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CONSISTENCY OF BOOSTING UNDER NORMALITY

W. Drago Chen and C. Andy Tsao*

Abstract. Boosting is one of the important ensemble classifiers emerging in
the past decade. [10] provides a statistical insight: AdaBoost can be viewed
as a Newton-like updates minimizing exponential criterion. This powerful
insight, however, does not address (1) whether the Newton update converges
(2) whether the update procedure converge to the Bayes procedure if it does
converge. Under a normal-normal setting, we cast the learning problem as a
Bayesian minimization problem. It is shown that the Bayes procedure can be
obtained via an iterative Newton update minimizing exponential criterion. In
addition, the step sizes of AdaBoost are shown to be highly effective and lead
to a one-step convergence. While our results based on strong distributional
assumption, they require little conditions on the complexity of base learners
nor regularization on step sizes or number of boosting iterations.

1. INTRODUCTION

Boosting is a method to construct accurate outputs by combining some simple
classifiers. Roughly speaking, it is a learning procedure starts with a weak learner
and re-weights the data by giving the misclassified data higher weights each time,
then it takes a weighted majority vote to make final predictions.
Earlier studies show that boosting reduces the training error under the weak base
hypothesis assumption while upper bounds of its testing errors can be obtained in
some PAC (Probably Approximately Correct) sense, see, for example, [9]. More
recent advancements are referred to [17] and references therein. Empirically, it has
been observed that boosting is relatively resistant to overfitting in many practical
applications with less noisy data. These empirical successes motivate theoretical
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investigations, see, for example, [18] and [11]. Recent studies provide a much
clearer picture of Bayes consistency of boosting. [5] shows that population version
boosting is Bayes consistent and [12] shows boosting is process consistent for the
sample version. Other asymptotic aspects are referred to, for example, [6, 20] and
[2].
[10] shows that boosting can be viewed as a stagewise Newton update minimizing
exponential criterion. This interpretation catches much attention, specially from
statistical community. It also inspires ensuing investigations. For example, the
exponential loss approximation motivates other loss approximations and in turn lead
to new variations of boosting-like algorithms. However, that study fails to address
two important questions
• whether the Newton update converges?
• does the update procedure converge to the (optimal) Bayes procedure if it

does converge?

In the literature, the Bayes consistency refers to the convergence, to the optimal
Bayes procedure, of boosting algorithm as it iterates forever. In this study, we in-
vestigate the Bayes consistency of boosting along the line of [10] using a population
version approach. The problem of consistency of population version boosting has
been studied actively by, for example, [5, 1, 13, 3, 15, 14] and [19]. Recently, [2]
shows the regularized AdaBoost (condition on the stopping strategy) is consistent
under mild conditions on the complexity of base learners and their span. However,
our approach differs from the forementioned studies in many aspects. This approach
is inspired by the observation that the performances of boosting depend greatly on
the data. That is, the problems of consistency, such as whether conditions on the
base learners should be imposed or the necessity of early stopping, might depend
on the underlying distribution. So far as we know, this aspect has not been fully
explored. In this study, we impose normal-normal distributional assumption on the
sample and recast the classification problem as a Bayesian optimization problem.
This framework is well within statistical domain and many concepts, tools and pro-
cedures are readily available. In fact, we have shown that FFHT ((6), population
AdaBoost given in [10]) converges to the Bayes estimate and no regularization nor
the conditions on the base learners are required.

The rest of the paper is organized as follows. Section 2 briefly reviews [10],
particularly, the interpretation of boosting and highlight some advantages of this
approach. Under a normal-normal setting, Section 3 studies the convergence of
population version algorithms by minimizing the conditional approximate risk. The
convergence of two iterative algorithms, FPIB ((5), population iterative Bayes pro-
cedure) and FFHT , are established and contrasted. We then generalize the results
for high dimensional explanatory variables under uncorrelated multivariatenormal-
normal setting. Concluding comments and discussion are summarized in Section 4.



Consistency of Boosting under Normality 2127

2. BOOSTING AS ITERATIVE NEWTON UPDATE

AdaBoost, see for example, [9], is one of the “mother” boosting algorithm
which inspires many variants and modifications. It captures the main structure and
features of boosting algorithm. In this study, we will focus on AdaBoost for its
easy exposition and simplicity for theoretical analysis. Consider the training data
{(xi, yi)}ni=1 where xi ∈ X and yi ∈ Y = {±1}.

AdaBoost

(1) Initialize D1(i) = w1(i) = n−1 for i = 1, 2, · · · , n.

(2) Repeat for t = 1, 2, · · · , T
• Train weak base learner using the weight Dt on the data.
• Obtain the (trained) learner ft : X → Y and calculate the loss

L[ft(xi), yi] = 1[ft(xi) �=yi].

• Compute the error

εt = EDtL[ft(xi), yi] =
n∑

i=1

Dt(i)1[ft(xi) �=yi]

and
βt =

1− εt

εt
, αt = lnβt.

• Update the weights for i = 1, 2, · · · , n.

wt+1(i) = wt(i)eαtL[ft(xi),yi] = wt(i)β
1[ft(xi) �=yi]

t

• Normalization for i = 1, 2, · · · , n.

Dt+1(i) = wt+1(i)

(
n∑

i=1

wt+1(i)

)−1

(3) Output the final hypothesis

F (x) = sign

[
T∑

t=1

αtft(x)

]
.

Typically, the iteration number T is fixed beforehand. [10] provides a powerful
insight to AdaBoost. Specifically, the classifier F , without loss of generality, can
be assumed as a real-valued function mapping from X to �. Then the task of binary
classification can be viewed as determining the F with the right sign minimizing
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EX,Y {1[Y F (X)<0]}. So far as the sign is concerned, the final hypothesis in step (3)
of the boosting algorithm can be replaced by

F (x) =
T∑

t=1

αtft(x).

[10] renders AdaBoost as a Newton update minimizing an approximate risk
J(F ) ≡ EX,Y {e−Y F (X)} ≥ EX,Y {1[Y F (X)<0]} and obtain the update formula

F (x)← F (x) +
1
2

ln
(

1− err
err

)
f(x)

w(x, y)← w(x, y) exp
[
ln
(

1− err
err

)
1[y �=f(x)])

]

where f(x) = sign[Ew{Y |x}] and err = Ew{1[Y f(x)<0]|x}.
Alternatively,

Ft+1(x) = Ft(x) + αtf(x)(1)

where
αt = ln

(
1− εt

εt

)
, wt(x, y) = exp[−yFt(x)],

and
εt = Ewt{1[Y f(x)<0]} =

EY |x{wt(x, Y )1[Y f(x)<0]}
EY |x{wt(x, Y )} .

[10] provides a convenient framework for further investigation. For example,
variants of boosting algorithms can be constructed by replacing the exponential
criterion by other approximate loss functions. However, the convergence issue of
the (population version) of Newton update with respect to the exponential criterion
is not addressed. This question of convergence motivates the current study.

3. RESULTS

We now introduce the Bayesian optimization formulation for analyzing boosting
algorithm. For easy exposition, we will assume X is a continuous (univariate) ran-
dom variable with sampling probability density function fX(x|θ) with the parameter
θ and the prior distribution of θ is π(θ). Let the posterior distribution of θ given x

is π(θ|x) and y = g(θ) for any function g with range Y . Then the objective is to
find a classifier F minimizing

J(F ) = Eπ(θ|x)

{
e−g(θ)F (x)

}
.(2)
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This problem can be considered as a Bayesian estimation problem or more precisely
a Bayesian minimization problem where the uncertainty of θ affecting the objective
function through g. As a starting point, we impose the well-studied normal-normal
distributional assumption. Precisely, assume X ∼ N (θ, σ2), where θ and σ2 are the
normal parameters. Let π(θ) be the conjugate prior and π(θ) ∼ N (µ, τ2), where
µ and τ 2 are known. Standard calculation shows the posterior of θ given x is
π(θ|x) ∼ N (µx, ρ−1), where

µx =
1
ρ

( µ

τ2
+

x

σ2

)
=

σ2µ + τ2x

σ2 + τ2
and ρ =

1
τ2

+
1
σ2

=
σ2 + τ2

σ2τ2
.

And the marginal density of X is

m(x) =
1√

2πρστ
exp
{
− (µ− x)2

2(σ2 + τ2)

}
.

Consider the estimation problem of

g(θ) = sign(θ) = 2(1[θ>0])− 1 ∈ Y.(3)

where 1A denotes the indicator function of set A. This choice of g aims to represent
the binary response variable in the binary classification problem.

Now we follow the steps similar to [10]. Firstly,

J(F + f) = Eπ(θ|x)

{
e−g(θ)[F (x)+f(x)]

}
≈ J̃(F + f) = Eπ(θ|x)

{
e−g(θ)F (x)[1− g(θ)f(x) + g2(θ)f2(x)/2]

}
= Eπ(θ|x)

{
e−g(θ)F (x)[1− g(θ)f(x) + f2(x)/2]

}
.

The minimizer f can then be found by differentiation

f(x) =
Eπ(θ|x)

{
g(θ)e−g(θ)F (x)

}
Eπ(θ|x)

{
e−g(θ)F (x)

}
=

e−F (x)Φ(
√

ρµx)− eF (x)[1− Φ(
√

ρµx)]
e−F (x)Φ(

√
ρµx) + eF (x)[1− Φ(

√
ρµx)]

.(4)

Here f(x) is the greedy update step for Bayesian optimization of g(θ) with
respect to the approximate conditional risk J̃ . Hence

F (x)← F (x) + f(x)

= F (x) +
Φ(
√

ρµx)− e2F (x)
[
1−Φ(

√
ρµx)

]
Φ(
√

ρµx) + e2F (x)
[
1−Φ(

√
ρµx)

] .
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The procedure can be expressed as an iterative procedure, for t = 1, 2, · · ·
FPIB,t+1(x) = FPIB,t(x) + ft(x)

= FPIB,t(x) +
Φ(
√

ρµx)− e2FPIB,t(x)
[
1−Φ(

√
ρµx)

]
Φ(
√

ρµx) + e2FPIB,t(x)
[
1−Φ(

√
ρµx)

] .(5)

The subscript PIB denotes this algorithm is an (population) iterative Bayesian pro-
cedure. Immediately questions arise

• Does FPIB,t(x) in (5) converge as t goes to infinity?
• If FPIB,t(x) does converge, does it converge to the optimal Bayes procedure

with respect to 0− 1 loss?

To answer the questions, we need the following lemmas. Their proofs are standard
or straightforward thus omitted.

Fixed Point Theorem. If ϕ is a contraction of � → �, that is, there exists
α ∈ (0, 1) such that |ϕ(x)− ϕ(y)| < α|x − y| for all x, y ∈ �, then there exists
one and only one x ∈ � such that ϕ(x) = x.

Cauchy-Schwarz Inequality. For any real ai, bi, i = 1, 2, · · · , n, we have(
n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
≥
(

n∑
i=1

aibi

)2

.

Lemma 1. For all x 
= 0, 2(ex−1)
x(ex+1)

< 1.

Theorem 1. For any initial FPIB,1(x), as t goes to infinity

FPIB,t(x)→ Fπ(x) =
1
2

ln
(

Φ(
√

ρµx)
1−Φ(

√
ρµx)

)
.

Proof. Substitute FPIB,t(x) = ut and define

ϕ(u) = u +
a− be2u

a + be2u
.

Now (5) can be expressed in iterative form

ut+1 = ϕ(ut)

where a = Φ(
√

ρµx), b = 1 − Φ(
√

ρµx) ∈ (0, 1). We will first show that ϕ is a
contraction and then find its fixed point. Since
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|ϕ(u)− ϕ(v)| =
∣∣∣∣u +

a− be2u

a + be2u
− v − a− be2v

a + be2v

∣∣∣∣
=
∣∣∣∣1− 2ab(e2u− e2v)

(u− v)(a + be2u)(a + be2v)

∣∣∣∣ |u− v|.

By Cauchy-Schwarz Inequality

(a + be2u)(a + be2v) =
[
(
√

beu)2 +
√

a
2
] [√

a
2 + (

√
bev)2

]
≥
(√

abeu +
√

abev
)2

= ab(eu + ev)2.

Thus for any u 
= v

0 <
2ab(e2u− e2v)

(u− v)(a + be2u)(a + be2v)
≤ 2ab(eu + ev)(eu − ev)

(u− v)ab(eu + ev)2

=
2(eu − ev)

(u− v)(eu + ev)
=

2(eu−v − 1)
(u− v)(eu−v + 1)

=
2(ex − 1)
x(ex + 1)

< 1. (x = u− v)

Hence by fixed point theorem, the function ϕ is a contraction of � → � and there
exists one and only one fixed point. Straightforward calculation shows that the fixed
point is

Fπ(x) =
1
2

ln
(

Φ(
√

ρµx)
1− Φ(

√
ρµx)

)
.

Note that Fπ(x) is a function of the ratio of posterior probabilities of g(θ) and
1 − g(θ) thus it achieves the optimal Bayes risk. The proof is straightforward and
refers to, for example, [5]. In other words, so far as the sign is concerned, Fπ(x) is
essentially the optimal Bayes procedure. Theorem 1 shows that the greedy descent
(5) converges to the optimal Bayes procedure.

Although our conditional approximate risk minimization approach is similar to
[10], we impose a strong distributional assumption which allows detailed analysis
and addresses the convergent questions. A question immediately arises: whether the
population version AdaBoost as in [10] converges to the optimal Bayes procedure
if it does converge at all? Recall the greedy descent in [10] in our notations is

FFHT (x)← FFHT (x) +
1
2

ln
(

1− err
err

)
s(x)(6)

where s(x) is the sign of the greediest update step f in (4) and
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err =
Eπ(θ|x){1[s(x) �=g(θ)]e

−g(θ)FFHT (x)}
Eπ(θ|x){e−g(θ)FFHT (x)}

=




eFFHT (x)[1−Φ(
√

ρµx)]
e−FFHT (x)Φ(

√
ρµx) + eFFHT (x)[1− Φ(

√
ρµx)]

, if s(x) = +1,

e−FFHT (x)Φ(
√

ρµx)
e−FFHT (x)Φ(

√
ρµx) + eFFHT (x)[1− Φ(

√
ρµx)]

, if s(x) = −1.

So
1− err

err
=
(

Φ(
√

ρµx)
1− Φ(

√
ρµx)

e−2FFHT (x)

)s(x)

.

And
1
2

ln
(

1− err
err

)
=

s(x)
2

[
ln
(

Φ(
√

ρµx)
1−Φ(

√
ρµx)

)
− 2FFHT (x)

]
.

Thus (6) becomes

FFHT (x)← FFHT (x) +
s2(x)

2

[
ln
(

Φ(
√

ρµx)
1− Φ(

√
ρµx)

)
− 2FFHT (x)

]

=
1
2

ln
(

Φ(
√

ρµx)
1−Φ(

√
ρµx)

)
.

That is, AdaBoost in the sense of [10] is a one-step convergent algorithm and
converges to the optimal Bayes procedure. In other words, AdaBoost is very effec-
tive and performs even better than the greedy descent (5) under our distributional
settings. One caveat: this comparison is a population-version comparison and does
not necessarily transcribe to the sample-version superiority of AdaBoost.
The normal-normal setting allows us to study the convergence and Bayes risk of
population version of boosting. Along this line, we generalize the results to high
dimensional cases. Precisely, let X be a multivariate normal random vector de-
noted as X = (X1, · · · , Xp)t ∼ MN (θ, Σ), where θ = (θ1, · · · , θp)t and Σ =
diag(σ2

1, · · · , σ2
p) are multivariate normal parameters. Let π(θ) be the conjugate

prior and π(θ) ∼ MN (µ, T ), where µ = (µ1, · · · , µp)t and T = diag(τ2
1 , · · · , τ2

p )
are known. Then the marginal density of X is

m(x) =
p∏

j=1

1√
2πjρjσjτj

exp

{
− (xj − µj)2

2(σ2
j + τ2

j )

}
,

and the posterior of θ given x is

π(θ|x) =
p∏

j=1

√
ρj√
2π

exp


−ρj

2

[
θj − 1

ρj

(
µj

τ2
j

+
xj

σ2
j

)]2

 .



Consistency of Boosting under Normality 2133

Note that π(θ|x) ∼MN (µx, R), where

µx = (µx,1, · · · , µx,p)t, µx,j =
1
ρj

(
µj

τ2
j

+
xj

σ2
j

)
=

σ2
j µj + τ2

j xj

σ2
j + τ2

j

,

and
R = diag(ρ−1

1 , · · · , ρ−1
p ), ρj =

1
τ2
j

+
1
σ2

j

=
σ2

j + τ2
j

σ2
j τ2

j

.

While we generalize the setting from univariate explanatory variable to high
dimensional explanatory variables, our problem remains the binary classification
problem. Define

g(θ) = sign(
p∏

j=1

θj) = 2(1[
∏p

j=1 θj>0])− 1 ∈ {±1}.(7)

Note that (7) is a natural extension to (3). Admittedly, we do not claim this choice
necessarily reflects the classification problem arised in practice but rather a choice
of analytical convenience. Nonetheless, as a starting point, it provides a clearer
picture of how the components of the boosting-like algorithm knitted together.

Following similar derivations as in one-dimensional case, it can be shown that
the population iterative Bayesian procedure can be expressed as an iterative proce-
dure, for t = 1, 2, · · ·

FPIB,t+1(x) = FPIB,t(x) +
(1 + ΦS)− e2FPIB,t(x)(1−ΦS)
(1 + ΦS) + e2FPIB,t(x)(1−ΦS)

.

Furthermore

Theorem 2. For any initial FPIB,1(x), as t goes to infinity

FPIB,t(x)→ Fπ(x) =
1
2

ln
(

1 + ΦS

1− ΦS

)
.

Details are referred to [8]. This theorem also shows that the Newton-like iter-
ation converges to the optimal Bayes procedure. Straightforward calculation also
shows that, under the same setting, the generalized population version AdaBoost as
in [10] converges to the optimal Bayes procedure as well.

4. CONCLUSION AND DISCUSSION

[10] renders population version AdaBoost as a Newton update minimizing an
approximate exponential criterion. Under a normal-normal setting, the classification
problem is recasted as a Bayesian minimization problem. We derive an iterative al-
gorithm and contrast with the population AdaBoost derived in [10]. It is shown
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that the optimal Bayes procedure can be obtained via an iterative Newton update
minimizing exponential criterion. In addition, the step sizes of AdaBoost are shown
to be highly effective and lead to a one-step convergence. Contrast to many pop-
ulation theoretical results in the literature, we do not impose assumption on the
base learners nor the functional relation between Y and X–but the distributional
assumption on the response and the explanatory variables. With suitable choices
of the hyperparameter, the distribution can represent rather noisy data. Even under
these circumstances, the consistent results remain and neither early stopping nor
regularization in step sizes are required. This is very different from other popula-
tion theoretical results for boosting-like algorithms. Again, we warn the readers that
our results are of population version thus may not directly imply similar results in
finite-sample implementations.

The distributional assumption mainly serves as an alternative theoretical assump-
tion for analysis of the convergence. This is different from many existing literature
where the assumptions are imposed on the base learners or the regularization. On
this regard, our results suggest a possible “statistical view” that can reconcile with
[16]. The readers are referred to [7] for more discussion. At this stage, we do not
claim this assumption is immediately applicable in practice. Nonetheless, this model
can be more appealing with suitable transformations on the explanatory variables.
Furthermore, when the sampling distribution and prior distribution can be suitably
modeled, plug-in Bayes procedure with good estimated parameter/hyperparameter
might be an alternative acceptable classifier.
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