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HAYMAN T DIRECTIONS OF MEROMORPHIC FUNCTIONS

Zheng Jian-Hua and Wu Nan

Abstract. In this paper, we prove the existence of Hayman T directions of
meromorphic functions. To achieve our purpose, we establish a fundamental
inequality about the Ahlfors-Shimizu characteristic for an angle and explain
that the inequality is best possible in terms of the existence of Julia directions
and Hayman T directions.

1. INTRODUCTION AND RESULTS

We mean by a transcendental meromorphic function a function meromorphic on
the whole complex plane which is not a rational function, in other words, ∞ is an
essential singular point. We assume the reader is familiar with the Nevanlinna theory
of meromorphic functions and basic notations such as Nevanlinna characteristic
T (r, f), integrated counting function N (r, f) and proximity function m(r, f). In
this paper, we discuss the argument distribution of transcendental meromorphic
functions. It is one of the main subjects in the theory of value distribution. In
argument distribution, we consider the problem of whether a result which holds in the
complex plane is still true in an angular domain. Corresponding to Picard’s theorem
in the complex plane is the Julia direction (a ray from the origin to infinity), that is,
in arbitrary angular domain containing the direction, the Picard’s theorem still holds.
The existence of Julia directions was first proved by G. Julia in 1919. Since the
work of G. Julia, the argument distribution has developed approximately one century.
And G. Valiron proved in 1928 the existence of Borel directions which corresponds
to Borel’s theorem. According to the Picard type theorem produced by the Hayman
inequality dealing with derivatives, every transcendental meromorphic function takes
every value infinitely often or its derivative of each order takes every non-zero value
infinitely often. Yang Lo in [14] introduced a singular direction named Hayman
direction. A direction is called a Hayman direction of a meromorphic function if in
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every angular domain containing the direction the Picard type theorem of Hayman
still holds for the function. Yang [14] gave out a growth condition for the existence
of a Hayman direction: if a transcendental meromorphic function satisfies

(1.1) lim sup
r−→∞

T (r, f)
(log r)3

= ∞,

then f(z) has at least one Hayman direction. However, it is well-known that a
sufficient condition for the existence of a Julia direction is

(1.2) lim sup
r−→∞

T (r, f)
(log r)2

= ∞

and it is sharp. Actually, Ostrowski [11] proved that the function

f(z) =
∞∏

n=0

(
qn − z

qn + z

)
for a fixed number q > 1 has no Julia direction, while (1.2) does not hold. The
following problem was proposed by D. Drasin in 1984 which was collected in [1]
(See also Problem 11 in Yang [15]):

Drasin’s Problem. Does a transcendental meromorphic function have a Hay-
man direction if it satisfies (1.2)?

A proof of Drasin’s Problem seems to be given by Zhu [20], but we think the
proof is incomplete, which we shall explain in the next section. Actually, this has
been pointed out by Fenton and Rossi [6]. Chen [2] obtained a refined result which
stated that if f(z) satisfies (1.1), then f(z) has a Hayman direction arg z = θ such
that for arbitrary small ε > 0, any positive integer k and any complex numbers a
and b �= 0, we have

(1.3) lim sup
r→∞

n(r, Zε(θ), f = a) + n(r, Zε(θ), f (k) = b)
(log r)2

= ∞.

Here and throughout the paper we denote by Zε(θ) the angle {z : | arg z − θ| < ε}
and by n(r, Zε(θ), f = a) the number of the roots of f(z) = a in Zε(θ)∩{|z| < r}
counted according to multiplicity. The estimation given in (1.3) for the numbers
of roots of f(z) = a and f(k)(z) = b in Zε(θ) ∩ {|z| < r} is best possible under
the condition (1.1). However, if (log r)3 in (1.1) is replaced with (log r)4, then the
best estimation should be (1.3) with (log r)2 replaced by (log r)3. In this paper,
we come to seek an unified expression for the above considerations, which will be
realized in terms of Hayman T directions.
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In order to make our statement clear, let us begin with some basic notation.
Given an angle Ω = {z : α ≤ arg z ≤ β}, let f(z) be a meromorphic function in
Ω. Define

N (r, Ω, f = a) =
∫ r

1

n(t, Ω, f = a)
t

dt

where n(t, Ω, f = a) is the number of the roots of f(z) = a in Ω ∩ {1 < |z| < t}
counted according to multiplicity.

In view of the second fundamental theorem of Nevanlinna, the first author in
[19] introduced a new singular direction, which is named T direction. The reason
about the name is we use the Nevanlinna’s characteristic T (r, f) of the meromrophic
function as comparison body. A direction arg z = θ is called a T direction of a
meromorphic function f(z) if for arbitrary small ε > 0, we have

(1.4) lim sup
r−→∞

N (r, Zε(θ), f = a)
T (r, f)

> 0

for all but at most two values of a in the extended complex plane Ĉ. It is proved in
[7] and [17] that a meromorphic function f(z) has at least one T direction, if f(z)
satisfies (1.2). According to the Hayman inequality (see [8]) on the estimation of
T (r, f) in terms of only two integrated counting functions for the roots of f(z) = a

and f (k)(z) = b with b �= 0, we proposed in [7] a singular direction named Hayman
T direction as follows.

Definition 1.1. Let f(z) be a transcendental meromorphic function. A direction
arg z = θ is called a Hayman T direction of f(z) if for arbitrary small ε > 0, any
positive integer k and any complex numbers a and b �= 0, we have

(1.5) lim sup
r−→∞

N (r, Zε(θ), f = a) + N (r, Zε(θ), f (k) = b)
T (r, f)

> 0.

The purpose of this paper is to discuss the existence of Hayman T directions.
The following is our main result.

Theorem 1.1. Let f(z) be a transcendental meromorphic function satisfying
(1.1). Then f(z) has a Hayman T direction which is a T direction as well.

We also establish the following result which is an improvement of other known
results about the Hayman directions.

Theorem 1.2. Let f(z) be a transcendental meromorphic function satisfying
(1.1). Then for any sequence of positive numbers {rn} such that

lim sup
n→∞

T (rn, f)
(log rn)3

= ∞,
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f(z) has a ray arg z = θ such that for arbitrary small ε > 0 and for all but at
most two values of c ∈ Ĉ, we have

(1.6) lim sup
n−→∞

N (2rn, Zε(θ), f = c)
T (rn, f)

> 0

and for any positive integer k and any complex numbers a and b �= 0, we have

(1.7) lim sup
n−→∞

N (2rn, Zε(θ), f = a) + N (2rn, Zε(θ), f (k) = b)
T (rn, f)

> 0.

From the definition of the integrated counting function for an angle it follows
that

N (r, Zε(θ), ∗) ≤ n(r, Zε(θ), ∗) log r

for r > 1 and then Chen’s result mentioned above is a direct consequence of
Theorem 1.2. For a transcendental meromorphic function with finite positive order
λ, Yang and Zhang [16] proved that each Borel direction of the function is a
Hayman direction of order λ. We easily also obtain Yang and Zhang’s result in
view of Theorem 1.2. Likewise, we can consider the case of infinite order from
Theorem 1.2. Actually, Theorem 1.2 gives an unified expression for results about
singular directions related to the Hayman inequality, as we mentioned previously.

Finally, we propose a problem of Drasin’s type:
Does a transcendental meromorphic function have a Hayman T direction, if it

satisfies (1.2)?

2. PROOFS OF THEOREM 1.2 AND THEOREM 1.1

First of all we establish a fundamental inequality on the estimation of the
Ahlfors-Shimizu characteristic in terms of the integrated counting functions for
the roots of f(z) = a and f(k)(z) = b in an angle. The inequality is of inde-
pendent significance. We know that the difference between the characteristics of
Ahlfors-Shimizu and Nevanlinna in the complex plane is bounded. Hence the Hay-
man inequality is still true for Ahlfors-Shimizu characteristic in the complex plane.
However the case of an angular domain is not simple. Notice that Ahlfors’ theory of
covering surfaces does not deal with the derivatives of covering mappings. There-
fore, the inequality for Ahlfors-Shimizu characteristic in an angle does not seem to
be directly able to result from the theory. Recall the definition of Ahlfors-Shimizu
characteristic in an angle (see [13]). Let f(z) be a meromorphic function on an
angle Ω = {z : α ≤ arg z ≤ β}. Set Ω(r) = Ω ∩ {z : 1 < |z| < r}. Define

S(r, Ω, f) =
1
π

∫ ∫
Ω(r)

(
|f ′(z)|

1 + |f(z)|2

)2

dσ
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and
T (r, Ω, f) =

∫ r

1

S(t, Ω, f)
t

dt.

There are several basic formulae which are used often in the sequel:

(2.1) S(r, Ω, f) =
1
π

∫ ∫
|z|≤∞

n(r, Ω, f = z)dω(z),

(2.2)
1
π

∫ ∫
|z|≤∞

dω(z) = 1 and
1
π

∫ ∫
|z|≤∞

log
1

|x, z|dω(z) =
1
2

where dω(z) is the area element on the Riemann sphere and |x, z| is the chordal
distance between x and z.

We need the following result due to Chen and Guo [4] which essentially comes
from the Hayman inequality and the estimation of primary values appeared in the
inequality.

Lemma 2.1. Let f(z) be meromorphic in |z| < R and let

N = n(R, f = a) + n(R, f (k) = b)

for two complex numbers a and b with b �= 0. Then there exists a point z 0, |z0| < R
8

such that for any c ∈ Ĉ, we have

(2.3) n

(
R

256
, f = c

)
< Ck{N + 1 + logR + log

1
|f(z0), c|

},

where Ck is a positive constant depending only on k.

Lemma 2.1 can be obtained by applying Lemma 8 of Chen and Guo [4] to the
function (bRk)−1(f(Rz)− a) in the unit disk.

In view of Lemma 2.1, we establish the following

Theorem 2.3. Let f(z) be meromorphic in an angle Ω = {z : α ≤ arg z ≤ β}
Then for arbitrary small ε > 0, any positive integer k and any two complex numbers
a and b �= 0, we have

(2.4) T (r, Ωε, f) ≤ K{N (2r, Ω, f = a) + N (2r, Ω, f (k) = b)}+ O((log r)3)

for a positive constant K depending only on k, where Ω ε = {z : α + ε < arg z <

β − ε}.

Proof. For r > 1, we use finitely many disks An to cover the sector Ωε(r)
such that the disks Bn produced by enlarging An 256 times are in Ω(2r). We may
require that the number of An is O(log r) and the overlap number of Bn over a
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point does not exceed an absolute positive constant. Certainly, the radius of Bn

does not exceed 2r. Applying Lemma 2.1 to Bn, for each n we have

n(An, f =c)<Ck

{
n(Bn, f =a)+n(Bn, f (k)=b)+1+log(2r)+log

1
|f(zn), c|

}
for all c ∈ Ĉ and some zn ∈ Bn. Then it is easy to see that

n(r, Ωε, f = c) ≤
∑
n

n(An, f = c)

≤ Ck

∑
n

{n(Bn, f = a) + n(Bn, f (k) = b) + 1 + log(2r) + log
1

|f(zn), c|}

≤ K{n(2r, Ω, f = a) + n(2r, Ω, f (k) = b)}+ O(log r)2 + Ck

∑
n

log
1

|f(zn), c|.

Integrating in c over Ĉ both sides of the above inequality, in view of (2.1) and (2.2),
we have

S(r, Ωε, f) ≤ K{n(2r, Ω, f = a) + n(2r, Ω, f (k) = b)}+ O((log r)2).

Noticing that the above inequality holds for all r > 1, we divide by r and then
integrate both sides of it from 1 to r. In view of the inequality∫ r

1

n(2r, Ω, ∗)
r

dr =
∫ 2r

2

n(r, Ω, ∗)
r

dr ≤ N (2r, Ω, ∗),

we obtain the desired inequality (2.4). Theorem 2.3 follows.
We claim that generally, the term O((log r)3) in (2.4) cannot be replaced by a

quantity φ(r) such that lim infr→∞ φ(r)(log r)−3 = 0. Let us prove that. Consider
the function

g(z) =
∞∏

n=0

(
e
√

n − z

e
√

n + z

)
.

Rossi [12] proved that T (r, g) = (1/3 + o(1))(log r)3 and g(z) has exactly two
Julia directions (the positive and negative imaginary axes arg z = ±π

2 ) and these two
directions, however, are not Julia directions of g′(z). Since g(z) does not take zero
and infinity in any small angular domains containing them, these two Julia directions
of g(z) are not Hayman directions and then g(z) has no Julia directions which are
Hayman directions. In [18] we have pointed out that g(z) has T directions exactly
on the rays arg z = ±π

2 and then g(z) has no T directions which are Hayman T

directions.
Suppose that there exists a φ(r) with lim infr→∞ φ(r)(log r)−3 = 0 such that

(2.4) holds for g(z) with φ(r) in place of O(log r)3. Then we can find an unbounded
sequence of positive numbers {rn} such that φ(rn) = o(T (rn, g)). As we do in the
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proof of Theorem 1.1 below, accordingly we can prove that g(z) has a T direction
which is a Hayman T direction. A contradiction is derived and then the desired
claim follows.

From Rossi’s example, it is easy to see that the proof of Drasin’s Problem given
by Zhu [20] is incomplete. From the proof we know that the Hayman direction he
found is also a Julia direction. As we mentioned as above, under (1.2) the func-
tion under consideration may have no Hayman direction which is a Julia direction.
Actually, in Zhu’s proof, three points αv(v = 1, 2, 3) he chose for application of
Ahlfors theory of covering surfaces depend on |zk| which tends to ∞ as k goes to
∞. Therefore, h in the proof is not an absolute constant and actually it relies on
|zk|. Hence, Drasin’s Problem is still open.

In view of the same argument as above, we can assert that the term ”O(log r)3”
in (2.4) cannot be reduced either even if we add one more integrated counting
function for points of other value. Therefore, the inequality in Lemma 5 of [10]
is incorrect. Actually, the derivative of f of k order in the proof of the inequality
should be the derivative of composition of f and rj+1e

iθ0ζ(w).
To prove Theorem 1.2, we need a result of Tsuji, that is, Theorem VII.3 of [13].

Lemma 2.2. Let f(z) be meromorphic in an angular domain Ω. Then for
arbitrary small ε > 0 and three distinct points a j (j = 1, 2, 3) on Ĉ, we have

(2.5) T (r, Ωε, f) ≤ 3
3∑

j=1

N (2r, Ω, f = aj) + O((log r)2)

for r > 1.
Now we are in position to prove Theorem 1.2.

Proof of Theorem 1.2. Since the difference between the Nevanlinna and Ahlfors-
Shimizu characteristics on the whole complex plane is bounded, it is easy to see
that there exists a ray arg z = θ such that

(2.6) lim sup
n→∞

T (rn, Zε/2(θ), f)
T (rn, f)

> 0

for arbitrary small ε > 0. Thus it follows from (2.5) that (1.6) holds and from (2.4)
that (1.7) holds. The proof of Theorem 1.2 is completed.

In order to treat the case when the function is of infinite order in the proof of
Theorem 1.1, we need the following two results.

Lemma 2.3. Let f(z) be a transcendental meromorphic function and let a
and b �= 0 be two complex numbers. Then for an angle Ω and ε > 0, we have

(2.7) T (r, Ωε, f) ≤ K

(
N (r, Ω) + rω

∫ r

1

N (t, Ω)
tω+1

dt + rω log(rT (r, f))
)
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for r �∈ E , where E is a subset of the positive real axis with linear measure at most
two which only depends on T (r, f), N (r, Ω) = N (r, Ω, f = a)+N (r, Ω, f (k) = b),
ω = π

β−α and K is a positive constant.

Lemma 2.3 follows from Theorem 2.4.7, the Hayman inequality (2.2.10) for
Nevanlinna characteristic for an angle and Lemma 2.2.2 in Zheng [17]. The fol-
lowing is Lemma 1.1.3 of Zheng [17].

Lemma 2.4. Let T (r) be an increasing and non-negative function with infinite
order and F be a set of positive real numbers having finite logarithmic measure.
Then given a sequence {sn} of positive real numbers, there exist an unbounded
sequence {rn} of positive real numbers outside F such that

(2.8)
T (t)
tsn

≤ e
T (rn)
rsn
n

, 1 ≤ t ≤ rn.

Proof of Theorem 1.1. We need to treat three cases.

Case I. The order λ(f) = 0. Set W = {r > 0 : T (2r, f) ≤ 2T (r, f)}, and in
view of Lemma 4 of Hayman [9], we have log densW = 1. We choose a sequence
{rn} of positive numbers such that (log rn)3 = o(T (rn, f)). A simple calculation
implies that for all sufficiently large n, W

⋂
(rn, r2

n) �= ∅, and hence we can take a
r′n ∈ W

⋂
(rn, r2

n). Thus we have T (2r′nf) ≤ 2T (r′n, f) and

(log r′n)3 ≤ 8(log rn)3 = o(T (rn, f)) = o(T (r′n, f))

and equivalently (log r′n)3 = o(T (r′n, f)). In view of Theorem 1.2 for {r′n}, we
have a ray which is a T direction as well as a Hayman T direction.

Case II. The order λ(f) > 0 and the lower order µ(f) < ∞. In view of a
result of Edrei [5], we can find a sequence {rn} of Polya peaks such that for some
σ > 0,

T (2rn, f) ≤ 2σT (rn, f) and lim
n→∞

log T (rn, f)
log rn

≥ σ > 0.

Applying Theorem 1.2 implies that there exists a ray arg z = θ such that (1.6) and
(1.7) hold with T (rn, f) replaced by T (2rn, f). Then the ray arg z = θ is a T
direction as well as a Hayman T direction of f(z).

Case III. The lower order µ(f) = ∞. In view of Lemma 2.4, we have a
sequence {rn} of positive numbers outside E as in Lemma 2.3 such that (2.8) holds
for a sequence {sn} of positive numbers tending to ∞. For the sequence {rn},
there exists a ray arg z = θ such that (2.6) holds for arbitrarily small ε > 0. In
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view of Theorem 3.1.1 of [17], the ray arg z = θ is a T direction of f(z). Now
we prove that the ray is also a Hayman T direction.

Suppose that the ray arg z = θ is not a Hayman T direction and then for some
ε0 > 0 and two complex numbers a and b �= 0, we have

N (r, Zε0(θ)) = N (r, Zε0(θ), f = a) + N (r, Zε0(θ), f
(k) = b) = o(T (r, f)).

We shall use the inequality (2.7) for Zε0(θ) to derive a contradiction. For each n
with sn > ω = π

2ε0
, in view of (2.8) we have∫ rn

1

N (t, Zε0(θ))
tω+1

dt = o

(∫ rn

1

T (t, f)
tω+1

dt

)
= o

(
e
T (rn, f)

rsn
n

∫ rn

1
tsn−ω−1dt

)
= o

(
e

sn − ω

T (rn, f)
rω
n

)
= o

(
T (rn, f)

rω
n

)
.

Then applying the inequality (2.7) for Zε0(θ) yields

T (rn, Zε0/2(θ)) ≤ o(T (rn, f)) + O(rω
n log(rnT (rn, f))).

Since T (rn, f) ≥ e−1rsn
n T (1, f), we have O(rn

ω log rnT (rn, f)) = o(T (rn, f))
and then we obtain T (rn, Zε0/2(θ)) = o(T (rn, f)). This contradicts (2.6) for
Zε0/2(θ) and {rn}.

Thus we complete the proof of Theorem 1.1.
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