ON THE MAXIMAL ASYMPTOTICS FOR LINEAR DIFFERENTIAL EQUATIONS IN BANACH SPACES

G. M. Sklyar

Abstract

The work develops the approach proposed in 1982 by the author and V.Ya. Shirman for analysis of asymptotic stability of a linear differential equation in Banach space. It is shown that the method introduced in the mentioned above work allows also to prove the nonexistence of the fastest growing solution for a wide class of linear equations.

1. Introduction

One of important results of last decades in the asymptotic semigroups theory [$3,9,12$] is the following theorem on asymptotic stability:

Theorem 1. Consider a linear differential equation in Banach space X

$$
\begin{equation*}
\dot{x}=A x, \tag{1}
\end{equation*}
$$

where A is the generator of a C_{0}-semigroup $\left\{e^{A t}\right\}, t \geq 0$, under assumptions that the set $\sigma(A) \cap(i \mathbb{R})$ is at most countable and for some $C>0$: $\left\|e^{A t} x\right\| \leq C\|x\|$, $t \geq 0, x \in X$. Then equation (1) is asymptotically stable, i.e. $\left\|e^{A t} x\right\| \rightarrow 0$ as $t \rightarrow+\infty$ for any $x \in X$, if and only if the adjoint operator A^{*} has no pure imaginary eigenvalues.

Statement of this theorem and its proof in the case of a bounded operator A were given in 1982 by Sklyar and Shirman [13]. We considered it as a development of the remarkable B. Sz.-Nagy and C. Foias theorem (see [14], p. 102):

Let a complete nonunitary contraction T be given in a Hilbert space H and let

$$
\operatorname{mes}\left(\sigma(\mathrm{T}) \cap \mathrm{S}_{0}(1)\right)=0,
$$

Received March 29, 2009, accepted April 6, 2009.
Communicated by Aram Arutyunov.
2000 Mathematics Subject Classification: 34E99, 47D03, 47D06.
Key words and phrases: Maximal asymptotics, C_{0}-semigroups, Asymptotic stability, Linear differential equations in Banach spaces.
where $S_{0}(1)=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and $\operatorname{mes}(\cdot)$ is a Lebesgue measure on $S_{0}(1)$. Then for each $x \in H$ we have

$$
\lim _{n \rightarrow \infty} T^{n} x=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} T^{* n} x=0
$$

The method of treating this problem given in [13] was picked up in 1988 by Lyubich and Vu Phong [8] who brought in it some new non-trivial elements from isometric semigroups theory and obtained this way a proof in the general case. Independently in 1988 Theorem 1 was obtained by Arendt and Batty [1].

In the present paper within the development of the approach proposed in [13, 8] we obtain a more general result on nonnexistence of a maximal asymptotics (the fastest growing solution) for equation (1). First we recall the main lines of the proof of Theorem 1 from [13, 8].

1. We introduce in X the seminorm $l(\cdot)$

$$
l(x)=\limsup _{t \rightarrow+\infty}\left\|e^{A t} x\right\|, \quad x \in X
$$

where $\left\{e^{A t}, t \geq 0\right\}$ is the semigroup generated by A, which satisfies $l(x) \leq$ $C\|x\|$. Then $L=\operatorname{ker} l$ is a subspace of X. Our goal is to show that, actually, $L=X$.
If that is not the case, we consider the nontrivial quotient space $\widehat{X}=X / L$ where the seminorm l generates a norm \tilde{l} dominated by the natural quotient norm $\|\cdot\|_{F}$

$$
\tilde{l}(\hat{x}) \leq C\|\hat{x}\|_{F}
$$

2. Then we consider the completion \tilde{X} of \widehat{X} w.r.t. the norm $\tilde{l}(x)$ and observe that the extensions to \tilde{X} of the quotient operators $\left\{\left(\widehat{e^{A t}}\right), t \geq 0\right\}$ form a $C_{0^{-}}$ semigroup in $\tilde{l}(\cdot)$ which is, obviously, isometric. We denote this semigroup by $\left\{e^{\tilde{A} t}, t \geq 0\right\}$ and its generator by \tilde{A}.
3. We prove the following inclusion for the spectrum $\sigma(\tilde{A})$ of the operator \tilde{A} :

$$
\sigma(\tilde{A}) \subset \sigma(A) \cap(i \mathbb{R})
$$

Next, we infer that
(a) the semigroup $e^{\tilde{A} t}$ is extended to a C_{0}-group of isometries $\left\{e^{\tilde{A} t},-\infty<t<+\infty\right\}$;
(b) the spectrum $\sigma(\tilde{A})$ is at most countable set and, moreover, it is not empty (the latter fact is nontrivial only for the case of an unbounded A).
4. Finally we notice that the spectrum $\sigma(\tilde{A})$ possesses an isolated point, say $i \lambda_{0}$, and the operator \tilde{A} has the invariant subspace, say Λ, corresponding to this point, i.e. $\Lambda \subset D(\tilde{A}), \tilde{A} \mid \Lambda$ is bounded and $\sigma(\tilde{A} \mid \Lambda)=\left\{i \lambda_{0}\right\}$. Since $\left\{e^{(\tilde{A} \mid \Lambda) t},-\infty<t<+\infty\right\}$ is a group of isometries we conclude that $\tilde{A} \mid \Lambda=$ $\left(i \lambda_{0}\right) I \mid \Lambda$. Then $i \lambda_{0}$ is an eigenvalue of \tilde{A} (but not necessarily of A). The same argument concerning the operator \tilde{A}^{*} gives that $i \lambda_{0}$ is also an eigenvalue of \tilde{A}^{*}. But in this case that fact implies that $i \lambda_{0}$ is also an eigenvalue of A^{*}. Contradiction.

In 1993 Vu Phong proposed an extension of this scheme considering the asymptotic behavior of semigroups restricted by so-called weight functions. In this work we give further development. We introduce a concept of maximal asymptotics and show that our approach allows to solve the problem of its existence for a wide class of semigroups.

Definition 1. We say that equation (1) (or the semigroup $\left\{e^{A t}, t \geq 0\right\}$) has a maximal asymptotics if there exists a real positive function, say $f(t), t \geq 0$, such that
(i) for some $a \geq 0$ and for any initial vector $x \in X$ the function $\frac{\left\|e^{A t} x\right\|}{f(t)}$ is bounded on $[a,+\infty]$,
(ii) there exists at least one $x_{0} \in X$ such that

$$
\lim _{t \rightarrow+\infty} \frac{\left\|e^{A t} x_{0}\right\|}{f(t)}=1
$$

We call each such function a maximal asymptotics for (1). Note that in the finite-dimensional case the maximal asymptotics always exists. More exactly, a function $f(t)$ from Definition 1 can be chosen as

$$
f(t)=t^{p-1} e^{\mu t}
$$

where $\mu=\max _{\lambda \in \sigma(A)} \operatorname{Re} \lambda$ and p is the maximal size of Jordan boxes corresponding to the eigenvalues of A with real part μ. In the infinite-dimensional case it is relatively easy to give an example of the equation (even with a bounded A) for which the maximal asymptotics does not exist. In this context Theorem 1 may be interpreted in the following way:

Let the semigroup $\left\{e^{A t}, t \geq 0\right\}$ be bounded and let $\sigma(A) \cap(i \mathbb{R})$ be at most countable set. Then the asymptotics $f(t) \equiv 1$ is maximal for this semigroup iff A^{*} possess a pure imaginary eigenvalue.

In particular, this means that if $\sigma(A) \cap(i \mathbb{R})$ is, in addition, nonempty but does not contain eigenvalues then the semigroup has no maximal asymptotics at all. In fact, in this case we have for some $0<c_{0}<C_{0}<\infty$

$$
c_{0} \leq\left\|e^{A t}\right\| \leq C_{0}, \quad t \geq 0
$$

With this inequality, nonexistence of the maximal asymptotics follows from the following assertion.

Assertion 2. Equation (1) has a maximal asymptotics iff there exists $x_{0} \in X$ such that for some $C>0$

$$
\begin{equation*}
C\left\|e^{A t}\right\| \leq\left\|e^{A t} x_{0}\right\|, \quad t \geq 0 \tag{2}
\end{equation*}
$$

Proof. Necessity. Let $f(t)$ be a maximal asymptotic. Consider the operator family $B_{t}=e^{A t} / f(t), t \geq 0$. Since for any $x \in X$ the set $\left\{B_{t} x\right\}_{t \geq 0}$ is bounded then (due to Banach - Steinhaus theorem) $\left\{B_{t} x\right\}_{t \geq 0}$ is uniformly bounded. That yields for some $C_{1}>0$:

$$
C_{1}\left\|e^{A t}\right\| \leq f(t), \quad t \geq 0
$$

Taking into account the relation

$$
\lim _{t \rightarrow+\infty} \frac{\left\|e^{A t} x_{0}\right\|}{f(t)}=1
$$

we obtain (2).
Sufficiency. Assume (2) holds. Denote $f(t)=\left\|e^{A t} x_{0}\right\|$. Then for any $x \in X$ one has

$$
\left\|e^{A t} x\right\| / f(t) \leq \frac{\left\|e^{A t}\right\|\|x\|}{C\left\|e^{A t}\right\|}=\|x\| / C
$$

So (i) is valid. The validity of (ii) is obvious.
Remark 3. From (2) and (ii) one can conclude that any maximal asymptotics (if exists) satisfies the estimate

$$
\begin{equation*}
c^{\prime} \leq \frac{\left\|e^{A t}\right\|}{f(t)} \leq C^{\prime}, \quad t \geq t_{0} \tag{3}
\end{equation*}
$$

where $0<c^{\prime}<C^{\prime}<\infty$.

Before we formulate our main result (Theorem 5) let us recall that one of the most important characteristics of the semigroups growth is [9, 5, 4]

$$
\omega_{0}=\lim _{t \rightarrow+\infty} \frac{\ln \left\|e^{A t}\right\|}{t}
$$

It is well known [5] that this limit exists and the following estimate is valid: for any $\varepsilon>0$ there exists $M_{1} \geq 1$ such that

$$
\begin{equation*}
\left\|e^{A t}\right\| \leq M_{1} e^{\left(\omega_{0}+\varepsilon\right) t}, \quad t \geq 0 \tag{4}
\end{equation*}
$$

On the other hand, it is easy to see [9] that the spectral radius of the operator $e^{A t}$ equals $e^{\omega_{0} t}$. That yields the estimate

$$
\begin{equation*}
\left\|e^{A t}\right\| \geq e^{\omega_{0} t}, \quad t \geq 0 \tag{5}
\end{equation*}
$$

Comparing (3), (4), (5) we get
Assertion 4. If equation (1) possesses a maximal asymptotics then it can be chosen so that the following relations are valid:
(i) for any $\varepsilon>0$ there exists $M_{\varepsilon}>0$ such that

$$
f(t) \leq M_{\varepsilon} e^{\left(\omega_{0}+\varepsilon\right) t}, \quad t \geq 0 ;
$$

(ii) there exists $m>0$ such that

$$
f(t) \geq m e^{\omega_{0} t}, \quad t \geq 0
$$

Note that in the case of bounded A it is easy to show that

$$
\omega_{0}=\sup _{\lambda \in \sigma(A)} \operatorname{Re} \lambda,
$$

but in the general case we have only $[9,16]$

$$
\omega_{0} \geq \sup _{\lambda \in \sigma(A)} \operatorname{Re} \lambda
$$

See [9] for more details.
The main contribution of the present work is the following theorem.

Theorem 5. Assume that

(i) $\sigma(A) \cap\left\{\lambda: \operatorname{Re} \lambda=\omega_{0}\right\}$ is at most countable;
(ii) Operator A^{*} does not possess eigenvalues with real part ω_{0}.

Then equation (1) (the semigroup $\left\{e^{A t}, t \geq 0\right\}$) does not have any maximal asymptotics.

Our proof relies on the following fact from the real analysis.

Lemma 6. Let $h(t)$ be a real nonnegative function defined on the positive semiaxis $\mathbb{R}^{+}=\{t: t \geq 0\}$ and such that
(a) for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
h(t) \leq C_{\varepsilon}+\varepsilon t, \quad t \geq 0 ;
$$

(b) h is concave, i.e.

$$
\alpha h\left(t_{1}\right)+(1-\alpha) h\left(t_{2}\right) \leq h\left(\alpha t_{1}+(1-\alpha) t_{2}\right), \quad t_{1}, t_{2} \in \mathbb{R}^{+}, 0 \leq \alpha \leq 1
$$

Then for any $\Delta>0$ it is valid

$$
\lim _{t \rightarrow+\infty}(h(t+\Delta)-h(t))=0
$$

Proof of Lemma 6. Let $0<t_{1}<t_{2}<\infty$ and let $y=l(t)$ be the straight line passing through the points $\left(t_{1}, h\left(t_{1}\right)\right)$ and $\left(t_{2}, h\left(t_{2}\right)\right)$. Then from assumption (b) we have

$$
\begin{array}{ll}
h(t) \leq l(t), & t \in \mathbb{R}^{+} \backslash\left(t_{1}, t_{2}\right) \\
h(t) \geq l(t), & t \in\left(t_{1}, t_{2}\right) . \tag{6}
\end{array}
$$

From (6) and positivity of h it follows that h is a nondecreasing function. Besides, from (6) and assumption (b) we observe that for any $\Delta>0$ the function

$$
g_{\Delta}(t)=h(t+\Delta)-h(t), \quad t \geq 0
$$

is nonincreasing. On the other hand, from the assumption (a) we infer that for any $\Delta, \delta>0$ there exists $t_{0}>0$ such that

$$
h(t+\Delta)-h(t)<\delta, \quad t \geq t_{0}
$$

This fact completes the proof.
Proof of Theorem 5. Let us observe that without loss of generality it suffices to prove the theorem for $\omega_{0}=0$ (otherwise we consider $\left(A-\omega_{0} I\right)$ instead of A). We argue by contradiction. Let $f(t)$ be a maximal asymptotics for equation (1) chosen according to Assertion 4 and let

$$
\varphi(t)=\log \max \{f(t), 1\}, \quad t \geq 0
$$

Then it follows from Assertion 4 that $\varphi(t)$ is a positive function satisfying the relation: for any $\varepsilon>0$ there exists $C>0$ such that

$$
\varphi(t) \leq C+\varepsilon t, \quad t \geq 0
$$

Denote

$$
C_{\varepsilon}=\inf \{C: \varphi(t) \leq C+\varepsilon t, \quad t \geq 0\}
$$

and consider the convex set

$$
\Gamma=\bigcap_{\varepsilon>0}\left\{(t, y): t \geq 0, y \leq C_{\varepsilon}+\varepsilon t\right\} .
$$

Finally put

$$
h(t)=\max _{(t, y) \in \Gamma} y, \quad t \geq 0 .
$$

Then $h(t)$ is a positive concave function such that

$$
0 \leq \varphi(t) \leq h(t) \leq C_{\varepsilon}+\varepsilon t, \quad t \geq 0, \quad \varepsilon>0
$$

i.e., h satisfies the assumptions of Lemma 6. Besides, one can observe that for any ε there exists $t_{\varepsilon}>0$ such that $h\left(t_{\varepsilon}\right)=\underset{t \rightarrow t_{\varepsilon}}{\limsup } \varphi(t)$. Moreover, t_{ε} can be chosen so that $\lim _{\varepsilon \rightarrow 0} t_{\varepsilon}=+\infty$. This means that

$$
\limsup _{t \rightarrow+\infty} e^{\varphi(t)} / e^{h(t)}=1
$$

and, therefore, the function $\bar{f}(t)=e^{h(t)}$ satisfies condition (i) of Definition 1 and also the condition
(ii') there exists at least one $x_{0} \in X$ such that

$$
\limsup _{t \rightarrow+\infty} \frac{\left\|e^{A t} x_{0}\right\|}{\bar{f}(t)}=1 .
$$

On the other hand, applying Lemma 6 we get

$$
\begin{equation*}
\frac{\bar{f}(t+s)}{\bar{f}(s)}=e^{h(t+s)-h(t)} \rightarrow 1 \quad \text { as } s \rightarrow+\infty, t \geq 0 \tag{7}
\end{equation*}
$$

The further part of our proof is a direct development of the proof from [8, 13] (see the above mentioned scheme). We give it here in detail in order the paper to be self-contained and also to point out those particular items that were added in the case of unbounded operator A.

Let us introduce the seminorm ${ }^{1} l(\cdot)=l_{f}(\cdot)$ in X defined by the rule

$$
l(x)=\limsup _{t \rightarrow+\infty}\left(\left\|e^{A t} x\right\| / \bar{f}(t)\right), \quad x \in X .
$$

[^0]Since $\bar{f}(t)$ satisfies condition (i) of Definition 1 then there exists $C>0$ such that

$$
\begin{equation*}
l(x) \leq C\|x\|, \quad x \in X \tag{8}
\end{equation*}
$$

Let $L=L_{\bar{f}}=$ ker l. Using (8) we conclude that L is a closed subspace of X. On the other hand, it follows from ($i i^{\prime}$) that there exists $x \in X$ with $l(x)=0$, so L is nontrivial. Then we can consider the quotient space $\hat{X}=X / L$ which is also nontrivial. The seminorm l generates the norm \tilde{l} in \hat{X} defined by

$$
\tilde{l}(\hat{x})=l(x), \quad \text { where } x \in \hat{x}
$$

It is dominated by the natural quotient norm $\|\cdot\|_{F}$ since (8) implies

$$
\begin{equation*}
\tilde{l}(\hat{x})=l(x) \leq C \cdot \inf _{x \in \hat{x}}\|x\|=C\|\hat{x}\|_{F} \tag{9}
\end{equation*}
$$

So one can consider the completion \tilde{X} of the space \hat{X} w.r.t the norm $\tilde{l}(\cdot)$. Let us now observe that the subspace L is invariant w.r.t. the semigroup $\left\{e^{A t}, t \geq 0\right\}$. Indeed, for any $x \in X$ we have

$$
l\left(e^{A t} x\right)=\limsup _{s \rightarrow+\infty} \frac{\left\|e^{A(t+s)} x\right\|}{\bar{f}(s)}=\limsup _{s \rightarrow+\infty} \frac{\left\|e^{A(t+s)} x\right\|}{\bar{f}(t+s)} \frac{\bar{f}(t+s)}{\bar{f}(s)}
$$

From here and (7) we obtain

$$
\begin{equation*}
l\left(e^{A t} x\right)=\limsup _{s \rightarrow+\infty} \frac{\left\|e^{A(t+s)} x\right\|}{\bar{f}(t+s)}=l(x) \tag{10}
\end{equation*}
$$

So, if $x \in L$ then $e^{A t} x \in L$. Now we consider the quotient semigroup $\hat{T}(t)$: $\hat{X} \rightarrow \hat{X}, t \geq 0, \hat{T}(t)=e^{A t} / L$. It follows from (9) that $\{\hat{T}(t), t \geq 0\}$ is strongly continuous also in the norm \tilde{l}. Besides, it is easy to see from (10) that for any $t \geq 0$ the operator $\hat{T}(t)$ is an isometry in the norm \tilde{l}. Further on we consider the extension $\tilde{T}(t)$ of the semigroup $\{\hat{T}(t), t \geq 0\}$ to the space $\tilde{\sim} \tilde{\sim}$. This semigroup is also isometric. Denote by \tilde{A} the generator of the semigroup $\tilde{T}(t)$. Our next goal is to show that

$$
\begin{equation*}
\sigma(\tilde{A}) \subset \sigma(A) \cap(i \mathbb{R}) \tag{11}
\end{equation*}
$$

To this end we use the lemma on a boundary point of the spectrum.
Lemma 7. Let S be a closed operator. If μ is a point of the boundary of the spectrum $\sigma(S)$ then there exists $\left\{x_{k}\right\} \subset D(S)$ such that $\left\|x_{k}\right\|=1, k \in \mathbb{N}$ and $(S-\mu I) x_{k} \rightarrow 0, k \rightarrow \infty$.

This lemma is proved in [2] for the case of a bounded operator. Here we give a short proof for the general case.

Proof of Lemma 7. Assume the contrary. Then there exist $\Delta>0, M>0$ such that

$$
\|(S-\lambda I) x\| \geq M\|x\|, \quad x \in D(S) \quad \text { as }|\lambda-\mu|<\Delta
$$

Let $\lambda_{k} \rightarrow \mu, k \rightarrow \infty$ and $\lambda_{k} \notin \sigma(S)$. Then $\left\|R\left(S, \lambda_{k}\right)\right\| \leq M^{-1}$ if $\left|\lambda_{k}-\mu\right|<\Delta$. The latter property yields that the sequence of operators $R\left(S, \lambda_{k}\right)$ is convergent because

$$
\left\|R\left(S, \lambda_{k}\right)-R\left(S, \lambda_{m}\right)\right\| \leq\left|\lambda_{k}-\lambda_{m}\right|\left\|R\left(S, \lambda_{k}\right)\right\|\left\|R\left(S, \lambda_{m}\right)\right\| \leq\left|\lambda_{k}-\lambda_{m}\right| M^{-2}
$$

as $\left|\lambda_{k}-\mu\right|,\left|\lambda_{m}-\mu\right|<\Delta$. It remains to check directly that the limit of this sequence is the inverse operator to $S-\mu I$. So we arrive at contradiction. Lemma is proved.

Denote by $\partial(\sigma(\tilde{A}))$ the boundary of $\sigma(\tilde{A})$. It follows from Lemma 7 that

$$
\begin{equation*}
\partial(\sigma(\tilde{A})) \subset \sigma(A) \tag{12}
\end{equation*}
$$

In fact, let $\mu \notin \sigma(A)$. Then for some $d>0$

$$
\|(A-\mu I) x\| \geq d\|x\|, \quad x \in D(A)
$$

From here we get for any $x \in D(A)$

$$
\begin{aligned}
l((A-\mu I) x) & =\limsup _{t \rightarrow+\infty}\left(\left\|e^{A t}(A-\mu I) x\right\| / \bar{f}(t)\right) \\
& =\limsup _{t \rightarrow+\infty}\left(\left\|(A-\mu I) e^{A t} x\right\| / \bar{f}(t)\right) \\
& \geq \limsup _{t \rightarrow+\infty}\left(d\left\|e^{A t} x\right\| / \bar{f}(t)\right)=d l(x)
\end{aligned}
$$

This immediately yields $\tilde{l}((\tilde{A}-\mu I) y) \geq d \tilde{l}(y)$ and, due to Lemma 7, $\mu \notin \partial \sigma(\tilde{A})$. That proves (12).

In the case when the operator A is bounded it is almost obvious that

$$
\begin{equation*}
\sigma(\tilde{A}) \subset i \mathbb{R} \tag{13}
\end{equation*}
$$

In fact, in this case $\tilde{T}(t), t \geq 0$ are invertible isometric operators, so $\sigma(\tilde{T}(t)) \subset$ $\{\lambda:|\lambda|=1\}$. Then (13) follows from the spectral mapping theorem.

In the case when A is unbounded the validity of inclusion (13) follows from comparing (12), Lemma 7 and the following

Lemma 8. [7] If S generates a semigroup of isometries in a Banach space then

$$
\|S x-\lambda x\| \geq|\operatorname{Re} \lambda|\|x\|
$$

for all $x \in D(S), \lambda \in \mathbb{C}$.
The proof of the lemma is contained in [8].
Let us observe that (12) and (13) implies (11). From (11) and Lemma 8 it follows, in turn, due to Hille-Yosida inequality, that the operator $-A$ also generates a semigroup and, therefore, the semigroup $\tilde{T}(t), t \geq 0$ is extended to the group of isometries $\{\tilde{T}(t),-\infty<t<+\infty\}$.

Given this we conclude, following authors of [8], that the set $\sigma(\tilde{A})$ is nonempty (see [9]). Actually this fact and also the application of Lemma 8 are the only additional points in the proof in the case of an unbounded A. Thus, the spectrum $\sigma(\tilde{A})$ is a nonempty closed at most countable set on the imaginary axis. So it possesses an isolated point, say $i \lambda_{0}, \lambda_{0} \in \mathbb{R}$. Then $i \lambda_{0}$ is also an isolated point of the spectrum $\sigma\left(\tilde{A}^{*}\right)$ of the adjoint operator \tilde{A}^{*}. This operator has the invariant subspace, say Ω, corresponding to $i \lambda_{0}$, i.e. $\Omega \subset D\left(A^{*}\right), A^{*} \mid \Omega$ is bounded and $\sigma\left(\tilde{A}^{*} \mid \Omega\right)=\left\{i \lambda_{0}\right\}$. Since $\left\{e^{\left(\tilde{A}^{*} \mid \Omega\right) t},-\infty<t<+\infty\right\}$ is a group of isometries we conclude, following [8, 13], that $\tilde{A}^{*}\left|\Omega=\left(i \lambda_{0}\right) I\right| \Omega$. Note that due to relation (3) we have the inclusion $\tilde{X}^{*} \subset \hat{X}^{*}$, therefore $\Omega \subset \tilde{X}^{*} \subset \hat{X}^{*}$. That means that if $\hat{f} \in \Omega \subset \hat{X}^{*}$ then

$$
\left(\widehat{e^{A t}}\right)^{*} \hat{f}=e^{i \lambda_{0} t} \hat{f}, \quad t \in \mathbb{R}
$$

Finally observe that the latter relation implies that

$$
\left(e^{A t}\right)^{*} f=e^{i \lambda_{0} t} f, \quad t \in \mathbb{R}
$$

where functionals $f \in X^{*}$ are extensions of functionals $\hat{f} \in \Omega$ given by

$$
f(x)=\hat{f}(\hat{x}), \quad x \in \hat{x}
$$

Therefore we get that $i \lambda_{0}$ is an eigenvalue of A^{*}. This contradiction completes the proof of Theorem 5.

Corollary. If the set $\sigma(A) \cap\left\{\lambda: \operatorname{Re} \lambda=\omega_{0}\right\}$ is empty then equation (1) (or semigroup $\left\{e^{A t}, t \geq 0\right\}$) does not have any maximal asymptotic.

Using the idea of the above proof one can also obtain the following Theorem that complements the results of [10].

Theorem 9. Let the assumptions of Theorem 5 be satisfied and let $f(t), t \geq 0$ be a positive function such that
(a) $\log f(t)$ is concave,
(b) for any $x \in X$ the function $\left\|e^{A t} x\right\| / f(t)$ is bounded.

Then

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left\|e^{A t} x\right\| / f(t)=0, \quad x \in X \tag{14}
\end{equation*}
$$

Proof. Let $f_{0}(t)=f(t) e^{-\omega_{0} t}$ and $A_{0}=A-\omega_{0} I$. It follows from the assumption (b) and from (5) that $f_{0}(t) \geq d>0, t \geq 0$. On the other hand $\log f_{0}(t)=\log f(t)-\omega_{0} t$ is a concave function. Denote $h(t)=\log f_{0}(t)-\log d \geq 0$ and $\bar{f}(t)=e^{h(t)}$. Next we introduce the seminorm

$$
l(x)=\limsup _{t \rightarrow+\infty}\left(\left\|e^{A_{0} t} x\right\| / \bar{f}(t)\right)
$$

and repeat all arguments of the proof of Theorem 5 with respect to the operator A_{0} and the function $\bar{f}(t)$. That gives $\left\|e^{A_{0} t} x\right\| / \bar{f}(t) \rightarrow 0, t \rightarrow+\infty$ for any $x \in X$ and finally leads to (14). The proof is completed.

Remark 10. Let us observe that the main statement of the theorem on asymptotic stability $([13,8,1])$ follows from Theorem 9 in the case when $f(t) \equiv 1$ and $\omega_{0}=0$. On the other hand, the theorem from [13] also states the inverse (see above):
"If $\omega_{0}=0, f(t) \equiv 1$ and conditions (i) of Theorem 5 and (b) of Theorem 9 hold then the existence of a pure imaginary eigenvalue for A^{*} guarantees that $f(t)$ is a maximal asymptotics". This statement remains true for arbitrary ω_{0} and $f(t)=e^{\omega_{0} t}$. However, the general statement:
"If $\sigma(A) \cap\left\{\lambda: \operatorname{Re} \lambda=\omega_{0}\right\}$ is at most countable and A^{*} has an eigenvalue with real part ω_{0} then a maximal asymptotics for (1) exists" turns out to be false (see Example 1 below).

Example 1. In [13] we considered the example of the operator A :

$$
A x(\cdot)=-\int_{0}^{s} x(\tau) d \tau, \quad s \in[0,1]
$$

$x(\cdot) \in X=L_{2}[0,1]$. This operator satisfies the assumptions of the theorem on asymptotic stability and then equation (1) is asymptotically stable. That means that the function $f(t) \equiv 1$ is not a maximal asymptotics of (1). Let us consider now a more general case:

$$
\begin{equation*}
A x(\cdot)=k \int_{0}^{s} x(\tau) d \tau, \quad s \in[0,1] \tag{15}
\end{equation*}
$$

$x(\cdot) \in X=L_{p}[0,1]$, where $k \in \mathbb{C}, k \neq 0,1 \leq p<\infty$ and observe that A satisfies the assumptions of Theorem 5. Indeed, $\sigma(A)=\{0\}$ and the adjoint operator

$$
A^{*} y(\cdot)=k \int_{s}^{1} y(\tau) d \tau
$$

$y(\cdot) \in L_{q}[0,1]$ as $1<p<\infty$ or $y(\cdot) \in L_{\infty}[0,1]$ as $p=1$, has no eigenvalues. Thus, equation (1) has no maximal asymptotics.

On the other hand, if $X=C[0,1], k=1$ then equation (1) with the operator given by (15) has a maximal asymptotics

$$
f_{\max }(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{(n!)^{2}}
$$

This asymptotics is achieved for the solution corresponding to the initial data $x_{0}(s) \equiv 1$:

$$
e^{A t} x_{0}(s)=\sum_{n=0}^{\infty} \frac{(s t)^{n}}{(n!)^{2}}, \quad s \in[0,1]
$$

This fact is explained by the existence of an eigenvalue of the operator A^{*}. Indeed, it is easy to see that for the functional $\varphi \in X^{*}$ defined by $\varphi(x(\cdot))=x(0)$ one has $A^{*} \varphi=0$. Of course, the same situation occurs for $X=L_{\infty}[0,1]$, but in this case the determining of the eigenvector for A^{*} is slightly more complicated (see [6]).

Note that the function $f_{\max }(t)$ is connected with the Bessel function of imaginary argument $I_{0}(z)$ as

$$
f_{\max }(t)=I_{0}(2 \sqrt{t})
$$

This means (see [15]) that a maximal asymptotics can be also chosen by

$$
\tilde{f}_{\max }(t)=\frac{e^{2 \sqrt{t}}}{2 \sqrt{\pi} t^{\frac{1}{4}}}
$$

Finally, let $\mathcal{X}=L_{p}[0,1] \times \mathbb{C}, 1 \leq p<\infty$, and $\mathcal{A} \in[\mathcal{X}, \mathcal{X}]$ be defined by $\mathcal{A}(x(\cdot), y)=(A x(\cdot), 0)=\left(\int_{0}^{s} x(\tau) d \tau, 0\right)$, where A is given by (15) with $k=1$. Then obviously $\left\|e^{\mathcal{A} t}\right\|=\left\|e^{A t}\right\| \rightarrow+\infty$ as $t \rightarrow+\infty$. This shows that the semigroup $e^{\mathcal{A} t}$ does not have maximal asymptotics though 0 is an eigenvalue of A^{*}.

Example 2. In [11] we considered the following neutral type system:

$$
\dot{z}(t)=A_{-1} \dot{z}(t-1)+\int_{-1}^{0} A_{2}(\theta) \dot{z}(t+\theta) d \theta+\int_{-1}^{0} A_{3}(\theta) z(t+\theta) d \theta
$$

where A_{-1} is a constant $n \times n$-matrix with $\operatorname{det} A_{-1} \neq 0 ; A_{2}, A_{3}$ are $n \times n$-matrices whose elements belong to $L_{2}(-1,0)$. This equation is reduced to the form

$$
\begin{equation*}
\dot{x}=\mathcal{A} x, \tag{16}
\end{equation*}
$$

where \mathcal{A} is a certain infinitesimal operator acting in the space $\mathcal{X}=\mathbb{C}^{n} \times L_{2}\left(-1,0 ; \mathbb{C}^{n}\right)$. It is shown in [11] that the spectral properties of the operator \mathcal{A} are asymptotically
defined by the matrix A_{-1}. To illustrate this point let us consider for simplicity the special case when A_{-1} is a Jordan box of order $p=n$ corresponding to the eigenvalue $\mu,|\mu| \geq 1, \mu \neq 1$, and let $p \geq 2$. Denote by $\overline{\mathcal{A}}$ the operator \mathcal{A} in the special case when $A_{2}=A_{3}=0$. Then $\sigma(\overline{\mathcal{A}})=\left\{\lambda_{00}=0, \lambda_{k}=\right.$ $\log |\mu|+i(\arg \mu+2 \pi k), k \in \mathbb{Z}\}$ and the following orthogonal decomposition holds

$$
\mathcal{X}=\bigoplus_{k \in \mathbb{Z}} \bar{V}_{k} \oplus \bar{W}_{0},
$$

where the invariant subspace \bar{W}_{0} corresponds to $\lambda=\lambda_{00}, \operatorname{dim} \bar{W}_{0}=2, \mathcal{A} \mid \bar{W}_{0}=0$, invariant subspaces $\bar{V}_{k}, k \in \mathbb{Z}$, correspond to $\lambda=\lambda_{k}, \operatorname{dim} \bar{V}_{k}=p$, and $\mathcal{A} \mid \bar{V}_{k}$ are Jordan boxes of order p. In particular, this means that the semigroup $\left\{e^{\mathcal{A} t}, t \geq 0\right\}$ has a maximal asymptotics

$$
f_{\max }(t)=t^{p-1}|\mu|^{t} .
$$

In general case, the operator \mathcal{A} possesses a Riesz basis of finite dimensional invariant subspaces (see [11]). More exactly, for an arbitrarily small $r_{0}>0$ there exists $N \in \mathbb{N}$ such that the infinite part of $\sigma(\mathcal{A})$ is located inside the circles $L_{k}\left(\lambda_{k}\right)=$ $\left\{\lambda:\left|\lambda-\lambda_{k}\right|<r_{0}\right\},|k|>N$, and the only finite number of eigenvalues are outside of these circles. Moreover,

$$
\mathcal{X}=\sum_{|k|>N} V_{k}+W_{N},
$$

where V_{k} are images of Riesz projectors corresponding to the spectrum concentrated in $L_{k}\left(\lambda_{k}\right),|k|>N, \operatorname{dim} V_{k}=p$ and W_{N} is the invariant subspace corresponding to the spectrum located outside of these circles, $\operatorname{dim} W_{N}=2(N+1) p$. Besides, it can be shown that

$$
\begin{equation*}
\mathcal{A}\left|V_{k} \rightarrow \overline{\mathcal{A}}\right| \overline{V_{k}}, \quad k \rightarrow \infty . \tag{17}
\end{equation*}
$$

Now let us assume that the matrices $A_{2}(\cdot)$ and $A_{3}(\cdot)$ are chosen in such a way that

$$
\begin{equation*}
\operatorname{Re} \sigma(\mathcal{A})<\log |\mu| . \tag{18}
\end{equation*}
$$

Then, due to Theorem 5, equation (16) does not have any maximal asymptotics. Moreover, one can derive from (17), (18) that the function

$$
\varphi(t)=\left\|e^{\mathcal{A} t}\right\| / t^{p-1}|\mu|^{t}
$$

is bounded on the semiaxis $(0,+\infty)$. Thus, applying Theorem 9 , we conclude that for any $x \in \mathcal{X}$

$$
\left\|e^{\mathcal{A} t} x\right\| / t^{p-1}|\mu|^{t} \rightarrow 0, \quad t \rightarrow+\infty
$$

On the other hand, it is shown in [11] that there exists a solution $e^{\mathcal{A} t} x_{0}$ for which

$$
\left\|e^{\mathcal{A} t} x_{0}\right\| / \|\left.\mu\right|^{t} \rightarrow \infty
$$

i.e. if, for example, $|\mu|=1$ then equation (16) is not asymptotically stable.

Acknowledgments

The author wishes to express his gratitude to Nguen Van Minh whose letter has encouraged author's new interest in the asymptotic theory of semigroups.

References

1. W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.
2. Yu. L. Daletskiy and M. G. Krein, Stability of solution of differential equations in Banach space, Nauka, Moscow 1970, p. 534, (in Russian).
3. K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, in: Graduate texts in mathematics, Vol. 194, Springer-Verlag, New York, Berlin, Heidelberg, 1999, p. 586.
4. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ., Vol. 31, rev. ed., Providence, R.I., 1957.
5. K. Iosida, Functional analysis, Springer-Verlag, Berlin-Gottingen, 1965, p. 623.
6. L. V. Kantorovich and G. P. Akilov, Functional analysis, Nauka, Moscow, 1984, p. 752, (in Russian).
7. S. G. Krein, Linear Differential Equations in Banach Spaces, Nauka, Moscow, 1967, (in Russian).
8. Yu. I. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equation in Banach space, Studia Math., 88 (1988), 37-42.
9. J. van Neerven, The asymptotic behaviour of semigroups of linear operators, in: Operator Theory Advances and Applications, Vol. 88, Birkhauser, Basel, 1996.
10. V. Q. Phong, On the spectrum, complete trajectories and asymptotic stability of linear semidynamical systems, J. Differential Equations, 105 (1993), 30-45.
11. R. Rabah, G. M. Sklyar and A. V. Rezounenko, Stability analysis of neutral type systems in Hilbert space, J. Differential Equations, 214 (2005), 391-428.
12. G. M. Sklyar and A. V. Rezounenko, A theorem on the strong asymptotic stability and determination of stabilizing controls, C. R. Acad. Sci. Paris, Ser. I, 333 (2001), 807-812.
13. G. M. Sklyar and V. Shirman, On asymptotic stability of linear differential equation in Banach space, Teoria Funk., Funkt. Anal. Prilozh., 37 (1982), 127-132 (in Russian).
14. Sz.-Nagy and C. Foias, Harmonic Analysis of operators on Hilbert Space, Akadémiai Kiado, Budapest; North-Holland Publ. Comp., Amsterdam-London 1970, XIII, p. 387.
15. E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge, 1950.
16. A. Zabczyk, A note on C_{0}-semigroups, Bull. Acad. Polon. Sci., 25 (1975), 895-898.
G. M. Sklyar

Institute of Mathematics,
University of Szczecin,
ul. Wielkopolska 15,
70-451 Szczecin,
Poland
E-mail: sklar@univ.szczecin.pl

[^0]: ${ }^{1} \mathrm{~A}$ similar seminorm was considered in [10] for semigroups restricted by weight functions

