A of composition length s, any R-homomorphism $\sigma : S \to B$ extends to an R-endomorphism of A; if in addition S is contained in a uniserial submodule of composition length s, then σ is an automorphism.

Proof.

- (i) On the contrary suppose that A₁J ⊕ A₂J contains a non-uniserial local submodule uR. Then u = u₁ + u₂, 0 ≠ u_i ∈ A_iJ, and uJ is a direct sum of two non-zero uniserial submodules. As A_i are uniserial, without loss of generality we take u_iR = A_iJ. Then uJ² = A₁J³ ⊕ A₂J³. This gives that (A₁ ⊕ A₂)/uJ² = B₁ ⊕ B₂ for some uniserial modules with d(B_i) ≥ 3. But uR/uJ² is local, non-uniserial of composition length 3, and it embeds in B₁ ⊕ B₂. This contradicts (2.2)(iii). Hence A₁J ⊕ A₂J does not contain a non-uniserial, local submodule
- (ii) It is immediate from the fact that any uniform right *R*-module is uniserial.
- (iii) By (2.3)(ii), $\sigma(A)$ is uniserial. As $B = ker\sigma$ embeds in D, it is immediate that $d(\sigma(A)) \ge d(A/D) = d(C_1) + 1$. As $B \cap C_1 = 0$, C_1 embeds in $\sigma(A)$. Also, C_1 embeds in A/D, it also follows that A/D embeds in $\sigma(A)$. As $\sigma(A)$ is not injective, by (ii) no homomorphic image of A/D is injective. The last part also follows from (ii)
- (iv) Let C = socle(B) and $\sigma : S \to B$ be an *R*-homomorphism. Suppose the contrary. As every uniserial *R*-module is quasi-injective, $t \ge 2$, $d(A) \ge s+2$ and *AJ* contains no uniserial submodule of composition length more than *s*. By (2.1), $\sigma^{-1} : C \to S$ extends to an *R*-endomorphism λ of *A*. Then λ is not an automorphism, and $\lambda(A) \subseteq AJ$. As λ is one-to-one on *B*, we get $d(\lambda(A)) \ge s + 1$. But by (2.3)(ii), $\lambda(A)$ is uniserial, so we have a contradiction. The last part again follows from (2.3)(ii).

(2.1) gives the following.

Proposition 2.5. Let a ring R satisfy (*). Let A_R , B_R be two local, modules such that A is B-projective and B is A-projective. Let $A_1 < A_2 < A$, $B_1 < B_2 < B$ be such that A_2/A_1 is simple and there exists an R-isomorphism $\sigma : A_2/A_1 \rightarrow B_2/B_1$. Then either there exists an R-homomorphism λ of $A \rightarrow B$ inducing σ or there exists an R-homomorphism $\lambda : B \rightarrow A$ inducing σ^{-1} .

Henceforth, throughout this section R is a ring satisfying (*).

Lemma 2.6. Let A_R be a local module.

2264

- (i) If $AJ = C_1 \oplus C_2$, where C_i are minimal submodules, then either A/C_1 or A/C_2 is injective.
- (ii) If $AJ = C_1 \oplus C_2$, where C_i are uniserial, then either A/C_1 or A/C_2 is such that its every non-simple homomorphic image is injective.
- (iii) Suppose $AJ = C_1 \oplus C_2 \oplus ... \oplus C_t$ such that each C_i is uniserial and $t \ge 3$. For each $1 \le i \le t$, let L_i be the direct sum of all C_j with $j \ne i$. Then every non-simple homomorphic image of any A/L_i is injective.
- (iv) Let $AJ = C_1 \oplus C_2 \oplus D$ with C_1 and C_2 both uniserial. Suppose for some $k, l, C_1 J^k / C_1 J^{k+1}$ and $C_2 J^l / C_2 J^{l+1}$ are isomorphic, and for some $u \ge 1$, $C_1 J^{k+u} \ne 0 \ne C_2 J^{l+u}$, then $C_1 J^{k+u} / C_1 J^{k+u+1}$ and $C_2 J^{l+u} / C_2 J^{l+u+1}$ are isomorphic.

Proof.

- (i) If none of A/C_i is injective, then A embeds in $E(A/C_1)J \oplus E(A/C_2)J$, which contradicts (2.4)(i). This proves (i).
- (ii) By applying (i) to A/AJ^2 and by using Proposition (2.4)(ii), it follows.
- (iii) For $t \ge 3$, as all C_i/C_iJ are isomorphic by (2.3), the result follows from (i).
- (iv) It is enough to prove the result for u = 1. Suppose that $C_1 J^{k+1}/C_1 J^{k+2}$ and $C_2 J^{l+1}/C_2 J^{l+2}$ are not isomorphic. For some indecomposable idempotent $e \in R$, $C_1 J^k/C_1 J^{k+2}$ and $C_2 J^l/C_1 J^{l+2}$ both are homomorphic images of eR. This gives a local, non-uniserial module B_R of composition length 3 with $BJ = L_1 \oplus L_2$ such that $B/L_1 \cong C_1 J^k/C_1 J^{k+2}$ and $B/L_2 \cong C_2 J^l/C_1 J^{l+2}$. Let $\overline{A} = A/(C_1 J^{k+2} \oplus C_2 J^{l+2})$. Then B embeds in the radical of the direct sum of $\overline{A}/\overline{C_1} \oplus \overline{D}$ and $\overline{A}/\overline{C_2} \oplus \overline{D}$, which is a contradiction to (2.4)(i). This proves the result.

Lemma 2.7. Let A_R be a local module and B_R any module. For some $C \leq B$, let $\sigma : A \to B/C$ be an *R*-homomorphism.

- (i) There exists a local submodule D of $A \times B$ such that D = (a, b)R with aR = A and $\sigma(a) = b + C$. If D is uniserial and $d(B) \leq d(A)$, then σ can be lifted to some R-homomorphism $\eta : A \to B$
- (ii) If $A \times B$ does not contain a local submodule D_1 with $d(D_1) > d(A)$, then A is B-projective.
- (iii) If $A \times B$ has no non-uniserial local submodule and $d(B) \leq d(A)$, then A is *B*-projective.

Proof. (i) Let $N = \{(x, y) \in A \times B : \sigma(x) = y + C\}$. Let $\pi : A \times B \to A$ be the natural projection. Then $\pi(N) = A$. There exists a local submodule D of N such that $\pi(D) = A$. Clearly D = (a, b)R with A = aR and $\sigma(a) = b + C$. Now

 $d(D) \ge d(A)$. Suppose d(D) = d(A). Then $D \cong A$ and $\eta : A \to B$ given by $\eta(ar) = br$ lifts σ . In case D is uniserial and $d(B) \le d(A)$, then $D \cong A$, so once again σ can be lifted. After this (ii) is immediate. Under the hypothesis in (iii), the hypothesis in (ii) holds, so A is B-projective.

Lemma 2.8. Let A_R and B_R be two uniserial modules and $\sigma : A \to B/C$ be an *R*-epimorphism for some C < B.

- (i) If A is not injective and $d(B) \leq d(A)$, then either B is injective or σ can be lifted to some R-homomorphism $\eta : A \to B$.
- (ii) If $d(B) \leq d(A)$ and neither A nor B is injective, then A is B-projective.
- (iii) Any uniserial right *R*-module is either injective or quasi-projective.
- (iv) Let C = socle(A), and $C < D \le A$ with D/C a simple module. If $C \cong D/C$, then all the composition factors of A are isomorphic

Proof. By Lemma 2.7, there exists a local submodule $D = (a, b)R \subseteq A \times B$ such that A = aR and $\sigma(a) = b + C$. Suppose $d(B) \leq d(A)$. If D is uniserial, it follows from (2.7)(i) that σ lifts to an R-homomorphism $\eta : A \to B$. Suppose D is not uniserial. Then $DJ = C_1 \oplus C_2$ for some non-zero uniserial submodules C_i . Let π_A and π_B be the natural projections of $A \times B$ onto A and B respectively. Then for one of the C_i say C_1 , $\pi_A(C_1) = AJ$. But $\pi_B(C_1) \subseteq BJ$ and $d(B) \leq d(A)$, it follows that C_1 is isomorphic to AJ under π_A . Therefore $AJ \times BJ = C_1 \oplus (0 \times BJ)$, $DJ = C_1 \oplus (DJ \cap (0 \times BJ))$ and $C_2 \cong DJ \cap (0 \times BJ)$. Suppose that neither Anor B is injective, then $D \subseteq E(A)J \oplus E(B)J$, therefore by (2.4), D is uniserial. Then, by using (2.7)(i), we get A is B-projective. From this (i), (ii) and (iii) follow. (iv) is immediate from the fact that the injective hull of A is uniserial.

Lemma 2.9. Let A_R be a local module such that $AJ = A_1 \oplus A_2$ for some uniserial submodules A_i and there exists an R-isomorphism σ : $soc(A_1) \rightarrow soc(A_2)$. Let there exists an R-endomorphism μ of A that extends σ . Let M_i be the maximal submodule of A_i . Then:

- (i) $d(A_1) \leq d(A_2)$, A/A_1 is injective and $A/M_2 \oplus A_1$ is injective.
- (ii) If $d(A_1) < d(A_2)$, then A/A_2 is quasi-projective, $A/(M_1 \oplus A_2)$ is not injective and $A/(M_2 \oplus A_1)$ is injective.
- (iii) If $d(A_1) = d(A_2)$, then $A/M_2 \oplus A_1 \cong A/M_1 \oplus A_2$ and both are injective.
- (iv) If $A_1/A_1J \cong A_2/A_2J$, then $A_1 \cong A_2$.

Proof. Suppose $f : eR \to A$ is the projective cover of A. We take A = eR/B and $A_i = C_i/B$ for some right ideals $B < C_i < eR$. Suppose there exists

an *R*-endomorphism μ of *A* that extends σ . We can find an *R*-endomorphism λ of eR that lifts μ . Then $\lambda(B) \subseteq B$, $\lambda(socle(C_1)) + B = socle(C_2) + B \notin C_1 + B$. Hence C_1 is not invariant under the endomorphisms of eR, eR/C_1 is not quasiprojective, therefore A/A_1 being isomorphic to eR/C_1 , is not quasiprojective. By (2.8)(iii), A/A_1 is injective. As $\mu(A_1) \cong A_1$ and $\mu(A_1) \cap A_1 = 0$, it follows that $d(A_1) \leq d(A_2)$ and A_1 embeds in A_2 . Let $M_i < A_i$. Suppose $d(A_1) < d(A_2)$, it follows that A/A_2 is isomorphic to a submodule A_2 , and hence $A/(A_2 \oplus M_1)$ is not injective. Therefore by (2.6)(i), $A/(A_1 \oplus M_2)$ is injective. As A/A_2 is not injective, by (2.8)(iii), it is quasi-projective. If $d(A_1) = d(A_2)$, then the isomorphism σ gives that $A/A_1 \oplus M_2$ and $A/A_2 \oplus M_1$ are isomorphic, so once again, by (2.6)(i), both are injective. The hypothesis in (iv) gives that $A/(M_2 \oplus A_1) \cong A/(M_1 \oplus A_2)$, so they are injective by (i). By (ii), $d(A_1) = d(A_2)$. Hence $A_1 \cong A_2$.

Theorem 2.10. Let R be a local ring satisfying (*). If $J^2 \neq 0$, then R is a chain ring.

Proof. By (2.2), R is a left serial ring. If R is not right serial, we get a local, right R-module A such that $AJ = C_1 \oplus C_2$ with each C_i uniserial, $d(C_1) = 2$, $d(C_2) = 1$. As every composition factor of A is isomorphic to R/J, it contradicts (2.9)(iv). Hence R is a chain ring.

Lemma 2.11. Let A_R be a local module such that $AJ = A_1 \oplus A_2 \oplus L$ for some uniserial modules A_i , with $d(A_1) > 1$, and $L \neq 0$. Then no two composition factors of A_1 are isomorphic.

Proof. By (2.3), AJ/AJ^2 is homogeneous. Suppose, A_1 has two isomorphic composition factors. Then for some $s \ge 1$, $A_1/A_1J \cong A_1J^s/A_1J^{s+1}$. Let $B = A/(A_1J^{s+1} + L)$. Then B contradicts (2.9)(ii).

Theorem 2.12. Let A_R be a local module over a ring R satisfying (*) such that $AJ = C_1 \oplus C_2 \oplus \oplus C_t$ for some uniserial modules C_i such that $t \ge 2$, and $d(C_1) \ge 2$. Let $C_1/C_1J \cong C_i/C_iJ$ for some i > 1, then t = 2. If A is projective, then $C_1 \cong C_2$

Proof. To start with, we take A = eR for some indecomposable idempotent e. Suppose $C_1/C_1J \cong C_2/C_2J$. So there exists an indecomposable idempotent $f \in R$, such that for some $u, v \in eJf, C_1 = uR, C_2 = vR$. Then $u, v \in eJf \setminus J^2$. As R is left serial, Rf = Ru = Rv. We get v = bu for some unit b in eRe, $C_2 = bC_1, d(C_1) = d(C_2)$. This contradicts (2.3)(iii) unless t = 2. By (2.6)(iv), $soc(C_1) \cong soc(C_2)$, hence $C_1 \cong C_2$. In general, as A is a homomorphic image of an eR, where $e = e^2$ is indecomposable, the result follows.

Theorem 2.13. Let A_R be a local module such that $AJ = C_1 \oplus C_2$, where C_i are uniserial, and $C_1 J^k / C_1 J^{k+1} \cong C_1 J^l / C_1 J^{l+1} \neq 0$, for some k < l.

- (i) A/C_1 has all its non-simple homomorphic images injective.
- (ii) No two composition factors of C_2 are isomorphic.
- (iii) No composition factor of C_2 is isomorphic to a composition factor of C_1 .
- (iv) A, A/C_1 and A/C_2 are all quasi-projective.

Proof. Let $\lambda : eR \to A$ give the projective cover of A. Then $eJ = D_1 \oplus D_2 \oplus L$, where D_1 , D_2 are uniserial and $C_1 = \lambda(D_1)$. If $L \neq 0$, by (2.11), D_1 has no two composition factors isomorphic, which is a contradiction. Hence L = 0, and $eJ = D_1 \oplus D_2$. For some $s \geq 1$, $D_1/D_1J \cong D_1J^s/D_1J^{s+1}$. Thus $eR/(D_2 \oplus D_1J)$ embeds in D_1/D_1J^{s+1} , therefore it is not injective. Consequently, by (2.6)(i), $eR/(D_1 \oplus D_2J)$ is injective. Then, by (2.4)(ii), every non-simple homomorphic image of eR/D_1 is injective. If D_2 has two isomorphic composition factors, the interchange of the roles of D_1 , D_2 will give that every non-simple homomorphic image of eR/D_2 is injective, in particular, $eR/(D_2 \oplus D_1J)$ is injective, which is a contradiction. Hence D_2 has no two composition factors isomorphic.

Suppose eR/D_2 is not quasi-projective. Then D_2 is not invariant under the R-endomorphisms of eR, consequently, there exists a non-zero homomorphism of D_2 into D_1 . Therefore $D_2/D_2J \cong D_1J^v/D_1J^{v+1}$ for some $v \ge 0$. If v > 0, we get $eR/D_1 \oplus D_2J$ is not injective, which is a contradiction to (i) for eR. Hence v = 0. Then $eR/D_2 \oplus D_1J$ is isomorphic to $eR/D_1 \oplus D_2J$, so once again it is injective, which is a contradiction. Hence eR/D_2 is quasi-projective.

Suppose there exists an R-isomorphism $\sigma: D_1J^i/D_1J^{i+1} \to D_2J^j/D_2J^{j+1}$ for some i and j, with $D_1J^i \neq 0$. If $j \leq i$, then $D_2/D_2J \cong D_1J^u/D_1J^{u+1}$ for some u, and as in the above paragraph, we get a contradiction. Hence i < j. Then $D_1J^s/D_1J^{s+1} \cong D_1/D_1J \cong D_2J^u/D_2J^{u+1}$ for some $u \ge 1$. Then eR/eJ $\cong D_2 J^{u-1}/D_2 J^u \cong D_1 J^{s-1}/D_1 J^s$. It follows that eR/eJ is isomorphic to the top and bottom composition factors of $eR/D_2 \oplus D_1J^s$, and to the top and bottom composition factors of $eR/D_1 \oplus D_2 J^u$. At the same time $D_2/D_2 J$ is isomorphic to a composition factor of $eR/D_1 \oplus D_2 J^u$. The periodicity of the composition factors gives that D_2/D_2J is also isomorphic to a composition factor of $eR/D_2 \oplus D_1J^s$. Thus D_2/D_2J is either isomorphic to a composition factor of D_1/D_1J^s or it is isomorphic to eR/eJ. In the former case, we get a contradiction to i < j, and in the later case, every composition factor of $eR/D_1\oplus D_2J^u$ and of $eR/D_2\oplus D_1J^s$ is isomorphic to eR/eJ, and therefore $D_1/D_1J \cong D_2/D_2J$, which is a contradiction. Hence D_1 has no composition factor isomorphic to a composition factor of D_2 . Hence $C_2 = \lambda(D_2)$. It follows that any submodule of $D_1 \oplus D_2$ is invariant under any R-endomorphism of eR. Consequently, A, A/C_1 and A/C_2 are all quasiprojective.

Theorem 2.14. If a ring R satisfies (*), then there exist only finitely many non-isomorphic, local right R-modules.

Proof. All indcomposable finitely generated right *R*-modules are local. As *R* is right artinian, there exists a bound on the composition lengths of the local modules and on the number of possible semi-simple modules that occur as socles of the local right *R*-modules. To prove the result it is enough to prove that given a triple (S_R, n, T_R) , where S_R is simple, T_R is semi-simple and *n* is a positive integer, there do not exist more than two local modules A_R such that $S \cong A/AJ$, d(A) = n and $socle(A) \cong T$.

Fix a local module A_R . Let B_R be another local module such that $A/AJ \cong B/BJ$, d(A) = d(B) and $socle(A) \cong socle(B)$. If A is uniserial, then so is B, and obviously $A_R \cong B_R$. So we shall suppose that A is not uniserial. Now A, B admit same projective cover, say eR.

Suppose AJ is semi-simple. Then BJ is also semi-simple. By (2.2)(v), A and B are isomorphic.

Henceforth we shall suppose that AJ is not semi-simple. Then $AJ = D_1 \oplus D_2 \oplus \ldots \oplus D_u$, $BJ = H_1 \oplus H_2 \oplus \ldots \oplus H_u$ and $eJ = C_1 \oplus C_2 \oplus \ldots \oplus C_t$ for some uniserial modules D_i , H_j , C_k , with $u \leq t$. We take $d(D_1) \geq 2$, $d(H_1) \geq 2$ and D_1 a homomorphic image of C_1 .

Suppose. $t \ge 3$. Then all other C_j for $j \ge 2$ are simple. As D_1 and H_1 have same composition length, and by (2.11), no two composition factors of C_1 are isomorphic, we get an isomorphicm $\sigma : socle(D_1) \rightarrow socle(H_1)$. Because of (2.1), we can take σ such that it extends to an *R*-homomorphism $\lambda : A \rightarrow B$. As in (2.4)(iv), λ is an isomorphism. Hence $A_R \cong B_R$.

Henceforth, we take t = 2. Then u = 2. It follows that $A/(D_1 \oplus D_2 J)$ is either isomorphic to $eR/C_1 \oplus C_2 J$ or to $eR/C_2 \oplus C_1 J$. As $socle(A) \cong socle(B)$, we take $socle(D_i) \cong socle(H_i)$ for i = 1, 2. Suppose $d(D_1) = d(H_1)$. By using (2.1), we can suppose that there exists an *R*-homomorphism $\lambda : A \to B$ such that $\lambda(socle(D_1)) = socle(H_1)$. If λ is not an isomorphism, then $\lambda(A)$ is a uniserial module contained in BJ such tha $\lambda(A) \cap H_2 = 0$, and $d(\lambda(A)) > d(H_1)$. Therefore $d(\lambda(A) + H_2) > d(BJ)$, which is a contradiction. Hence $A_R \cong B_R$.

Suppose $d(D_1) \neq d(H_1)$. Because of (2.6)(ii), we take D_1 such that every non-simple homomorphic image of A/D_1 is injective. If $d(D_2) < d(H_2)$, then as $socle(D_2) \cong socle(H_2), A/D_1$ embeds in H_2 , so A/D_1 is not injective, which is a contradiction. Hence $d(H_2) < d(D_2)$. Then B/H_1 embeds in D_2 , therefore B/H_1 has no non-zero homomorphic image injective. Hence every non-simple homomorphic image of B/H_2 is injective. Therefore, $A/D_1 \oplus D_2J$ and $B/H_2 \oplus$ H_1J are isomorphic, that gives $D_2/D_2J \cong H_1/H_1J$ and $D_1/D_1J \cong H_2/H_2J$. Now $d(D_1) < d(H_1)$, so D_1 embeds in H_1 . Therefore D_1/D_1J is isomorphic to a composition factor of H_1 . Thus D_1/D_1J is isomorphic to a composition factor of H_1

as well as of H_2 . Then by (2.13), no two composition factors of H_1 are isomorphic and no two composition factors of H_2 are isomorphic. So there exists unique positive integer t such that $D_1/D_1J \cong H_1J^t/H_1J^{t+1}$. That gives $D_1 \cong H_1J^t$. Thus $d(D_1) = d(H_1) - t$ and $d(D_2) = d(H_2) + t$. Hence by the cases discussed above, the result follows.

3. DECOMPOSITION THEOREM

Lemma 3.1. Let M be any right module over a ring R.

- (i) Let L be a finitely generated submodule of M such that L is a summand of any finitely generated submodule of M containing L. Let S < M be such that S is finitely generated and in $\overline{M} = M/L$, \overline{S} is a summand of every finitely generated submodule of \overline{M} . Then L+S is a summand of any finitely generated submodule of M containing L + S.
- (ii) Let $N \leq M$ such that N is finitely generated and is summand of any finitely generated submodule of M containing N. Then $NJ = MJ \cap N$.
- (iii) If L is a finitely generated submodule of M such that it is a summand of every finitely generated submodule of M containing L, then any summand K of L is also a summand of any finitely generated submodule of M containing K.

Proof.

- (i) Let $L + S \leq T$, where T is a finitely generated submodule of M. Then $T = L \oplus C$, $L + S = L \oplus W$ for some $C \leq M, W \leq M$. Therefore $\overline{S} = \overline{W}$ and $\overline{S} \leq \overline{C}$ in $\overline{M} = M/L$. By the hypothesis, $\overline{C} = \overline{S} \oplus \overline{K}$ for some $K \leq M$ containing L. Thus T = S + K = W + K and $W \cap K \subseteq L$. As K is finitely generated, $K = L \oplus V$ for some $V \leq K$, T = (W + L) + V. Suppose for some $w \in W, x \in L$, and $v \in V$, w + x = v. Then $w \in W \cap K \subseteq L$, $v \in L \cap V = 0$. Hence $(W + L) \oplus V = T = (S + L) \oplus V$.
- (ii) Let $x \in MJ \cap N$. Then $x = \sum_{i} x_i a_i$ for some finitely many $x_i \in M$, $a_i \in J$. Set $K = \sum_{i} x_i R + N$. Then K is finitely generated, $x \in KJ$, $K = N \oplus P$ for some $P \leq K$, and $KJ = NJ \oplus PJ$. Hence $x \in NJ$.
- (iii) Now $L = K \oplus S$ for some $S \leq L$. Suppose $K \leq T$, a finitely generated submodule of M. Then $T + S = L \oplus V = K \oplus (S \oplus V)$. This gives $T = K \oplus W$, where $W = T \cap (S \oplus V)$.

Definition 3.2. A module M is said to satisfy (\diamond) if any finitely generated submodule of any homomorphic image of M is a direct sum of local modules having finite composition lengths.

Lemma 3.3. Let M_R be a module satisfying (\diamond) and R be right artinian. Let $A = \bigoplus_{\alpha \in \Lambda} A_\alpha \leqslant M$ such that, each A_α is finitely generated and for any finite subset X of Λ , $A_X = \sum_{\alpha \in X} A_\alpha$ is a summand of any finitely generated submodule of M containing it. Let S be a local submodule of M such that \overline{S} in $\overline{M} = M/A$ is non-zero and is a summand of any finitely generated submodule of \overline{M} containing \overline{S} .

- (a) Let Γ be any finite subset of Λ such that $S \cap A = S \cap C$, where $C = A_{\Gamma}$. Then \overline{S} in M/C is also a summand of any finitely generated submodule of M/C containing \overline{S} .
- (b) There exists a local submodule S_1 of M such that $A \cap S_1 = 0$, $\overline{S_1} = \overline{S}$ in M/A, and for any finite subset Γ of Λ , $A_{\Gamma} \oplus S_1$ is a summand of any finitely generated submodule of M containing it.

Proof.

- (a) It follows from (3.1)(ii) that $AJ = MJ \cap A$. Now $S \cap A = SJ \cap A = SJ \cap (MJ \cap A) = S \cap AJ$. As S is finitely generated, we get a finite subset Γ of Λ such that $S \cap A = S \cap CJ$, where $C = A_{\Gamma}$. In $\overline{M} = M/C$, let \overline{S} be contained in a finitely generated submodule \overline{T} , with $C \leq T$. Then T is finitely generated. Now $A = C \oplus D$ for some $D \leq A$. Consider $T_1 = T + D$. In M/A, $\overline{T_1} = \overline{T}$ and $\overline{S} \leq \overline{T_1}$. Therefore $\overline{T_1} = \overline{S} \oplus \overline{L}$ for some $A \leq L$, $S \cap L = S \cap A = S \cap CJ$. We get $T = S + (T \cap L)$ with $S \cap (L \cap T) \subseteq CJ$. This gives $(S + C) \cap [(L \cap T) + C] = C + [(S + C) \cap (L \cap T)] = C$, as $C \subseteq L \cap T$. Hence, \overline{S} in M/C is a summand of \overline{T} .
- (b) Let Γ be a finite subset of Λ such that $S \cap A = S \cap CJ$, where $C = A_{\Gamma}$. We choose S to be of smallest composition length among those local submodules S' for which $\overline{S} = \overline{S'}$. By the hypothesis, $C + S = C \oplus S_1$ for some local submodule S_1 of M. Then in M/A, $\overline{S} = \overline{S_1}$ and $d(S_1) \leq d(S)$. That gives $d(S) = d(S_1)$ and $C + S = C \oplus S$. Hence $A \cap S = 0$. Let X be any finite subset of Λ . Now $A \cap S = A_X \cap S = 0$. Let T be any finitely generated submodule of M containing A_X such that in M/A_X , $\overline{S} \subseteq \overline{T}$, then by (a), \overline{S} is a summand of \overline{T} . Now $T = A_X \oplus P$ for some $P \leq T$. In M/A_X , $\overline{S} \subseteq \overline{P}$, $\overline{P} = \overline{S} \oplus \overline{Q}$ for some $Q \leq M$ containing A_X . Therefore, $T = S \oplus Q$, as $S \cap Q \subseteq A_X \cap S = 0$. But A_X is also a summand of Q. Hence $A_X \oplus S$ is a summand of T. This proves the result.

Theorem 3.4. If a module M_R satisfies satisfies (\diamond) , where R is right artinian, then M is a direct sum of local modules. Any module over a ring R satisfying (*) is a direct sum of local modules.

Proof. Let xR be a local submodule of M of smallest composition length such that $xR \not\subseteq MJ$. Let T be a finitely generated submodule of M containing *xR.* Now $T = \bigoplus \sum_{i=1}^{n} A_i$ for some local submodules A_i . Let $\pi_i : T \to A_i$ be the projections giving this decomposition of T. If for every i, either $\pi_i(xR) \subseteq A_i J$ or $A_i \subseteq MJ$, then $xR \subseteq MJ$, which is a contradiction. Thus for some $i, \pi_i(xR) \notin I$ $A_i J$ and $A_i \not\subseteq M J$. Then $\pi_i(xR) = A_i$, $d(x_iR) = A_i$. Therefore π_i maps xRisomorphically onto A_i . Hence xR is a summand of T. Let F be the family of all those local submodules of M that are summand of any finitely generated submodule that contains them. Thus F is non-empty. A subfamily F' of F is said to satisfy condition (S), if the sum of the members of F' is direct and the sum of any finite subfamily of F' is a summand of any finitely generated submodule of M containing that sum. The set of all such subfamilies is non-empty. Union of any chain of subfamilies of F satisfying (S) satisfies (S). So, there exists a maximal subfamily $\{A_{\alpha}\}_{\alpha \in \Lambda}$ of F satisfying (S). Thus $\{A_{\alpha}\}_{\alpha \in \Lambda}$ satisfies the hypothesis in (3.3). Now $N = \sum_{\alpha \in \Lambda} A_{\alpha} = \bigoplus_{\alpha \in \Lambda} A_{\alpha}$. Suppose $M \neq N$. Then as for M, M/Nhas a local submodule \overline{B} that is a summand of any finitely generated submodule of M/N containing \overline{B} . As seen in the proof of (3.3)(b), we can choose B such that it is local, $N \cap B = 0$ and the family $\{A_{\alpha}\}_{\alpha \in \Lambda} \cup \{B\}$ satisfies (S), which is a contradiction to the maximality of $\{A_{\alpha}\}_{\alpha \in \Lambda}$. Hence M = N, a direct sum of local

Theorem 3.5. Let R be a ring satisfying (*), and M be any right R-module. Then any local submodule of MJ is uniserial and MJ is a direct sum of uniserial submodules. R/r.ann(J) is a generalized uniserial ring.

submodules. As any module over a ring satisfying (*), satisfies (\diamond) , the second part

Proof. Let T be a finitely generated submodule of MJ. Suppose T is not a direct sum of uniserial submodules. So there exists a local submodule uR of T that is not uniserial. There exists a finitely generated submodule K of M such that $T \subseteq KJ$. Now $K = \bigoplus_{i=1}^{n} A_i$ for some local submodules A_i . Let $\pi_i : K \to A_i$ be the corresponding projections and $L_i = ker(\pi_i \mid uR)$. As uR/L_i embeds in A_iJ , by (2.2), each uR/L_i is uniserial. Therefore $L_i \neq 0$ for any i. However, $\bigcap_i L_i = 0$, so we get, say L_1 , L_2 such that $L_1 \not\subseteq L_2$ and $L_2 \not\subseteq L_1$. Let $v = \pi_1(u) + \pi_2(u)$. Then $vR \cong uR/(L_1 \cap L_2)$, it is local but not uniserial. As $\pi_i(u)R \subseteq A_iJ$, by [8, Lemma 2.7], $\pi_i(u)R$ is uniserial. For any local module A_R , as AJ is a direct sum of uniserial modules, any uniserial submodule wR of AJ embeds in a uniserial submodule K of MJ is a direct sum of MJ is a direct sum of uniserial modules in $B_1J \oplus B_2J$, which contradicts (2.4)(i). Hence any submodule of MJ is a direct sum of uniserial modules in $B_1J \oplus B_2J$.

follows.

Now R' = R/r.ann(J) embeds in a finite direct sum K of copies of J_R . As any local submodule of K is uniserial, R' is right serial. As R' is also left serial, is a generalized uniserial ring.

4. Some Examples

The following is easy to prove.

Lemma 4.1. Let A be a uniserial module over a generalized uniserial ring R, such that no two composition factors of A are isomorphic. Then the module $M = A \oplus A$ has the following properties.

- (i) If L is any submodule of M, then $L = L_1 \oplus L_2$ and $M = M_1 \oplus M_2$ for some uniserial modules L_i , M_i such that $L_i \subseteq M_i$.
- (ii) If $K < L \subseteq M$ such that K is maximal in L, then $L = L_1 \oplus L_2$, $K = K_1 \oplus L_2$ for some uniserial modules L_i , $K_1 < L_1$.
- (iii) Let $L = L_1 \oplus L_2$ be a submodule of M such that L_i are uniserial and $d(L_1) = d(L_2)$. Then $K = L_1 \oplus L'_1$ is fully invariant in M.

Example A. Let F be a field admitting an endomorphism σ such that $[F : \sigma(F)]$ = 2. Consider matrix units $\{e_{ij}, 1 \leq i \leq j \leq n\}$ such that for i > 1, $ae_{ij} = e_{ij}a$, $ae_{11} = e_{11}a$, $e_{1k}a = \sigma(a)e_{1k}$ for any k > 1 and any $a \in F$. Let R be the set of all upper triangular matrices over F. We write its members as $\sum_{i \leq j} a_{ij} e_{ij}$. Two member of R are added componentwise, and multiplication is defined by using the above specified laws for the matrix units. We also look at R as $T_n(F)$ the ring of $n \times n$ upper triangular matrices over F. Using the fact that $T_n(F)$ is generalized uniserial, we get that R is left serial. We see that for any 1 < k < n, $a \in F$, $ae_{1k} = e_{11}(ae_{1k})$. Hence the right ideal $e_{11}R$ is the set of all matrices in R, whose last n-1 rows are zero rows. Now $F = \sigma(F) + u\sigma(F)$, where $u \in F \setminus \sigma(F)$. $e_{11}J = A \oplus B$, where A, B are right ideals such that any member of A is of the form of $\sum_{k>1} \sigma(a_{1k})e_{1k}$, and any member of B is of the form $\sum_{k>1} u\sigma(a_{1k})e_{1k}$. By comparing with the right ideal $\sum_{j>1} e_{1j}F$ in $T_n(F)$, we see that A and B are isomorphic uniserial right ideals of R, such that they are quasi-injective and quasi-projective. They can be regarded as modules over $T_n(F)$. No two composition factors of A are isomorphic. For some submodules K, K' of $e_{11}J$, consider $M = e_{11}R/K$ and $N = e_{11}R/K'$. Let L/K, L'/K' be simple submodules of M, N respectively and $\mu: L/K \to L'/K'$ be an *R*-isomorphism. By (4.1), $L = L_1 \oplus L_2$, $K = K_1 \oplus L_2$, $L' = L'_1 \oplus L'_2$, $K' = K'_1 \oplus L'_2$ for some unisrial modules L_i , L'_i , $K_1 \underset{\text{max}}{<} L_1$ and $K'_1 \underset{\text{max}}{<} L'_1$. Let

$$\begin{split} &\eta: L_1/K_1 \to L_1'/K_1' \text{ be the } R\text{-isomorphism induced by } \mu. \text{ Write } e_{11}R = M_1 \oplus M_2 = \\ &M_1' \oplus M_2' \text{ where each } M_i \text{ , } M_i' \text{ is uniserial, } L_i \subseteq M_i \text{ , and } L_i' \subseteq M_i'. \text{ Then there exists unique } R\text{-} \text{ isomorphism } \lambda: M_1 \to M_1' \text{ which induces } \eta. \text{ Now } soc(L_1) = x_1e_{1n}F, \\ &soc(L_1') = x_1'e_{1n}F, \text{ for some } x_1, x_1' \in F \text{ such that } \lambda(x_1e_{1n}) = x_1'e_{1n}. \text{ Further } \\ &d(L_1) = d(L_2). \text{ Let } soc(L_2) = x_2e_{1n}F, soc(L_2') = x_2'e_{1n}F, x_2, x_2' \in F \text{ We can find } \\ &w \in F \text{ such that } wx_2 = x_2'. \text{ Let } \lambda_w \text{ be the } R\text{-automorphism of } e_{11}R \text{ given by left } \\ & \text{multiplication by } w. \text{ If } \lambda_w \text{ extend } \lambda, \text{ then } \lambda_w \text{ lifts } \eta. \text{ Otherwise, let } \lambda_w(x_1e_{1n}) = \\ &x_1'e_{1n}a + x_2'e_{1n}b \text{ for some } a, b \in F. \text{ If } a = 0, \text{ then } \lambda_w(soc(e_{11}R)) = x_2'e_{1n}F \text{ which } \\ & \text{ is a contradiction. Hence } a \neq 0. \text{ Then } \phi \text{ the } R\text{-automorphism of } e_{11}R \text{ given by } \\ & \text{left multiplication by } w\sigma(a)^{-1} \text{ is such that } \phi(x_1e_{1n}) = x_1'e_{1n} + x_2'e_{1n}c \text{ for some } \\ & c \in F. \text{ Then } \phi \text{ lifts } \sigma. \end{split}$$

We verify the condition in (2.1) to prove that R satisfies (*). Let M, N be any two local R-modules, and S be a simple submodule of M. Let $\phi : S \to N$ be an R-monomorphism. We can take $M = e_{rr}R/K$, and $N = e_{ss}R/L$ for some $1 \le r, s \le n, K < e_{rr}R$, and $L < e_{ss}R$. Now the case for r = s = 1, has been discussed above. Notice that the last n - 1 rows of R constitute the ring R' of $n - 1 \times n - 1$ upper triangular matrices over F, $e_{11}J$ being a direct sum of two copies of the first row of R', is injective as a right R'-module. Using this it can be verified that R satisfies the condition given in (2.1). Hence R satisfies (*) on the right.

Example B. Let F be a field, $R = \begin{bmatrix} F & F + Fx \\ 0 & F + Fx \end{bmatrix}$, where $x^2 = 0$. As a left ideal, $Je_{22} = Fxe_{22} + Fe_{12} + Fxe_{12} = C_1 \oplus C_2$, where $C_1 = Fe_{12}, C_2 = Fxe_{22} + Fxe_{12} = Rxe_{22}, J^2xe_{22} = \begin{bmatrix} 0 & F + Fx \\ 0 & Fx \end{bmatrix} \begin{bmatrix} 0 & F + Fx \\ 0 & Fx \end{bmatrix} = \begin{bmatrix} 0 & Fx \\ 0 & 0 \end{bmatrix} \cong Re_{11} \cong C_1$. Observe that $socle(Re_{22}) = Fe_{12} \oplus Fxe_{12}$. As C_2 is invariant under all endomorphisms of $Re_{22}, Re_{22}/C_2$ is quasi-projective. Also Re_{22}/Fxe_{22} is quasi-projective. Let $M = Re_{22}/C_1 = Fxe_{12} + Fe_{22} + Fxe_{22}$. It is uniserial and its proper submodules are $\overline{C_2} > B = Fxe_{12}$. Let σ be an endomorphism of B. Suppose $\sigma(\overline{xe_{12}}) = \overline{zxe_{12}}, z \in F$. Then the R-endomorphism of M given by multiplication by z extends σ . Similarly for $\overline{C_2}$, as any endomorphism of $\overline{C_2}$ is given by multiplication by an element of F. This gives M is quasi-injective. As M contains a copy of Re_{11} , M is Re_{11} -injective. Let L be a left ideal properly contained in Re_{22} . If $L = Fxe_{22} + Fxe_{12}$ in M. If $L = C_1 \oplus C_2$, then $\sigma(xe_{22}) = \overline{axe_{22}}, \sigma(e_{12}) = \overline{\beta xe_{12}}$ for some $\alpha, \beta \in F$, and σ is given by right multiplication by a member of M. if $L = Fxe_{12} \oplus Fe_{12}$, then $\sigma(e_{12}) = \overline{\alpha xe_{12}}$ for some $\alpha \in F$, and σ is given by right multiplication by a member of M. if $L = Fxe_{12} \oplus Fe_{12}$, then $\sigma(e_{12}) = \overline{\alpha xe_{12}}$ for some $\alpha \in F$, and σ is given by right multiplication by a member of M. if $L = Fxe_{12} \oplus Fe_{12}$, then $\sigma(e_{12}) = \overline{\alpha xe_{12}}$ for some $\alpha \in F$, and σ is given by right multiplication by a member of M. if $L = Fxe_{12} \oplus Fe_{12}$, then $\sigma(e_{12}) = \overline{\alpha xe_{12}}$ for some $\alpha \in F$, and σ is given by right multiplication by a member of M. If $L = Fxe_{12} \oplus Fe_{12}$, then $\sigma(e_{12}) = \overline{\alpha xe_{12}}$ for some $\alpha \in F$, and σ is given by right multiplication by a member of M. If $L = Fxe_{12} \oplus Fe_{12}$, then $\sigma(e_{12}) = \overline{\alpha xe_{12}}$ for some $\alpha \in F$, and σ is given

can prove that any non-simple, uniserial, homomorphic image of Re_{22} is injective. After this one can easily verify that R satisfies (*) on the left. Then the ring R' anti-isomorphic to R satisfies (*) on the right. Observe that in $Je_{22} = C_1 \oplus C_2$, $C_1 \cong JC_2$, but $C_1 \ncong C_2/JC_2$.

We are yet not aware of an example of a local module over a ring R satisfying (*), for which $t \ge 3$ as in (2.6).

References

- 1. F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Graduate Texts in Mathematics 13, Springer Verlag, 1974.
- V. Dlab and C. M. Ringel, A class of balanced non-uniserial rings. *Math. Ann.*, 195 (1972), 279-291.
- 3. V. Dlab and C. M. Ringel, Decomposition of modules over right artinian right uniserial rings, *Math. Z.*, **129** (1972), 207-230.
- V. Dlab and C. M. Ringel, The structure of balanced rings, Proc. London Math. Soc., 26(3) (1973), 446-462.
- C. Faith, *Algebra II, Ring Theory*, Grundlehren der mathematichen Wissenschaften 191, Springer Verlag, 1976.
- 6. I. Ivanov, Left generalized uniserial rings, J. Algebra, 31 (1974), 166-181.
- I. Murase, On structure of generalized uniserial rings, I, II, III, Sci. Papers College Gen. Ed. Univ. Toyko, 13 (1963), 1-22, 131-158, and 14 (1964), 11-25.
- S. Singh and H. Al-Bleahed, Rings with indecomposable modules local, *Beiträge zur* Alg. Geom., 45 (2004), 239-251.
- 9. C. M. Ringel and H. Tachikawa, QF-3 rings, J. Reine und Angewandte Math., 272 (1975), 49-72.
- 10. H. Tachikawa, On rings for which every indecomposable right module has a unique maximal submodules, *Math. Z.*, **71** (1959), 200-222.

Surjeet Singh House No. 424, Sector No. 35 A, Chandigarh-160036, India E-mail: ossinghpal@yahoo.co.in