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ON THE MAXIMAL ASYMPTOTICS FOR LINEAR DIFFERENTIAL
EQUATIONS IN BANACH SPACES

G. M. Sklyar

Abstract. The work develops the approach proposed in 1982 by the author
and V.Ya. Shirman for analysis of asymptotic stability of a linear differential
equation in Banach space. It is shown that the method introduced in the
mentioned above work allows also to prove the nonexistence of the fastest
growing solution for a wide class of linear equations.

1. INTRODUCTION

One of important results of last decades in the asymptotic semigroups theory
[3, 9, 12] is the following theorem on asymptotic stability:

Theorem 1. Consider a linear differential equation in Banach space X

(1) ẋ = Ax,

where A is the generator of a C0-semigroup {eAt}, t ≥ 0, under assumptions that
the set σ(A) ∩ (iR) is at most countable and for some C > 0: ‖e Atx‖ ≤ C‖x‖,
t ≥ 0, x ∈ X . Then equation (1) is asymptotically stable, i.e. ‖eAtx‖ → 0 as
t → +∞ for any x ∈ X , if and only if the adjoint operator A ∗ has no pure
imaginary eigenvalues.

Statement of this theorem and its proof in the case of a bounded operator A

were given in 1982 by Sklyar and Shirman [13]. We considered it as a development
of the remarkable B. Sz.-Nagy and C. Foias theorem (see [14], p. 102):

Let a complete nonunitary contraction T be given in a Hilbert space H and let

mes (σ(T)∩ S0(1)) = 0,
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where S0(1) = {λ ∈ C : |λ| = 1} and mes(·) is a Lebesgue measure on S0(1).
Then for each x ∈ H we have

lim
n→∞ T nx = 0 and lim

n→∞T ∗nx = 0.

The method of treating this problem given in [13] was picked up in 1988 by
Lyubich and Vu Phong [8] who brought in it some new non-trivial elements from
isometric semigroups theory and obtained this way a proof in the general case.
Independently in 1988 Theorem 1 was obtained by Arendt and Batty [1].

In the present paper within the development of the approach proposed in [13, 8]
we obtain a more general result on nonnexistence of a maximal asymptotics (the
fastest growing solution) for equation (1). First we recall the main lines of the proof
of Theorem 1 from [13, 8].

1. We introduce in X the seminorm l(·)

l(x) = lim sup
t→+∞

∥∥eAtx
∥∥ , x ∈ X,

where
{
eAt, t ≥ 0

}
is the semigroup generated by A, which satisfies l(x) ≤

C‖x‖. Then L = ker l is a subspace of X . Our goal is to show that, actually,
L = X .
If that is not the case, we consider the nontrivial quotient space X̂ = X/L

where the seminorm l generates a norm l̃ dominated by the natural quotient
norm ‖ · ‖F

l̃(x̂) ≤ C‖x̂‖F .

2. Then we consider the completion X̃ of X̂ w.r.t. the norm l̃(x) and observe
that the extensions to X̃ of the quotient operators

{
(êAt), t ≥ 0

}
form a C0-

semigroup in l̃(·) which is, obviously, isometric. We denote this semigroup
by

{
eÃt, t ≥ 0

}
and its generator by Ã.

3. We prove the following inclusion for the spectrum σ(Ã) of the operator Ã:

σ(Ã) ⊂ σ(A) ∩ (iR).

Next, we infer that

(a) the semigroup eÃt is extended to a C0-group of isometries{
eÃt,−∞ < t < +∞

}
;

(b) the spectrum σ(Ã) is at most countable set and, moreover, it is not empty
(the latter fact is nontrivial only for the case of an unbounded A).
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4. Finally we notice that the spectrum σ(Ã) possesses an isolated point, say
iλ0, and the operator Ã has the invariant subspace, say Λ, corresponding to
this point, i.e. Λ ⊂ D(Ã), Ã|Λ is bounded and σ(Ã|Λ) = {iλ0}. Since{
e(Ã|Λ)t,−∞ < t < +∞

}
is a group of isometries we conclude that Ã|Λ =

(iλ0)I |Λ. Then iλ0 is an eigenvalue of Ã (but not necessarily of A). The
same argument concerning the operator Ã∗ gives that iλ0 is also an eigenvalue
of Ã∗. But in this case that fact implies that iλ0 is also an eigenvalue of A∗.
Contradiction.

In 1993 Vu Phong proposed an extension of this scheme considering the asymptotic
behavior of semigroups restricted by so-called weight functions. In this work we
give further development. We introduce a concept of maximal asymptotics and show
that our approach allows to solve the problem of its existence for a wide class of
semigroups.

Definition 1. We say that equation (1) (or the semigroup
{
eAt, t ≥ 0

}
) has a

maximal asymptotics if there exists a real positive function, say f(t), t ≥ 0, such
that

(i) for some a ≥ 0 and for any initial vector x ∈ X the function ‖eAtx‖
f(t)

is
bounded on [a, +∞],

(ii) there exists at least one x0 ∈ X such that

lim
t→+∞

∥∥eAtx0

∥∥
f(t)

= 1.

We call each such function a maximal asymptotics for (1). Note that in the
finite-dimensional case the maximal asymptotics always exists. More exactly, a
function f(t) from Definition 1 can be chosen as

f(t) = tp−1eµt,

where µ = max
λ∈σ(A)

Re λ and p is the maximal size of Jordan boxes corresponding to

the eigenvalues of A with real part µ. In the infinite-dimensional case it is relatively
easy to give an example of the equation (even with a bounded A) for which the
maximal asymptotics does not exist. In this context Theorem 1 may be interpreted
in the following way:

Let the semigroup
{
eAt, t ≥ 0

}
be bounded and let σ(A) ∩ (iR) be at most

countable set. Then the asymptotics f(t) ≡ 1 is maximal for this semigroup iff A∗

possess a pure imaginary eigenvalue.
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In particular, this means that if σ(A) ∩ (iR) is, in addition, nonempty but does
not contain eigenvalues then the semigroup has no maximal asymptotics at all. In
fact, in this case we have for some 0 < c0 < C0 < ∞

c0 ≤ ∥∥eAt
∥∥ ≤ C0, t ≥ 0.

With this inequality, nonexistence of the maximal asymptotics follows from the
following assertion.

Assertion 2. Equation (1) has a maximal asymptotics iff there exists x0 ∈ X
such that for some C > 0

(2) C
∥∥eAt

∥∥ ≤ ∥∥eAtx0

∥∥ , t ≥ 0.

Proof. Necessity. Let f(t) be a maximal asymptotic. Consider the operator
family Bt = eAt/f(t), t ≥ 0. Since for any x ∈ X the set {Btx}t≥0 is bounded
then (due to Banach – Steinhaus theorem) {Btx}t≥0 is uniformly bounded. That
yields for some C1 > 0:

C1

∥∥eAt
∥∥ ≤ f(t), t ≥ 0.

Taking into account the relation

lim
t→+∞

∥∥eAtx0

∥∥
f(t)

= 1

we obtain (2).
Sufficiency. Assume (2) holds. Denote f(t) =

∥∥eAtx0

∥∥. Then for any x ∈ X
one has ∥∥eAtx

∥∥ /f(t) ≤
∥∥eAt

∥∥‖x‖
C ‖eAt‖ = ‖x‖/C.

So (i) is valid. The validity of (ii) is obvious.

Remark 3. From (2) and (ii) one can conclude that any maximal asymptotics
(if exists) satisfies the estimate

(3) c′ ≤
∥∥eAt

∥∥
f(t)

≤ C′, t ≥ t0,

where 0 < c′ < C′ < ∞.

Before we formulate our main result (Theorem 5) let us recall that one of the
most important characteristics of the semigroups growth is [9, 5, 4]

ω0 = lim
t→+∞

ln ‖eAt‖
t

.
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It is well known [5] that this limit exists and the following estimate is valid: for
any ε > 0 there exists M1 ≥ 1 such that

(4) ‖eAt‖ ≤ M1e
(ω0+ε)t, t ≥ 0.

On the other hand, it is easy to see [9] that the spectral radius of the operator eAt

equals eω0t. That yields the estimate

(5) ‖eAt‖ ≥ eω0t, t ≥ 0.

Comparing (3), (4), (5) we get

Assertion 4. If equation (1) possesses a maximal asymptotics then it can be
chosen so that the following relations are valid:

(i) for any ε > 0 there exists Mε > 0 such that

f(t) ≤ Mεe
(ω0+ε)t, t ≥ 0;

(ii) there exists m > 0 such that

f(t) ≥ meω0t, t ≥ 0.

Note that in the case of bounded A it is easy to show that

ω0 = sup
λ∈σ(A)

Re λ,

but in the general case we have only [9, 16]

ω0 ≥ sup
λ∈σ(A)

Re λ.

See [9] for more details.
The main contribution of the present work is the following theorem.

Theorem 5. Assume that
(i) σ(A) ∩ {λ : Re λ = ω0} is at most countable;
(ii) Operator A∗ does not possess eigenvalues with real part ω 0.

Then equation (1) (the semigroup {eAt, t ≥ 0}) does not have any maximal asymp-
totics.

Our proof relies on the following fact from the real analysis.
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Lemma 6. Let h(t) be a real nonnegative function defined on the positive
semiaxis R

+ = {t : t ≥ 0} and such that

(a) for any ε > 0 there exists Cε > 0 such that

h(t) ≤ Cε + ε t, t ≥ 0;

(b) h is concave, i.e.

αh(t1) + (1− α)h(t2) ≤ h(αt1 + (1− α)t2), t1, t2 ∈ R
+, 0 ≤ α ≤ 1.

Then for any ∆ > 0 it is valid

lim
t→+∞(h(t + ∆)− h(t)) = 0.

Proof of Lemma 6. Let 0 < t1 < t2 < ∞ and let y = l(t) be the straight line
passing through the points (t1, h(t1)) and (t2, h(t2)). Then from assumption (b)
we have

(6)
h(t) ≤ l(t), t ∈ R

+ \ (t1, t2),

h(t) ≥ l(t), t ∈ (t1, t2).

From (6) and positivity of h it follows that h is a nondecreasing function. Besides,
from (6) and assumption (b) we observe that for any ∆ > 0 the function

g∆(t) = h(t + ∆) − h(t), t ≥ 0

is nonincreasing. On the other hand, from the assumption (a) we infer that for any
∆, δ > 0 there exists t0 > 0 such that

h(t + ∆) − h(t) < δ, t ≥ t0.

This fact completes the proof.

Proof of Theorem 5. Let us observe that without loss of generality it suffices to
prove the theorem for ω0 = 0 (otherwise we consider (A−ω0I) instead of A). We
argue by contradiction. Let f(t) be a maximal asymptotics for equation (1) chosen
according to Assertion 4 and let

ϕ(t) = log max{f(t), 1}, t ≥ 0.

Then it follows from Assertion 4 that ϕ(t) is a positive function satisfying the
relation: for any ε > 0 there exists C > 0 such that

ϕ(t) ≤ C + εt, t ≥ 0.
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Denote
Cε = inf{C : ϕ(t) ≤ C + εt, t ≥ 0}

and consider the convex set

Γ =
⋂
ε>0

{(t, y) : t ≥ 0, y ≤ Cε + εt}.

Finally put
h(t) = max

(t,y)∈Γ
y, t ≥ 0.

Then h(t) is a positive concave function such that

0 ≤ ϕ(t) ≤ h(t) ≤ Cε + εt, t ≥ 0, ε > 0,

i.e., h satisfies the assumptions of Lemma 6. Besides, one can observe that for any
ε there exists tε > 0 such that h(tε) = lim sup

t→tε
ϕ(t). Moreover, tε can be chosen

so that lim
ε→0

tε = +∞. This means that

lim sup
t→+∞

eϕ(t)/eh(t) = 1

and, therefore, the function f(t) = eh(t) satisfies condition (i) of Definition 1 and
also the condition

(ii ′) there exists at least one x0 ∈ X such that

lim sup
t→+∞

∥∥eAtx0

∥∥
f(t)

= 1.

On the other hand, applying Lemma 6 we get

(7)
f(t + s)

f(s)
= eh(t+s)−h(t) → 1 as s → +∞, t ≥ 0.

The further part of our proof is a direct development of the proof from [8, 13]
(see the above mentioned scheme). We give it here in detail in order the paper to
be self-contained and also to point out those particular items that were added in the
case of unbounded operator A.

Let us introduce the seminorm1 l(·) = lf (·) in X defined by the rule

l(x) = lim sup
t→+∞

(‖eAtx‖/f(t)
)
, x ∈ X.

1A similar seminorm was considered in [10] for semigroups restricted by weight functions
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Since f(t) satisfies condition (i) of Definition 1 then there exists C > 0 such that

(8) l(x) ≤ C‖x‖, x ∈ X.

Let L = Lf = ker l. Using (8) we conclude that L is a closed subspace of X . On
the other hand, it follows from (ii ′) that there exists x ∈ X with l(x) = 0, so L

is nontrivial. Then we can consider the quotient space X̂ = X/L which is also
nontrivial. The seminorm l generates the norm l̃ in X̂ defined by

l̃(x̂) = l(x), where x ∈ x̂.

It is dominated by the natural quotient norm ‖ · ‖F since (8) implies

(9) l̃(x̂) = l(x) ≤ C · inf
x∈x̂

‖x‖ = C‖x̂‖F .

So one can consider the completion X̃ of the space X̂ w.r.t the norm l̃(·). Let us
now observe that the subspace L is invariant w.r.t. the semigroup {eAt, t ≥ 0}.
Indeed, for any x ∈ X we have

l(eAtx) = lim sup
s→+∞

‖eA(t+s)x‖
f(s)

= lim sup
s→+∞

‖eA(t+s)x‖
f(t + s)

f(t + s)
f(s)

.

From here and (7) we obtain

(10) l(eAtx) = lim sup
s→+∞

‖eA(t+s)x‖
f(t + s)

= l(x).

So, if x ∈ L then eAtx ∈ L. Now we consider the quotient semigroup T̂ (t) :
X̂ → X̂ , t ≥ 0, T̂ (t) = eAt/L. It follows from (9) that {T̂ (t), t ≥ 0} is strongly
continuous also in the norm l̃. Besides, it is easy to see from (10) that for any
t ≥ 0 the operator T̂ (t) is an isometry in the norm l̃. Further on we consider the
extension T̃ (t) of the semigroup {T̂ (t), t ≥ 0} to the space X̃ . This semigroup is
also isometric. Denote by Ã the generator of the semigroup T̃ (t). Our next goal is
to show that

(11) σ(Ã) ⊂ σ(A) ∩ (iR).

To this end we use the lemma on a boundary point of the spectrum.

Lemma 7. Let S be a closed operator. If µ is a point of the boundary of the
spectrum σ(S) then there exists {xk} ⊂ D(S) such that ‖xk‖ = 1, k ∈ N and
(S − µI)xk → 0, k → ∞.
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This lemma is proved in [2] for the case of a bounded operator. Here we give
a short proof for the general case.

Proof of Lemma 7. Assume the contrary. Then there exist ∆ > 0, M > 0 such
that

‖(S − λI)x‖ ≥ M‖x‖, x ∈ D(S) as |λ − µ| < ∆.

Let λk → µ, k → ∞ and λk /∈ σ(S). Then ‖R(S, λk)‖ ≤ M−1 if |λk − µ| < ∆.
The latter property yields that the sequence of operators R(S, λk) is convergent
because

‖R(S, λk) − R(S, λm)‖ ≤ |λk − λm|‖R(S, λk)‖‖R(S, λm)‖ ≤ |λk − λm|M−2

as |λk−µ|, |λm−µ| < ∆. It remains to check directly that the limit of this sequence
is the inverse operator to S − µI . So we arrive at contradiction. Lemma is proved.

Denote by ∂(σ(Ã)) the boundary of σ(Ã). It follows from Lemma 7 that

(12) ∂(σ(Ã)) ⊂ σ(A).

In fact, let µ /∈ σ(A). Then for some d > 0

‖(A − µI)x‖ ≥ d‖x‖, x ∈ D(A).

From here we get for any x ∈ D(A)

l((A− µI)x) = lim sup
t→+∞

(‖eAt(A − µI)x‖/f(t)
)

= lim sup
t→+∞

(‖(A − µI)eAtx‖/f(t)
)

≥ lim sup
t→+∞

(
d‖eAtx‖/f(t)

)
= d l(x).

This immediately yields l̃((Ã − µI)y) ≥ d l̃(y) and, due to Lemma 7, µ /∈ ∂σ(Ã).
That proves (12).

In the case when the operator A is bounded it is almost obvious that

(13) σ(Ã) ⊂ iR.

In fact, in this case T̃ (t), t ≥ 0 are invertible isometric operators, so σ(T̃ (t)) ⊂
{λ : |λ| = 1}. Then (13) follows from the spectral mapping theorem.

In the case when A is unbounded the validity of inclusion (13) follows from
comparing (12), Lemma 7 and the following

Lemma 8. [7] If S generates a semigroup of isometries in a Banach space then
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‖Sx− λx‖ ≥ |Reλ| ‖x‖
for all x ∈ D(S), λ ∈ C.

The proof of the lemma is contained in [8].

Let us observe that (12) and (13) implies (11). From (11) and Lemma 8 it
follows, in turn, due to Hille-Yosida inequality, that the operator −A also generates
a semigroup and, therefore, the semigroup T̃ (t), t ≥ 0 is extended to the group of
isometries {T̃ (t), −∞ < t < +∞}.

Given this we conclude, following authors of [8], that the set σ(Ã) is nonempty
(see [9]). Actually this fact and also the application of Lemma 8 are the only
additional points in the proof in the case of an unbounded A. Thus, the spectrum
σ(Ã) is a nonempty closed at most countable set on the imaginary axis. So it
possesses an isolated point, say iλ0, λ0 ∈ R. Then iλ0 is also an isolated point
of the spectrum σ(Ã∗) of the adjoint operator Ã∗. This operator has the invariant
subspace, say Ω, corresponding to iλ0, i.e. Ω ⊂ D(A∗), A∗|Ω is bounded and
σ(Ã∗|Ω) = {iλ0}. Since {e(Ã∗|Ω)t,−∞ < t < +∞} is a group of isometries we
conclude, following [8, 13], that Ã∗|Ω = (iλ0)I |Ω. Note that due to relation (3)
we have the inclusion X̃∗ ⊂ X̂∗, therefore Ω ⊂ X̃∗ ⊂ X̂∗. That means that if
f̂ ∈ Ω ⊂ X̂∗ then

(êAt)∗f̂ = eiλ0tf̂ , t ∈ R.

Finally observe that the latter relation implies that

(eAt)∗f = eiλ0tf, t ∈ R,

where functionals f ∈ X ∗ are extensions of functionals f̂ ∈ Ω given by

f(x) = f̂(x̂), x ∈ x̂.

Therefore we get that iλ0 is an eigenvalue of A∗. This contradiction completes the
proof of Theorem 5.

Corollary. If the set σ(A) ∩ {λ : Reλ = ω0} is empty then equation (1) (or
semigroup {eAt, t ≥ 0}) does not have any maximal asymptotic.

Using the idea of the above proof one can also obtain the following Theorem
that complements the results of [10].

Theorem 9. Let the assumptions of Theorem 5 be satisfied and let f(t), t ≥ 0
be a positive function such that

(a) log f(t) is concave,
(b) for any x ∈ X the function ‖eAtx‖/f(t) is bounded.
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Then

(14) lim
t→+∞ ‖eAtx‖/f(t) = 0, x ∈ X.

Proof. Let f0(t) = f(t)e−ω0t and A0 = A − ω0I . It follows from the
assumption (b) and from (5) that f0(t) ≥ d > 0, t ≥ 0. On the other hand
log f0(t) = log f(t)−ω0t is a concave function. Denote h(t) = log f0(t)−log d ≥ 0
and f(t) = eh(t). Next we introduce the seminorm

l(x) = lim sup
t→+∞

(‖eA0tx‖/f(t)
)

and repeat all arguments of the proof of Theorem 5 with respect to the operator A0

and the function f(t). That gives ‖eA0tx‖/f(t) → 0, t → +∞ for any x ∈ X and
finally leads to (14). The proof is completed.

Remark 10. Let us observe that the main statement of the theorem on asymptotic
stability ([13, 8, 1]) follows from Theorem 9 in the case when f(t) ≡ 1 and ω0 = 0.
On the other hand, the theorem from [13] also states the inverse (see above):

“If ω0 = 0, f(t) ≡ 1 and conditions (i) of Theorem 5 and (b) of Theorem 9 hold
then the existence of a pure imaginary eigenvalue for A∗ guarantees that f(t) is a
maximal asymptotics”. This statement remains true for arbitrary ω0 and f(t) = eω0t.
However, the general statement:

“If σ(A)∩ {λ : Reλ = ω0} is at most countable and A∗ has an eigenvalue with
real part ω0 then a maximal asymptotics for (1) exists” turns out to be false (see
Example 1 below).

Example 1. In [13] we considered the example of the operator A:

Ax(·) = −
∫ s

0
x(τ)dτ, s ∈ [0, 1],

x(·) ∈ X = L2[0, 1]. This operator satisfies the assumptions of the theorem on
asymptotic stability and then equation (1) is asymptotically stable. That means that
the function f(t) ≡ 1 is not a maximal asymptotics of (1). Let us consider now a
more general case:

(15) Ax(·) = k

∫ s

0
x(τ)dτ, s ∈ [0, 1],

x(·) ∈ X = Lp[0, 1], where k ∈ C, k 
= 0, 1 ≤ p < ∞ and observe that A satisfies
the assumptions of Theorem 5. Indeed, σ(A) = {0} and the adjoint operator

A∗y(·) = k

∫ 1

s
y(τ)dτ,



2214 G. M. Sklyar

y(·) ∈ Lq[0, 1] as 1 < p < ∞ or y(·) ∈ L∞[0, 1] as p = 1, has no eigenvalues.
Thus, equation (1) has no maximal asymptotics.

On the other hand, if X = C[0, 1], k = 1 then equation (1) with the operator
given by (15) has a maximal asymptotics

fmax(t) =
∞∑

n=0

tn

(n!)2
.

This asymptotics is achieved for the solution corresponding to the initial data
x0(s) ≡ 1:

eAtx0(s) =
∞∑

n=0

(st)n

(n!)2
, s ∈ [0, 1].

This fact is explained by the existence of an eigenvalue of the operator A∗. Indeed,
it is easy to see that for the functional ϕ ∈ X∗ defined by ϕ(x(·)) = x(0) one has
A∗ϕ = 0. Of course, the same situation occurs for X = L∞[0, 1], but in this case
the determining of the eigenvector for A∗ is slightly more complicated (see [6]).

Note that the function fmax(t) is connected with the Bessel function of imaginary
argument I0(z) as

fmax(t) = I0(2
√

t).

This means (see [15]) that a maximal asymptotics can be also chosen by

f̃max(t) =
e2

√
t

2
√

πt
1
4

.

Finally, let X = Lp[0, 1] × C, 1 ≤ p < ∞, and A ∈ [X ,X ] be defined by
A(x(·), y) = (Ax(·), 0) = (

∫ s
0 x(τ)dτ, 0), where A is given by (15) with k = 1.

Then obviously ‖eAt‖ = ‖eAt‖ → +∞ as t → +∞. This shows that the semigroup
eAt does not have maximal asymptotics though 0 is an eigenvalue of A∗.

Example 2. In [11] we considered the following neutral type system:

ż(t) = A−1 ż(t − 1) +
∫ 0

−1
A2(θ)ż(t + θ)dθ +

∫ 0

−1
A3(θ)z(t + θ)dθ,

where A−1 is a constant n×n-matrix with det A−1 
= 0; A2, A3 are n×n-matrices
whose elements belong to L2(−1, 0). This equation is reduced to the form

(16) ẋ = Ax,

where A is a certain infinitesimal operator acting in the spaceX = Cn×L2(−1, 0; Cn).
It is shown in [11] that the spectral properties of the operator A are asymptotically
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defined by the matrix A−1. To illustrate this point let us consider for simplic-
ity the special case when A−1 is a Jordan box of order p = n corresponding to
the eigenvalue µ, |µ| ≥ 1, µ 
= 1, and let p ≥ 2. Denote by A the operator
A in the special case when A2 = A3 = 0. Then σ(A) = {λ00 = 0, λk =
log |µ|+ i(argµ + 2πk), k ∈ Z} and the following orthogonal decomposition holds

X =
⊕
k∈Z

V k ⊕ W 0,

where the invariant subspace W 0 corresponds to λ = λ00, dim W 0 = 2, A|W 0=0,
invariant subspaces V k, k ∈ Z, correspond to λ = λk, dimV k = p, and A|V k are
Jordan boxes of order p. In particular, this means that the semigroup {eAt, t ≥ 0}
has a maximal asymptotics

fmax(t) = tp−1|µ|t.

In general case, the operator A possesses a Riesz basis of finite dimensional invariant
subspaces (see [11]). More exactly, for an arbitrarily small r0 > 0 there exists
N ∈ N such that the infinite part of σ(A) is located inside the circles L k(λk) =
{λ : |λ−λk| < r0}, |k| > N , and the only finite number of eigenvalues are outside
of these circles. Moreover,

X =
∑
|k|>N

Vk + WN ,

where Vk are images of Riesz projectors corresponding to the spectrum concentrated
in Lk(λk), |k| > N , dim Vk = p and WN is the invariant subspace corresponding
to the spectrum located outside of these circles, dimWN = 2(N + 1)p. Besides, it
can be shown that

(17) A|Vk → A|Vk, k → ∞.

Now let us assume that the matrices A2(·) and A3(·) are chosen in such a way that

(18) Re σ(A) < log |µ|.

Then, due to Theorem 5, equation (16) does not have any maximal asymptotics.
Moreover, one can derive from (17), (18) that the function

ϕ(t) = ‖eAt‖/tp−1|µ|t

is bounded on the semiaxis (0, +∞). Thus, applying Theorem 9, we conclude that
for any x ∈ X

‖eAtx‖/tp−1|µ|t → 0, t → +∞.
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On the other hand, it is shown in [11] that there exists a solution eAtx0 for which

‖eAtx0‖/|µ|t → ∞,

i.e. if, for example, |µ| = 1 then equation (16) is not asymptotically stable.
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