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KINDS OF VECTOR INVEX

B. D. Craven

Abstract. Necessary Lagrangian conditions for a constrained minimum be-
come sufficient under generalized convex assumptions, in particular invex, and
duality results follow. Many classes of vector functions with properties related
to invex have been studied, but It has not been clear how far these classes are
distinct. Various inclusions between these classes are now established Some
modifications of invex can be regarded as perturbations of invex. There is a
stability criterion for when the invex property is preserved under small pertur-
bations. Some results extend to nondifferentiable (Lipschitz) functions.

1. INTRODUCTION

For a differentiable constrained optimization problem, necessary Lagrangian con-
ditions for a minimum become also sufficient under convex assumptions, and various
duality results follow. It is well known that convex can be weakened to various kinds
of generalized convex. Many classes of generalized convex functions have been de-
fined and studied. To what extent are these classes significantly different? Many
are variants of invex vector functions, for which the vector function F (·) satisfies
F (x)−F (p) ≥ F ′(p)η(x, p),with a scale function η(·, ·) replacing x−p for convex
functions, and relate closely to duality questions for optimization problems.

Invexity for a vector function is much more restrictive than invexity of the
components, Various published result apply only to invex scalar functions, but do
not hold for vector functions. with possibly different scale functions for each.

Zǎlinescu (2008) has discussed eight recent papers on generalizations of invexity,
criticizing various imprecise definitions and trivial results. These include various
theorems that assume “Condition C”. However, the present paper deals with different
classes of generalized invex functions, which are well defined, but the relations
between them (and to Lagrangian conditions in optimization) need some study.
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Some generalized convexity properties are known to coincide, as e.g. in Capari
(2003). However, those results relate to real-valued functions.and must be extended
to vector-valued functions, to comply with the requirement that all component func-
tions in the optimization problem are invex with respect to the same scale function
η. But not all results for real-valued functions extend to vector functions. How-
ever, Capari’s result that (F , ρ)-invex coincides with ρ-invex extends to the vector
case, under an additional hypothesis that holds in the known applications. But, for
example, while Li, Dong and Liu (1997) show that a class of generalized-convex
real-valued functions called B-vex coincides with the class of quasiconvex functions,
this does not extend to vector-value functions, because vector-quasiconvex is not
the same as quasiconvex for each component.

Several other modifications of invex mean that a certain perturbation of a vector
function is invex. However, a slightly perturbed invex function may still be invex.
A stability criterion is given (in Section 6) for this to happen. Some of the results
extend to nondifferentiable (Lipschitz) functions (see Section 7).

The case of finitely many variables and components is presented. Similar result
will hold for abstract spaces and cone constraints.

2. BASIC IDEAS

Consider the differentiable vector minimization problem:

(P1) MIN f(x) subject to g(x) ≤ 0,

with differentiable vector functions f and g. For now, assume f has one component,
g has m components, and inequalities apply to each component. Assume that a
constraint qualification holds. Then necessary Karush-Kuhn-Tucker conditions for
a minimum are:

(KKT ) f ′(p) + λg′(p) = 0, λg(p) = 0, λ ≥ 0, g(p) ≤ 0.

These necessary conditions become sufficient under some additional hypothesis.
In particular, it suffices if F := (f, g) is invex. Here F is invex at p if, for some
scale function η:

(∀x)F (x) − F (p) ≥ F ′(p)η(x, p). (invex);

and invex if it is invex at each p. Also F is called invex at p on s domain A if F
if the definition holds with x restricted to A.

However, the additional hypothesis need not restrict f when f(x) < f(p), nor g
when g(x) �≤ 0. This holds exactly with the well-known additional conditions that,
for some (vector) scale function η(·, ·),

f(x) < f(p) ⇒ f ′(p)η(x, p)< 0 pseudoinvex;
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g′(p)η(x, p) �≤ 0 ⇒ g(x) �≤ g(p) quasiinvex.

The function F my be called pqvex if f and g satisfy these conditions.
Since pseudoconvex is a special case of pseudoinvex, and quasiconvex is a

special case of quasiinvex, these cases need not be discussed here.
Note that pseudoconveity of a vector function f is not the same as pseudocon-

vexity of each component of f.
The function F is V-invex if, for some scale function η and positive scalars

βi(x, p) :
(∀x)(∀i)Fi(x) − Fi(p) ≥ F ′

i (p)βi(x, p)η(x, p).

These concepts may be applied, not only to sufficiency of (KKT), but also to
the relation between (P1) and several possible dual problems, including:

(P2) Wolfe dual: MAX f(u) + vg(u) subject to f ′(u) + vg′(u) = 0, v ≥ 0;

(P3)Mond-Weir dual: MAX f(u) subject to f ′(u)+vg′(u)=0, v≥0;vg(u)≥0;

(P4) Lagrangian dual: MAX v≥0MINuf(u) + vg(u).

The additional hypothesis required for duality is different for the different duals, so
the different kinds of invex are not all equivalent.

Th following theorem is Theorem 1 of Craven (2002). (Theorem 2.1 of Craven
(2005) gives a generalization for cone-constraints.)

Theorem 1. (Characterization). The differentiable function F : Rn → Rk is
invex at p if and only if:

[0 �= α ≥ 0, αF ′(p) = 0] ⇒ [0 �= α ≥ 0, α(F (x) − F (p)) ≥ 0].

Remark. Since [0 �= α ≥ 0, α(F (x) − F (p)) ≥ 0] ⇔ F (x) − F (p) �< 0,
Theorem 1 states that a weak stationary point of the vector function F (·) is a weak
minimum exactly when F (·) is invex. This result needs modification when invex
is generalized for a nonsmooth function (see Section 7).

The following theorem is a consequence of Theorem 1 (see Craven 2002, Theo-
rem 3). The additional hypotheses on gradients exclude the case of a zero multiplier
for f .

Theorem 2. For the minimization problem (P), assume that the gradient g ′(·)
has full rank (omitting inactive constraints), and f ′(·) �= 0.) Then the Wolfe dual
and the Lagrangian dual are equivalent if and only if (f, g) is invex.
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3. A COUNTER-EXAMPLE

Consider the problem (for fixed b > 0) :

MIN φ(x) := 1− 1
1 + b+ x

subject to − x ≤ 0. (P5).

The minimum is reached at x = 0, with Lagrange multiplier λ = (1 + b)−2. The
problem is clearly pqvex and V-invex. If (P5) is invex, then:

(∃η) φ(x)− φ(0) ≥ φ′(0)η and − x+ 0 ≥ η.

Hence:

0 ≤ φ(x) − φ(0) − φ′(0)x =
1
2
φ′′(0)x2 + o(x2) = −(1 + b)−3x2 + o(z2) < 0,

a contradiction. The Wolfe dual has the form:

MIN φ(u) + v(−u) subject to v ≥ 0,

for which φ(u) + φ′(u)u is maximized when u = 0.
But the Lagrangian dual gives:

MAX y≥0 MIN u≥0φ(u) = vu = MAX v≥0 1 − v1/2 − v(v1/2 − 1 − p),

but this is maximized at v = 0, rather than at v = (1 = b)−2.

To sum up, (P5) is pqvex and V-invex, but not invex. Wolfe duality and Mond-
Weir duality work for (P5)¡ but not Lagrangian duality. For another counter-example,
see Jeyakumar and Mond (1992).

4. RESTRICTED DIRECTIONS

Let f be pseudoinvex. Let f(x)−f(p) < 0. Since then sf ′(p)η(x, p)< 0 there
is δ > 0 so that f ′(p)η(x, p)+w < 0 whenever ‖w‖ < δ. For ε = δ/‖f(x)−f(p)‖,
there follows (as in Craven (2005), Theorem .1):

f ′(p)− ε−1(f(x)− f(p)) < 0.

Setting the scalar κ(x, p) := ε−1,

f(x) − f(p) ≥ κ(x, p)f ′(p)η(x, p) = f ′(p)κ(x, p)η(x, p).

If the constraints inactive at p are omitted; then the minimum is not affected,
and g(p) = 0. If g is quasiinvex, snd g(x) ≤ 0, then g ′(p)η(x, p) < 0. But when
does the same η apply to both f and g?
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Consider the property that, in the domain defined by f(x) < f(u), g(x) ≤ 0,

κ(x, p)−1(f(x) − f(p) ≥ f ′(p)η(x, p), /g′(p)η(x, p)≤ 0. (dinvex)

Applying Theorem 1 to (f, 0) instead of to (f, g) then shows that dinvex is equivalent
to:

[0 �= (τ, λ) ≥ 0, τf ′(p) + λg′(p) = 0] ⇒ κ(x.p)τ(f(x)− f(p)) + λ(0) ≥ 0

⇔ τ(f(x)− f(p) ≥ 0 ⇔ f(x)− f(p) �< 0

This has proved:

Theorem 3. Subject to a constraint qualification, dinvex is equivalent to
sufficient KKT.

5. RELATIONS

The following implications are thus established for differentiable problems. Note
that each ⇒ is not reversible.

Lagrange ⇔ invex ⇒ V-invex ⇒ Wolfe, Mond-Weir

Wolfe, MW ⇐ invex ⇒ pqvex ⇒ Wolfe, Mond-Weir

6. PERTURBED INVEX

A (vector) function F (·) is invex at p, thus F (·)−F (p) ≥ F ′(p)η(·, p), exactly
when F̃ (·) := F (·) − F (p) is invex at p, since F̃ ′(p) = F ′(p).

Let the vector function F = (f1, f2, . . . ) be V-invex at p. Then:

(∀x)(∀j) γj(x, p)f̃j(x) ≥ f ′j(p)η(x, p),

where γj(x, p) := βj(x, p)−1.

Theorem 4. The vector function F = (f1, f2, . . . ) is V-invex at p if and only
if γ#F := (γ1f1, γ2f2, . . . ) is invex at p.

Proof. Using γ ′
j(p)f̃j(p) = 0,

(γif̃j)(x) := γi(x)f̃j)(x) ≥ (γj f̃j)′(p)κjη(x, p),

where κj = γj(p, p)−1. Let h(x) := (γif̃j)(x). Assume (without loss of generality)
that η(x, p) = x− p+ o(‖x− p‖). Setting x− p = αd with ‖d‖ = 1 and α > 0,

h′(p)αd+ o(‖x− p‖) ≥ κjh
′(p)αd+ o(‖x− p‖),
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hence
(∀d) h′(p)(1− κj)η(x, p) ≥ 0, hence = 0.

Hence κj can be replaced by 1. Thus the vector function γ#F is invex at p.

Remark. A (vector) function F (·) is ρ-invex at p if:

F (.) − F (p) ≥ F ′(p)η(·, p)+ ψ(·)ρ,
where ρ is a constant vector, and ψ(x) > 0 when x �= p, ψ(p) = 0, and ψ′(p) = 0;
in particular, ψ(·) = ‖ ·−p‖2. Then F is ρ-invex at p exactly when F (·)−ψ(·)ρ is
invex at p. Given a nonzero multiplier (row) vector ζ ≥ 0, it follows that a sufficient
condition for ζF (·) to be invex at p is that ζρ ≥ 0, for then ζψ(·)ρ≥ 0.

A (vector) function F is (F , ρ)-convex at p if:

(∀x) F (x))− F (p) ≥ F (x, p, F ′(p)) + ψ(x)ρ,

where F (x, p, ·) i s sublinear increasing, and zero at p.

Theorem 5. (F , ρ)-convex inplies ρ−invex.

Proof. Define η(x, p) as the gradient at 0 of F (x, p, ·) at 0. Then, from
sublinear,

F (x) − F (p) ≥ F ′(p)η(x, p)+ ψ(·)ρ;
thus F (·) is ρ−invex at p.

Gulati and Gupta (2007) define higher-order F -convex by (in the present nota-
tion):

F (x) − F (p) ≥ F (x, p, F ′(u) + hq(p, q)) + h(p, q) + qThq(p, q,

where h is an auxiliary function and hq denotes partial derivative. If F (x, p, ·) is
sublinear, with gradient at 0 denoted by η(x, p), then the stated property implies a
generalized invex property

F (x) − F (p) ≥ (F ′(u) + hq(p, q))η(x, p)+ h(p, q) + qThq(p, q),

with η(·.·) as scale function.
A generalized B-vex real function f (Craven1995), generalizing B-vex of Weir

and Mond (1988), satisfies

f(p+ Ω(λ, x− p) ≤ (1− bf(p) + bf(x),

in which b = b(p, x, λ) ∈ (0, 1). (While a B-vex real function is quasiconvex, this
does not extend to vector functions.) If, .as λ ↓ 0, there hold:

Ω(λ, x, p) = λη(x, p) + o(λ) and b(p, x, λ) = λθ(x, p) + o(λ),
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then
θ(x, p)[f(x)− f(p)] ≥ f ′(p)η(x, p).

Thus, if each component t of a vector function F is generalized B-vex, with the
same Ω for each (so η is the same), but different b, and if each θ(·, ·) > 0, then F
is V-invex.

Given an invex vector function F, how far can F be perturbed, while retaining
the invex property? Assume that x has n components, F has m components,
Consider a perturbation of F (x) to F̂ (x, q) where q is a perturbation parameter, and
F̃ (x, 0) = F (x). Suppose, for given x and p, that F (x)−F (p)−F ′(p)η ≥ 0, and
F̃ (·, ·) is C1. When is there a solution ξ to the inequality F̃ (x, q)− F̃(p, q) ≥Mqξ,
whereMq is the gradient of F̃ (x, q) with respect to x, and the perturbation parameter
q is small? According to Robinson’s stability theorem (Robinson, 1976), if φ(·, ·)
is C1,, φ(z.0) ≤ 0 has a solution z = p, and the stability condition holds:

0 ∈ int[φ(p, 0) + range φz(·, 0) + Rm
+ ],

then φ(z, q) ≤ 0 has a solution z = z(q) when ‖q‖ is sufficiently small, and, for
some positive γ. the distance:

d(p, {z : φ(z, q) ≤ 0}) < γd(0, φ(p, q)+ Rr
+]).

Applying this to the linear system

c := F (x, q)− F (p, q) ≥Mqz,

where F (x, 0) = F (x), and Mq = Fx(x, q), with a pertubation parameter q, it
follows that a solution z exists, when ‖q‖ is small, if a stability condition holds.
This has proved:

Theorem 6. If F (x) − F (p) ≥ F ′(p)η(x, p) for some η, and the stability
condition holds:

0 ∈ int [(F (x)− F (p)) + range (M0) + Rm
+ ],

then F (x, q) − F (p, q) ≥ Mqζ(x, p) has a solution for sufficiently small ‖q‖.
Moreover, the distance from η to the solution set of the inequality is less than a
constsnt multiple of the distance from F (x, q)− F (p, q)−M qζ to Rm

+ .

(Note that M is not generally surjective).

7. INVEX FOR NONSMOOTH VECTOR FUNCTIONS

In Craven (1988), a locally Lipschitz function F : Rn → Rk is called invex at
p if, for some scale function η:



1932 B. D. Craven

(∀x) F (x) − F (p) ≥ F o(p, η(x, p)),

where F o(p, ·) is the Clarke generalized gradient. An equivalent property is:

(∀x)(∀i)(∀ξ ∈ ∂Fi(p)) F (x) − F (p) ≥ ξη(x, p),

where ∂Fi(p)) is the Clarke generalized subdifferential. For another approach to
nondifferentiable invex, see Craven (1995 and 1999).

For each i, choose ξi ∈ ∂Fi(p)); denote by M the matrix with rows ξ1, ξ2, . . . .
If F (·) is invex, then the weaker property:

(∀x)F (x)− F (p) ≥Mη(x, p) (partial invex)

holds. If M is substituted for F ′(p) in Theorem 1, then there follows:

[0 �= α ≥ 0, αM) = 0] ⇒ [0 �= α ≥ 0, α(F (x)−F (p)) ≥ 0] ⇔ F (x) = F (p) �< 0.

Subject to a constraint qualification, necessary conditions for a minimum at
x = p of F1(x) subject to F(x) ≤ 0, F3(x) ≤ 0, . . . are that there exist ξi ∈ ∂Fi(p)
and multipliers λi ≥ 0, not all zero, such that:

∑

i

λiξi = 0.

Under a constraint qualification, the multiplier λ1 �= 0. Hence there holds:

Theorem 7. Subject to a constraint qualification, partial invex holds for some
ξi ∈ ∂Fi(p) if and only if the Wolfe dual and Lagrangian dual are equivalent.

The perturbation discussion of Section 6 may be applied to partial invex for the
npnsmooth case, with Fx(x, q) replaced by a matrix Mq, constructed as M above
from the generalized gradient, but now depending on the parsmeter q.

The (F , ρ)-convex property generalizes to the following;

(∀x)(∀θ ∈ ∂F (p)) F (x))− F (p) ≥ F (x, p, θ) + ψ(x)ρ,

where ∂F (p) is the Clarke generalized differential.

Theorem 8. Assume that F (x, p, ·) is sublinear and differentiable. Then
the generalized (F , ρ)-convex property implies ρ-invex, in terms of the Clarke
generalized gradient.

Proof. Denote by η(x, p) the gradient at 0 of F (x, p, ·). Then

(∀θ ∈ ∂F (p)) F (x) − F (p) ≥ θη(x, p) + ψ(x)ρ.

Hence
F (x) − F (p) ≥ F 0(p; η(x, p)+ ψ(x)ρ.
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