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THE ASYMPTOTIC TIAN-YAU-ZELDITCH EXPANSION
ON RIEMANN SURFACES WITH CONSTANT CURVATURE

Chiung-ju Liu

Abstract. Let M be a regular Riemann surface with a metric which has
constant scalar curvature ρ. We give the asymptotic expansion of the sum of
the square norm of the sections of the pluricanonical bundles Km

M . That is,

dm−1∑
i=0

‖Si(x0)‖2
hm

∼ m(1 +
ρ

2m
) + O

(
e−

(log m)2

8

)
,

where {S0, · · · , Sdm−1} is an orthonormal basis for H0(M, Km
M ) for suffi-

ciently large m.

1. INTRODUCTION

Let M be an n-dimensional compact complex Kähler manifold with an ample
line bundle L over M . Let g be the Kähler metric on M corresponding to the Kähler
form ωg = Ric(h) for some positive Hermitian h metric on L. Such a Kähler metric
g is called a polarized Kähler metric. The metric h induces a Hermitian metric hm

on Lm for all positive integers m. Let {S0, · · · , Sdm−1} be an orthonormal basis
of the space H0(M, Lm) with respect to the inner product

(1.1) (S, T ) =
∫

M
〈S(x), T (x)〉hmdVg,

where dm = dimH0(M, Lm) and dVg =
ωn

g

n! is the volume form of g. The quantity

(1.2)
dm−1∑
i=0

‖Si(x)‖2
hm
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is related to the existence of Kähler-Einstein metrics and stability of complex mani-
folds. A lot of work has been done for (1.2) on compact complex Kähler manifolds.
Tian [6] applied Hömander’s L2-estimate to produce peak sections and proved the
C2 convergence of the Bergman metrics. Later, Ruan [5] proved the C∞ conver-
gence. About the same time, Zelditch [7] and Catlin [4] separately generalized the
theorem of Tian by showing there is an asymptotic expansion

(1.3)
dm−1∑
i=0

‖Si(x)‖2
hm

∼ a0(x)mn + a1(x)mn−1 + a2(x)mn−2 + · · ·

for certain smooth coefficients aj(x) with a0 = 1. In [10], Lu proved that each
coefficient aj(x) is a polynomial of the curvature and its covariant derivatives. In
particular, a1 = ρ

2 , where ρ is the scalar curvature of M . These polynomials can be
found by finitely many steps of algebraic operations. Recently, Song [3] generalized
Zelditch’s theorem on orbifolds of finite isolated singularities. The information on
the singularities can be found in the expansion.

On the Riemann surfaces with bounded curvature, Lu [9] proved that there is
a lower bound for (1.2). Later, the result of Lu and Tian [8] implies that on the
Riemann surfaces with constant scalar curvature ρ, the asymptotic expansion (1.3)
is given by

dm−1∑
i=0

‖Si(x0)‖2
hm

∼ m(1 +
ρ

2m
) + O

(
1

mp

)

for any p > 0. In the current paper, we obtain a more precise result for (1.3).

Theorem 1.1. Let M be a regular compact Riemann surface and KM be the
canonical line bundle endowed with a Hermitian metric h such that the curvature
Ric(h) of h defines a Kähler metric g on M . Suppose that this metric g has
constant scalar curvature ρ. Then there is a complete asymptotic expansion:

dm−1∑
i=0

‖Si(x0)‖2
hm

∼ m(1 +
ρ

2m
) + O

(
e−

(log m)2

8

)
,

where {S0, · · · , Sdm−1} is an orthonormal basis for H 0(M, Km
M) for some m >

max{e20
√

5 + 2|ρ|, |ρ|4/3, 1
δ ,

√
2
|ρ|}, where δ is the injective radius at x0.

Our result indicates that the asymptotic expansion (1.3) is in exponential decay.
Englis [2] has an asymptotically expansion for the Berezin transformation on any
planar domain of hyperbolic type. He also showed that Berezin kernel [1] has

B̃(η, η) = m
(
1 + O(1)ρ0(0)

πm−3
2

)
,

where ρ0(0) is a positive constant.
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2. GENERAL SET UP

Let M be an n-dimensional compact complex Kähler manifold with a polarized
line bundle (L, h) → M . Choose the K-coordinates (z1, · · · , zn) on an open
neighborhood U of a fixed point x0 ∈ M . Then the Kähler form

ωg =
√−1
2π

n∑
α,β=1

gαβ̄dzα ∧ dz̄β

satisfies

(2.1) gαβ̄(x0) = δαβ̄ ,
∂p1+···+pngαβ̄

∂zp1
1 · · ·∂zpn

n
(x0) = 0,

for α, β = 1, · · · , n and any nonnegative integers p1, · · · , pn with p1+· · ·+pn 	= 0.
We also choose a local holomorphic frame eL of the line bundle L at x0 such

that a is the local representation function of the Hermitian metric h. That is,

Ric(h) = −
√−1
2π

∂∂̄ log a.

Under the K-coordinate, the function a has the properties

(2.2) a(x0) = 1,
∂p1+···+pn

∂zp1
1 · · ·∂zpn

n
(a)(x0) = 0

for any nonnegative integers p1, · · · , pn with p1 + · · ·+ pn 	= 0.
Let {S0, · · · , Sdm−1} be a basis of H0(M, Lm). Assume that at the point

x0 ∈ M ,
S0(x0) 	= 0, Si(x0) = 0, i = 1, · · · , dm − 1.

If the set {S0, · · · , Sdm−1} is not an orthonormal basis, we may do the following:
Let the metric matrix

Fij = (Si, Sj), i, j = 0, · · · , dm − 1

with respect to the inner product (1.1). By definition, (Fij) is a positive definite
Hermitian matrix. We can find a dm × dm matrix Gij such that

Fij =
dm−1∑
k=0

GikGjk.

Let (Hij) be the inverse of (Gij). Then {∑dm−1
j=0 HijSj} forms an orthonormal

basis of H0(M, Lm). The left hand side of (1.2) is equal to

(2.3)
dm−1∑
i=0

‖
dm−1∑
j=0

HijSj(x0)‖2
hm

=
dm−1∑
i=0

|Hi0|2‖S0(x0)‖2
hm

.
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Let (Iij) be the inverse matrix of (Fij). Denote that

(2.4)
dm−1∑
i=0

|Hi0|2 = I00.

In order to compute (2.4), we need a suitable choice of the basis {S0, · · · , Sdm−1}.
We select some of Tian’s peak sections in our basis. The following lemma is an
improved version of Tian’s result [6, Lemma 1.2], which is done by Lu and Tian.

Let Z
n
+ be the set of n-tuple integers P = (p1, · · · , pn) such that each pi is a

nonnegative integer for i = 1, · · · , n. For P ∈ Z
n
+, we denote that zP = zp1

1 · · ·zpn
n

and |P | = p1 + · · ·pn.

Lemma 2.1. ([Tian]). Suppose Ric(g) ≥ −Kωg , where K > 0 is a constant.
For P ∈ Z

n
+ and an integer p′ > |P |, let m be an integer such that

m > max{e20
√

n+2p′ + 2K, e8(p′−1+n)}.
Then there is a holomorphic section SP,m ∈ H0(M, Lm), satisfying

(2.5)
∣∣∣∣
∫

M

‖SP,m‖2
hm

dVg − 1
∣∣∣∣ ≤ Ce−

1
8
(logm)2 .

Moreover, SP,m can be decomposed as

SP,m = S̃P,m − uP,m

such that

(2.6) S̃P,m(x)=λPη

(
m|z|2

(logm)2

)
zP em

L =




λPzP em
L x∈{|z| ≤ logm√

2m
},

0 x∈M \ {|z| ≤ logm√
m

},

and

(2.7)
∫

M
‖uP,m‖2

hm
dVg ≤ Ce−

1
4
(logm)2,

where η is a smoothly cut-off function

η(t) =




1 for 0 ≤ t ≤ 1
2 ,

0 for t ≥ 1.

satisfying 0 ≤ −η ′(t) ≤ 4 and |η ′′(t)| ≤ 8 and

(2.8) λ−2
P =

∫
|z|≤ log m√

m

|zP |2amdVg.
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Proof. Define the weight function

Ψ(z) = (n + 2p′)η
(

m|z|2
(logm)2

)
log

(
m|z|2

(logm)2

)
.

A straightforward computation gives

(2.9)
√−1∂∂̄Ψ ≥ −100m(n + 2p′)

(logm)2
ωg.

By using (2.9), we can verify that

〈∂∂̄Ψ +
2π√−1

(Ric(hm) + Ric(g)), v∧ v̄〉g ≥ 1
4
m‖v‖2

g.

For P ∈ Z
n
+, consider the 1-form

wP = ∂̄η(
m|z|2

(logm)2
)zP em

L .

Since wP ≡ 0 in a neighborhood of x0, we have∫
M

‖wP‖2
hm

e−ΨdVg < +∞.

By [6, Prop. 2.1], there exists a smooth Lm-valued section uP such that ∂̄uP = wP

and

(2.10)
∫

M

‖uP‖2
hm

e−ΨdVg ≤ 4
m

∫
M

‖wP‖2
hm

e−ΨdVg < ∞.

By direct computation, we get
∫

M
‖uP ‖2

hm
e−ΨdVg ≤ C(log m)2(p−1)

mp

∫
log m√

2m
≤|z|≤ log m√

m

amdV0.

Under the K-coordinate, we have

am = em loga = em(−|z|2+O(|z|4)).

Hence we get
∫

M
‖uP‖2

hm
e−ΨdVg ≤ C1(logm)2(p−1+n)

mp+n
e−

1
2
(log m)2

for some constant C1. Let S̃P,m = λP η( m|z|2
(logm)2

)zP em
L and uP,m = λP uP . Use a

result in [10]
λ2

P ≤ C2m
n+|P |
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for some constant C2. Then we have∫
M

‖uP,m‖2
hm

dVg ≤ C(logm)2(|P |−1+n)e−
1
2
(logm)2.

Choosing m > e8(p′−1+n), we obtain∫
M

‖uP,m‖2
hm

dVg ≤ Ce−
1
4
(logm)2.

3. PROOF OF THEOREM 1.1

Proof. Let M be a smooth compact Riemann surface with a metric g that has
constant scalar curvature. Let x0 be a fixed point. Let

U = {x : dist(x, x0) < δ},
where δ is the injective radius at x0. It is well known that on a Riemann surface
there is an isothermal coordinate at each point on U . We may assume that there is
a holomorphic function z on U and it defines the conformal structure on U . That
is,

ds2 = gdzdz̄

and g > 0. The metric g satisfies

(3.1) � log g = −ρ, g(x0) = 1, and
∂g

∂z
(x0) = 0,

where
� = g−1 ∂2

∂z∂z̄

is the complex Laplace of M . Since the metric g has conformal structure, it is
rotationally symmetric. We can write (3.1) in polar coordinates (r, θ):

(3.2)
∂2g

∂r2
+

1
r

∂g

∂r
− 1

g
(
∂g

∂r
)2 = −4ρg2, g(0, θ) = 1,

∂g

∂r
(0, θ) = 0,

where z = reiθ, and |z|2 = r2. There exists a solution

(3.3) g =
1

(1 + ρ
2 |z|2)2

to (3.2) for |z| <
√

−2
ρ if ρ < 0. Suppose that there exists another solution g1 to

(3.2). We have
� log (g1/g) = 0 and g1(x0) = 1.
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For ρ < 0, let r0 <
√

−2
ρ . Since g and g1 are rotationally symmetric, they

remain constant on |z| = r0. The harmonic function log(g/g1) is a constant on
|z| ≤ r0 by Maximum Principle. By definition, we have g(x0) = g1(x0) = 1.
Therefore, the solution in (3.3) is unique around x0. By the same reason, g = g1

on {dist(x, x0) ≤ δ1} for some δ1 < δ for ρ ≤ 0.
Let a be the local representation of the metric h on KM such that

−
√−1
2π

∂∂̄ log a = ωg .

If we normalize a and a satisfies

(3.4) � log a = −1, a(x0) = 1,
∂a

∂z
(x0) = 0.

Since
− ∂2

∂z∂z̄
log a = g,

log a is also rotationally symmetric. Since

(3.5) a =




(
1 + ρ

2 |z|2
)− 2

ρ , if ρ 	= 0;

e−|z|2 , if ρ = 0.

satisfies (3.4), the local uniqueness is due to the same reason.
We need to choose sufficient large m such that log m√

m
< min{δ,

√
2
|ρ|}. With

these particular solutions of g and a, we further compute

λ−2
0 =

∫
|z|≤ log m√

m

amg

√−1
2π

dz ∧ dz̄

= 2
∫ log m√

m

o

(1 +
ρ

2
r2)−

2m
ρ

−2rdr

=
1

m + ρ
2

(
1 − (

1 +
ρ

2
(logm)2

m

)−1−2m
ρ

)
for ρ 	= 0.(3.6)

For m > max{|ρ|4/3, 10}, we have
∣∣ρ
2

(logm)2

m

∣∣ < 1/2. For ρ 	= 0, this gives

(
1 +

ρ

2
(logm)2

m

)−1−2m
ρ ≤ 2e

− 2m
ρ

(
ρ
2

(log m)2

m
− 1

2
( ρ
2

(log m)2

m
)2+···

)
≤ Ce−(log m)2 .

For ρ = 0, we have

λ−2
0 =

∫
|z|≤ log m√

m

e−m|z|2
√−1
2π

dz ∧ dz̄ =
1
m

(1 + O(e−(logm)2)).
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Hence we obtain

(3.7) λ−2
0 =

1
m + ρ

2

(
1 + O

(
e−(log m)2

))
.

From the properties of g and a, the isothermal coordinate (U, z) is a K-
coordinate. According to Lemma 2.1, we may choose two peak sections

S0,m = λ0(η(
m|z|2

(logm)2
)(dz)m − u0)

S1,m = λ1(η(
m|z|2

(logm)2
)z(dz)m − u1)

in H0(M, Km
M) for some m > e20

√
1+4 + 2|ρ|. Obviously, we have S0,m(x0) 	= 0

and S1,m(x0) = 0. Let the subspace

V = {S ∈ H0(M, Km
M)|S(x0) = 0, DS(x0) = 0},

where D is a covariant derivative on Km
M . Let T1, · · · , Tdm−2 be an orthonormal

basis of V . Let

Si =




Si,m if i = 0, 1

Ti−1 if 2 ≤ i ≤ dm − 1
.(3.8)

Then {Si}dm−1
i=0 forms a basis for H0(M, Km

M). Locally, each Ti has the form
fi(dz)m for some holomorphic function fi defined in U . The holomorphic function
fi has Taylor expansion as fi =

∑∞
α=2 biαzα in U , since Ti(x0) = 0 and DTi(x0) =

0 for 1 ≤ i ≤ dm − 2

Lemma 3.2. Let {Si}dm−1
i=0 be the basis of H 0(M, Km

M), defined in (3.8). For
m > e20

√
5 + 2|ρ|, the Hermitian matrix

(Si, Sj) =
∫

M
〈Si(x), Sj(x)〉hmdVg

is given by

(S0, S0) = 1 + O

(
e−

(log m)2

8

)
,

(S0, S1) = O

(
e−

(log m)2

8

)
,

(S1, S1) = 1 + O

(
e−

(log m)2

8

)
,

(S0, Si) = O

(
e−

(log m)2

8

)
,
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(S1, Si) = O

(
e−

(log m)2

8

)
,

(Si, Sj) = δij

for i, j = 2, · · · , dm − 1.

Proof. By definition, we have (Si, Sj) = δij for 2 ≤ i, j ≤ dm − 1. The
inner product of (Si, Si) for 0 ≤ i ≤ 1 is directly from Lemma 2.1. Since amg is
rotationally symmetric, we have∫

|z|≤ log m√
m

z̄αamgdV0 = 0 for arbitrary positive integer α.

Then we get

(S0, S1) = (S̃0, S̃1) + (λ0u0, S̃1) + (S̃0, λ1u1) + (u0, u1)

= O

(
e−

(log m)2

8

)
.

Consider

(S0, Si) =
∫

M
〈λ0(η(

m|z|2
(logm)2

)(dz)m − u0), fi−1(dz)m〉hmdVg

≤ λ0

∫
|z|≤ log m√

m

∞∑
α=2

b(i−1)αz̄αamgdV0 + λ0‖u0‖ · ‖Si‖.

Thus we have

(S0, Si) = O

(
e−

(log m)2

8

)
for 2 ≤ i ≤ dm − 1.

Similarly, consider

(S1, Sj) ≤ λ0

∫
|z|≤ log m√

m

∞∑
α=2

b(i−1)αzz̄αamgdV0+λ1‖u1‖·‖Si‖ for 2 ≤ i ≤ dm−1.

Since amg is rotationally symmetric,
∫
|z|≤ log m√

m
zz̄αamgdV0 = 0 for α ≥ 2. Hence

we obtain

(S1, Si) = O

(
e−

(log m)2

8

)
.

According to [10, Definition 3.1], the metric matrix (Fij) can be represented by
the block matrices
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(3.9) (Fij) =




(S0, S0) (S0, S1) M13

(S1, S0) (S1, S1) M23

M31 M32 E


 ,

where M13 = ((S0, S2), · · · , (S0, Sdm−1)), M23 = ((S1, S2), · · · , (S1, Sdm−1)),
M31 = MT

13, M32 = MT
23, and E is a (dm − 2) × (dm − 2) identity matrix. By

using [10, Lemma 3.1], we obtain

(3.10) I00 =
1

(S0, S0)
+ (

1
(S0, S0)

)2
(

(S0, S1) M13

)
M̃−1

(
(S1, S0)

M31

)
,

where

M̃ =
(

(S1, S1) M23

M32 E

)
− 1

(S0, S0)

(
(S1, S0)

M31

)(
(S0, S1) M13

)
.

Applying Lemma 3.2 in (3.10), we get

(3.11) I00 = 1 + O

(
e−

(log m)2

8

)
.

In order to evaluate the expansion of (2.3), we are left to find ‖S0(x0)‖2
hm

= λ2
0.

From (3.7), we have

λ2
0 = m(1 +

ρ

2m
)
(
1 + O

(
e−(log m)2

))
.

Therefore, the Tian-Yau-Zelditch expansion according to (2.3) on a Riemann surface
with constant scalar curvature ρ is

I00λ
2
0 = (1 + O

(
e−

(log m)2

8

)
)m(1 +

ρ

2m
)
(
1 + O

(
e−(logm)2

))

= m(1 +
ρ

2m
) + O

(
e−(

(log m)2

8
)

)

for m > max{e20
√

5 + 2|ρ|, |ρ|4/3, 1
δ ,

√
2
|ρ|}.
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