Vol. 14, No. 4, pp. 1647-1664, August 2010

This paper is available online at http://www.tjm.nsysu.edu.tw/

H^1 BOUNDEDNESS FOR RIESZ TRANSFORM RELATED TO SCHRÖDINGER OPERATOR ON NILPOTENT GROUPS

Yong Ding and Xinfeng Wu

Abstract. Let $\mathbb G$ be a nilpotent Lie groups equipped with a Hörmander system of vector fields $X=(X_1,\ldots,X_m)$ and $\Delta=\sum_{i=1}^m X_i^2$ be the sub-Laplacians associated with X. Let $A=-\Delta+W$ be the Schrödinger operator with the potential function W belongs to the reverse Hölder class B_q for some $q\geq D/2$, where D denote the dimension at infinity. In this paper, we prove that the Riesz transform $\nabla A^{-1/2}$ related to Schrödinger operator A is bounded from the Hardy space $H^1(\mathbb G)$ to itself.

1. Introduction and Main Results

Let $\mathbb G$ be a nilpotent Lie group associated to the Lie algebra $\mathcal G$. Given $X=\{X_1,\ldots,X_m\}$ a Hörmander system of left invariant vector fields on a nilpotent group $\mathbb G$ and ρ be the Carnot-Carathéodory distance with respected to X. For each $x\in\mathbb G$ and each r>0, we denote by $B(x,r)=\{y\in\mathbb G:\rho(x,y)< r\}$ the ball with center x and radius r. We fix a Haar measure dx on $\mathbb G$. For $E\subset\mathbb G$ measurable, we use |E| to denote the measure of E. Throughout this paper, $0\in\mathbb G$ denotes the unit element of $\mathbb G$. Denote V(t)=|B(0,t)|=|B(x,t)| on each $x\in\mathbb G$ and each t>0. Then, there exists a constant $C_1>0$ such that

(1.1)
$$C_1^{-1}t^d \le V(t) \le C_1t^d, \qquad \forall \ 0 \le t \le 1$$
$$C_1^{-1}t^D \le V(t) \le C_1t^D, \qquad \forall \ 1 \le t < \infty$$

Received December 10, 2008, accepted January 4, 2009.

Communicated by Yongsheng Han.

2000 Mathematics Subject Classification: 35J10, 42B35, 42B30.

Key words and phrases: Riesz transform, Schrödinger operator, Hardy space, Nilpotent groups. The research was supported by NSF of China (Grant: 10571015) and SRFDP of China (Grant 20050027025).

where d and D are local dimension and the dimension at infinity of \mathbb{G} . From this, we can see that there exists constants $C_2 = C_2(C_1, d, D)$ and $C_3 > 1$ such that

$$(1.2) C_2^{-1} \left(\frac{R}{r}\right)^d \le \frac{V(R)}{V(r)} \le C_2 \left(\frac{R}{r}\right)^D \forall 0 < r < R < \infty$$

$$(1.3) V(2r) \le C_3 V(r) \forall r > 0.$$

Let $\Delta=\sum_{i=1}^m X_i^2$ be the sub-Laplacian and $\nabla f=(X_1f,\ldots,X_kf)$ be the gradient. Consider the Schrödinger operator A on $\mathbb G$ defined by

$$A = -\Delta + W$$

where W is a nonnegative potential. We say that W belongs to the reverse Hölder class B_q for some q>1 if W satisfies the following inequality:

$$\left(\frac{1}{|B|} \int_{B} W(x)^{q} dx\right)^{1/q} \le C\left(\frac{1}{|B|} \int_{B} W(x) dx\right)$$

for every ball B in \mathbb{G} , where C is independent of B. We use R to denote the Riesz transforms $\nabla A^{-1/2}$ (associated to the Schrödinger operator A).

In the special case $\mathbb{G}=\mathbb{R}^n$, Shen [8] proved the L^p boundedness of the Riesz transform R.

Theorem A. Suppose that $W \in B_q$ for some $d/2 \le q \le d$. Then for 1 ,

$$||R(f)||_p \le C_p ||f||_p, \quad \forall \ f \in L^p(\mathbb{R}^n)$$

where $1/p_0 = 1/q - 1/d$.

In 1999, H-Q, Li [6] extended this result to general nilpotent Lie groups. More precisely, he showed the following

Theorem B. Suppose that $W \in B_q$ for some $D/2 \le q \le D$. Then for 1 ,

$$||R(f)||_{L^p(\mathbb{G})} \le C_p ||f||_{L^p(\mathbb{G})}, \quad \forall \ f \in L^p(\mathbb{G})$$

where $1/p_0 = 1/q - 1/D$.

Remark 1.1. Note that the L^2 -boundedness of R is always true under the conditions in Theorems B since $p_0 \ge 2$.

The doubling conditions (1.3) implies that the nilpotent groups \mathbb{G} is a space of homogeneous type in the sense of Coifman and Weiss [1]. Thus the function spaces

such as Hardy spaces H^1 , BMO, VMO are well defined on \mathbb{G} (see [1]). In this paper, we consider the endpoint case and we want to show the $H^1(\mathbb{G})$ boundedness of R.

Theorem 1.1. Suppose that $W \in B_q$ for some $D/2 \le q \le D$. Then R is bounded from $H^1(\mathbb{G})$ to itself. By duality, its adjoint $R^* := -A^{-1/2}\nabla$ is bounded from $BMO(\mathbb{G})$ to itself.

Remark 1.2. On \mathbb{R}^n , if $W \equiv 0$, then R is just the classical Riesz transform. It is well known that, the classical Riesz transform is bounded from $H^1(\mathbb{R}^n)$ to itself. Thus our results extend this result to the case that W belongs to the reverse Hölder class even in the classical setting $\mathbb{G} = \mathbb{R}^n$.

2. Some Lemmas

We first introduce the truncated operator of Riesz transform R. For $0 < \epsilon < 1$, the truncated operator R^{ϵ} is defined by

$$R^{\epsilon}f(x) = \frac{1}{\sqrt{\pi}} \int_{\epsilon}^{1/\epsilon} \nabla e^{-tA} f(x) \frac{dt}{\sqrt{t}}, \quad \forall f \in C_0^{\infty}(\mathbb{G}).$$

Lemma 2.1. For all $f \in C_0^{\infty}(\mathbb{G})$, $\lim_{\epsilon \to 0} R^{\epsilon} f = Rf$ in $L^2(\mathbb{G})$.

Proof. From $\langle Af,f\rangle \geq \langle Wf,f\rangle = \|W^{1/2}f\|_{L^2}^2$, it follows that

$$\sigma(A) \subset \mathbb{R}_+,$$

where $\sigma(A)$ denotes the spectrum of A and \mathbb{R}_+ denotes all nonnegative real numbers. Fix $\mu \in (0, \pi/2)$ and set $\Gamma_{\mu} = \{z \in \mathbb{C} : |\arg z| < \mu\}$, define

$$\psi_{\epsilon}(z) = \frac{1}{\sqrt{\pi}} \int_{\epsilon}^{1/\epsilon} e^{-tz} z^{1/2} \frac{dt}{\sqrt{t}}, \quad z \in \Gamma_{\mu} \quad \text{and} \quad \epsilon > 0.$$

For any function $g \in \mathbb{D}(A^{1/2})$ (the domain of $A^{1/2}$) and $\epsilon > 0$, define

$$u_{\epsilon} = \frac{1}{\sqrt{\pi}} \int_{\epsilon}^{1/\epsilon} e^{-tA} A^{1/2} g \frac{dt}{\sqrt{t}},$$

so that $u_{\epsilon} = \psi_{\epsilon}(A)g$. Observe that $\lim_{\epsilon \to 0} \psi_{\epsilon}(z) = 1$ uniformly on all compact subsets of Γ_{μ} . By H^{∞} functional calculus for A (see [7] and [11]), we therefore have

$$\lim_{\epsilon \to 0} \|A^{1/2} u_{\epsilon} - A^{1/2} g\|_{L^{2}(\mathbb{G})} = 0.$$

By the L^2 boundedness of the operator $\nabla A^{-1/2}$ (see Remark 1.1), we get

$$\lim_{\epsilon \to 0} \|\nabla u_{\epsilon} - \nabla g\|_{L^{2}(\mathbb{G})} = \lim_{\epsilon \to 0} \|\nabla A^{-1/2} A^{1/2} u_{\epsilon} - \nabla A^{-1/2} A^{1/2} g\|_{L^{2}(\mathbb{G})}$$

$$\leq C \lim_{\epsilon \to 0} ||A^{1/2}u_{\epsilon} - A^{1/2}g||_{L^{2}(\mathbb{G})} = 0.$$

By (2.1) and taking $g = A^{-1/2}f$, we obtain

$$\lim_{\epsilon \to 0} \left\| \frac{1}{\sqrt{\pi}} \int_{\epsilon}^{1/\epsilon} \nabla e^{-tA} f \frac{dt}{\sqrt{t}} - \nabla A^{-1/2} f \right\|_{L^{2}(\mathbb{G})} = 0.$$

Denote by $\tilde{p}_t(x,y)$ the heat kernel on \mathbb{G} , then there exists positive constants c, c_1 such that (see [10] p.48)

(2.1)
$$|X^{I} \tilde{p_t}(x,y)| \le ct^{-|I|/2} V(\sqrt{t})^{-1} \exp\left(-c_1 \frac{\rho(x,y)^2}{t}\right),$$

where X^I denotes the operator $X_1^{i_1} \dots X_m^{i_m}$ for $I = (i_1, \dots, i_m)$. Let $p_t(x, y)$ be the kernel of Schrödinger heat semigroup e^{-tA} . Since W is nonnegative, Trotter's formula implies that

(2.2)
$$0 < p_t(x,y) \le \widetilde{p}_t(x,y) \le cV(\sqrt{t})^{-1} \exp\left(-c_1 \frac{\rho(x,y)^2}{t}\right)$$

for all $x, y \in \mathbb{G}$, t > 0.

Lemma 2.2. For all $\gamma, t > 0$ and $s \geq 0$,

$$\int_{\rho(x,y) \ge s^{1/2}} e^{-2\gamma \rho(x,y)^2/t} dx \le C_{\gamma} V(\sqrt{t}) e^{-\gamma s/t} \quad \forall \ y \in \mathbb{G}.$$

Proof. First note that

$$\int_{\rho(x,y) \ge s^{1/2}} e^{-2\gamma \rho(x,y)^2/t} dx \le e^{-\gamma s/t} \int_{\mathbb{G}} e^{-\gamma \rho(x,y)^2/t} dx := e^{-\gamma s/t} I.$$

By (1.2), we have

$$I = \sum_{k=0}^{\infty} \int_{kt^{1/2} \le \rho(x,y) < (k+1)t^{1/2}} e^{-\gamma \rho(x,y)^2/t} dx$$

$$\le C \sum_{k=0}^{\infty} (k+1)^D e^{-\gamma k^2} V(\sqrt{t}) \le C_{\gamma} V(\sqrt{t}).$$

Inserting this estimate into the first one yields the desired conclusion.

The following lemma is a consequence of (2.2) and Lemma 2.2.

Lemma 2.3. For all $\gamma \in (0, 2c_1)$,

$$\int_{\mathbb{G}} |p_t(x,y)|^2 e^{\gamma \rho(x,y)^2/t} dx \le C_{\gamma} V(\sqrt{t})^{-1}, \quad \forall \ y \in \mathbb{G}, \ t > 0.$$

Now we give estimates for $\partial_t p_t(x,y)$ and $\nabla_x p_t(x,y)$. Here and hereafter we (sometimes) use ∂_t to denotes the operator $\frac{\partial}{\partial t}$ for simplicity.

Lemma 2.4. (i) There are constants C and c_2 such that,

$$\left| \frac{\partial}{\partial t} p_t(x, y) \right| \le \frac{C}{t} V(\sqrt{t})^{-1} e^{-c_2 \rho(x, y)^2 / t}.$$

(ii) The gradient of Schrödinger heat kernel vanishes at infinity; that is,

(2.3)
$$\lim_{\rho(x,0)\to\infty} |\nabla_x p_t(x,y)| = 0.$$

Proof. The conclusion (i) can be proved by using the same argument as [2], Proposition 4. We only prove (ii). Fix t>0 and $z_0\in\mathbb{G}$. Choose x_0 such that $\rho(x_0,z_0)>10$. Take a cutoff function $\eta\in C_0^\infty(B(x_0,2C_0))(C_0$ is a constant only depends on \mathbb{G}) such that $\eta=1$ on $B(x_0,3/2)$, and

$$(2.4) |\nabla \eta| + |\nabla^2 \eta| \le C,$$

see Lemma 3.2 in [6]. Since $(-\Delta + W + \partial_t) p_t(x, z_0) = 0$ for $x \in B(x_0, 2C_0)$ (indeed for all x away form z_0),

$$(2.5) p_t(x, z_0)\eta(x) = (-\Delta + \partial_t)^{-1}[(-\Delta + \partial_t)p_t\eta](x, z_0)$$

$$= \int_{\mathbb{G}} \widetilde{p}_t(x, y)(-\Delta_y + \partial_t)(p_t(y, z_0)\eta(y))dy$$

$$= \int_{\mathbb{G}} \widetilde{p}_t(x, y)[-W(y)p_t(y, z_0)\eta(y) - \Delta\eta(y)p_t(y, z_0)]dy$$

$$-2\int_{\mathbb{G}} \widetilde{p}_t(x, y)(\nabla_y\eta)(y) \cdot (\nabla_y p_t)(y, z_0)dy.$$

Integrating by parts shows

(2.6)
$$-2 \int_{\mathbb{G}} \widetilde{p}_{t}(x,y) (\nabla_{y} \eta)(y) \cdot (\nabla_{y} p_{t})(y,z_{0}) dy$$

$$= 2 \int_{\mathbb{G}} \nabla_{y} \widetilde{p}_{t}(x,y) \cdot (\nabla_{y} \eta)(y) p_{t}(y,z_{0}) dy + 2 \int_{\mathbb{G}} \widetilde{p}_{t}(x,y) \Delta \eta(y) p_{t}(y,z_{0}) dy.$$

By inserting (2.6) into (2.5), we get

$$p_t(x, z_0)\eta(x) = \int_{\mathbb{G}} \widetilde{p}_t(x, y) [-W(y)p_t(y, z_0)\eta(y) + \Delta \eta(y)p_t(y, z_0)] dy$$
$$+ 2 \int_{\mathbb{G}} \nabla_y \widetilde{p}_t(x, y) \cdot (\nabla_y \eta)(y) p_t(y, z_0) dy.$$

For $x \in B(x_0, 1)$, by the choice of η we get

$$|\nabla_{x} p_{t}(x, z_{0})| \leq C \left[\int_{B(x_{0}, 2C_{0})} |\nabla_{x} \widetilde{p}_{t}(x, y)| W(y) p_{t}(y, z_{0}) dy + \int_{B(x_{0}, 2C_{0})} |\nabla_{x} \widetilde{p}_{t}(x, y)| p_{t}(y, z_{0}) dy + \int_{B(x_{0}, 2C_{0})} |\nabla_{x} \nabla_{y} \widetilde{p}_{t}(x, y)| p_{t}(y, z_{0}) |dy \right]$$

$$:= C(I_{1} + I_{2} + I_{3}),$$

where C is constant in (2.4). When $\rho(x_0, 0) \to \infty$, using (2.1), we can easily get $I_2, I_3 \to 0$ since $p_t(y, z_0) \to 0$.

It thus remains to show $I_1 \to 0$ as $\rho(x_0, 0)$ goes to infinity. It is convenient to use the following auxiliary function

$$\varrho(x) := \sup_{r>0} \left\{ r : \frac{r^2}{V(r)} \int_{B(x,r)} W(y) dy \le 1 \right\}.$$

When $\rho(x_0, 0)$ is sufficiently large, we have

$$(2.7) B(x_0, 2C_0) \subset B(z_0, 2\rho(x_0, z_0)),$$

and

$$2\rho(x_0, z_0) > r_0 := \rho(z_0).$$

From $W \in B_q$ for q > D/2 > 1, we know that W(y)dy is a doubling measure (see [6], p.158). Thus, there exists $C_1 > 1$ such that for any r > 0

$$\int_{B(x_0,2r)} W(y)dy \le C_1 \int_{B(x_0,r)} W(y)dy.$$

From this and $r_0^2 V(r_0)^{-1} \int_{B(z_0,r_0)} W(y) dy \le 1$, it follows that

(2.8)
$$\int_{B(z_0,2\rho(x_0,z_0))} W(y)dy \le C_1^{\log_2\left(\frac{2\rho(x_0,z_0)}{r_0}+1\right)} \int_{B(z_0,r_0)} W(y)dy \\ \le Cr_0^{D-2} \left(\frac{2\rho(x_0,z_0)}{r_0}+1\right)^{\log_2 C_1}.$$

Hence, by (2.1), (2.7) and (2.8), we obtain

$$I_{1} \leq C_{t} \sup_{y \in B(x_{0}, 2C_{0})} e^{-c\rho(y, z_{0})^{2}/t} \int_{B(x_{0}, 2C_{0})} W(y) dy$$

$$\leq C e^{-c\rho(x_{0}, z_{0})^{2}/t} \int_{B(z_{0}, 2\rho(x_{0}, z_{0}))} W(y) dy$$

$$\leq C r_0^{D-2} e^{-c\rho(x_0, z_0)^2/t} \left(\frac{2\rho(x_0, z_0)}{r_0} + 1 \right)^{\log_2 C_0}$$

\$\to 0\$, when \$\rho(x_0, 0) \to \infty\$.

Thus the proof of this lemma is finished.

Lemma 2.5. For any γ , $0 < \gamma < \min\{2c_1, 2c_2\}$, and all $y \in \mathbb{G}$ and t > 0, we have

$$\int_{\mathbb{G}} \left(|\nabla_x p_t(x, y)|^2 + W(x) p_t(x, y)^2 \right) e^{\gamma \rho(x, y)^2 / t} dx \le \frac{C}{t V(\sqrt{t})}.$$

Proof. By (2.3) and integration by parts, we get

$$I(t,y) := \int_{\mathbb{G}} \left(|\nabla_x p_t(x,y)|^2 + W(x) p_t(x,y)^2 \right) e^{\gamma \rho(x,y)^2/t} dx$$

$$= \int_{\mathbb{G}} |\nabla_x p_t(x,y)|^2 e^{\gamma \rho(x,y)^2/t} dx + \int_{\mathbb{G}} W(x) p_t(x,y)^2 e^{\gamma \rho(x,y)^2/t} dx$$

$$\leq \left| \int_{\mathbb{G}} p_t(x,y) (-\Delta + W) p_t(x,y) e^{\gamma \rho(x,y)^2/t} dx \right|$$

$$+ \left| \int_{\mathbb{G}} p_t(x,y) \nabla_x (p_t(x,y)) \cdot \nabla_x (e^{\gamma \rho(x,y)^2/t}) dx \right|$$

$$:= I_1(t,y) + I_2(t,y).$$

By (2.2) and Lemmas 2.4 and 2.2, we get

$$I_{1}(t,y) = \left| \int_{\mathbb{G}} p_{t}(x,y) (\partial_{t} p_{t}(x,y)) e^{\gamma \rho(x,y)^{2}/t} dx \right|$$

$$\leq \frac{C_{\gamma}}{tV(\sqrt{t})^{2}} \int_{\mathbb{G}} e^{-(c_{1}+c_{2}-\gamma)\rho(x,y)^{2}/t} dx$$

$$\leq \frac{C}{tV(\sqrt{t})}.$$

On the other hand, notice that $\gamma < 2c_1$, we may choose γ satisfying $\gamma < \gamma' < c_1 + (\gamma/2)$. For any Lipschitz function f with respect to ρ with Lipschitz constant C, the distribution $X_i f$ is a locally integrable function and $\sum_1^k |X_i f|^2 \leq C^2$ a.e. (see [10], for instant). In particular,

$$(2.9) |\nabla \rho| \le 1 a.e.$$

Thus we have

$$I_{2}(t,y) \leq \int_{\mathbb{G}} p_{t}(x,y) |\nabla_{x} p_{t}(x,y)| e^{\gamma \rho(x,y)^{2}/t} 2\gamma \rho(x,y) / t dx$$

$$\leq \frac{C_{\gamma}}{\sqrt{t}} \int_{\mathbb{G}} p_{t}(x,y) |\nabla_{x} p_{t}(x,y)| e^{\gamma' \rho(x,y)^{2}/t} dx.$$

Let $\eta = \gamma/2$ and $\xi = \gamma' - \gamma/2$. Then using Hölder's inequality and Lemma 2.3, we have

$$I_{2}(t,y) \leq \frac{C}{\sqrt{t}} \left(\int_{\mathbb{G}} |p_{t}(x,y)|^{2} e^{2\xi\rho(x,y)^{2}/t} dx \right)^{1/2} \left(\int_{\mathbb{G}} |\nabla_{x} p_{t}(x,y)|^{2} e^{2\eta\rho(x,y)^{2}/t} dx \right)^{1/2}$$

$$\leq C_{\gamma} \frac{1}{\sqrt{t} V^{1/2}(\sqrt{t})} \left(\int_{\mathbb{G}} |\nabla_{x} p_{t}(x,y)|^{2} e^{\gamma\rho(x,y)^{2}/t} dx \right)^{1/2}$$

$$\leq C_{\gamma} \frac{1}{\sqrt{t} V^{1/2}(\sqrt{t})} \sqrt{I(t,y)}.$$

Hence

$$I(t,y) \le C_{\gamma} \left(\frac{1}{tV(\sqrt{t})} + \frac{\sqrt{I(t,y)}}{t^{1/2}V(\sqrt{t})^{1/2}} \right).$$

From the above inequality, we get $I(t,y) \leq \frac{C}{tV(\sqrt{t})}$. Thus, we finish the proof of Lemma 2.5.

Let $q_t(x,y) = p_t(x,y) - p_t(x,y_0)$. The following lemma can be proved by using the same argument in [3] thus we omit the proof here.

Lemma 2.6. There exist $\tau, c_3 > 0$ such that for all $\rho(y, y_0) \leq \sqrt{t}$,

$$|q_t(x,y)| \le C \left(\frac{\rho(y,y_0)}{\sqrt{t}}\right)^{\tau} V(\sqrt{t})^{-1} \exp\left(-\frac{c_3 \rho(x,y)^2}{t}\right).$$

Applying Lemmas 2.6 and 2.2, we can easily deduce

Lemma 2.7. If $\rho(y,y_0) \leq \sqrt{t}$, then for any $0 < \alpha < 2c_3$, there exists $C_{\alpha} > 0$ such that

$$\int_{\mathbb{G}} |q_t(x,y)|^2 e^{\alpha \rho(x,y)^2/t} \, dx \le \left(\frac{\rho(y,y_0)}{\sqrt{t}}\right)^{2\tau} \frac{C_{\alpha}}{V(\sqrt{t})}.$$

Lemma 2.8. If $\rho(y_0,y) \leq \sqrt{t}$, then for any $0 < \alpha < \min\{2c_3,1/2\}$, there exists $C'_{\alpha} > 0$ such that

$$\int_{\mathbb{G}} \left(|\nabla_x q_t(x, y)|^2 + W(x) q_t(x, y)^2 \right) e^{\alpha \rho(x, y)^2 / t} \, dx \le \frac{1}{t} \left(\frac{\rho(y, y_0)}{\sqrt{t}} \right)^{2\tau} \frac{C_\alpha}{V(\sqrt{t})}.$$

Proof. Denote $\xi(x,y,t) = \alpha \rho(x,y)^2/t$. By (2.9), it is easy to check for almost every $x \in \mathbb{G}$,

$$\frac{\partial \xi}{\partial t} + \frac{1}{4\alpha} |\nabla_x \xi|^2 \le 0.$$

Set

(2.10)
$$f(y,t) = \int_{\mathbb{G}} \left[|\nabla_x q_t(x,y)|^2 + W(x) q_t^2(x,y) \right] e^{\xi(x,y,t)} dx.$$

For simplicity, the variables x, y, t will be omitted and ∇ always denotes ∇_x in the proof below. By (2.3), integrating by parts yields,

$$f(y,t) = \int qe^{\xi}Aq - \int q\nabla q \cdot \nabla(e^{\xi}).$$

The Cauchy-Schwarz inequality shows that

$$(2.11) \quad f(y,t) \leq \left(\int q^2 e^{\xi}\right)^{1/2} \left[\left(\int e^{\xi} (Aq)^2\right)^{1/2} + \left(\int e^{\xi} (\nabla q \cdot \nabla \xi)^2\right)^{1/2} \right].$$

On the other hand, computing the time derivative of f in (2.10), we get

$$\begin{split} \partial_t f &= 2 \int e^{\xi} \nabla (\frac{\partial q}{\partial t}) \cdot \nabla q + \int e^{\xi} \left(|\nabla q|^2 + Wq^2 \right) \frac{\partial \xi}{\partial t} + 2 \int \frac{\partial q}{\partial t} Wq e^{\xi} \\ &\leq -2 \int e^{\xi} \nabla (Aq) \cdot \nabla q - \frac{1}{4\alpha} \int e^{\xi} (|\nabla q|^2 + Wq^2) |\nabla \xi|^2 - 2 \int AqWq e^{\xi} \\ &= -2 \int e^{\xi} (Aq)^2 + 2 \int Aq e^{\xi} \nabla \xi \cdot \nabla q - \frac{1}{4\alpha} \int e^{\xi} (|\nabla q|^2 + Wq^2) |\nabla \xi|^2 \\ &\leq -2 \int e^{\xi} (Aq)^2 + 2 \left(\int e^{\xi} (Aq)^2 \right)^{1/2} \left(\int e^{\xi} |\nabla q|^2 |\nabla \xi|^2 \right)^{1/2} \\ &- \frac{1}{4\alpha} \int e^{\xi} |\nabla q|^2 |\nabla \xi|^2, \end{split}$$

where in the third line we use Lemma 2.4 and integration by parts and in the last inequality we use the fact

$$-\frac{1}{4\alpha} \int Wq^2 e^{\xi} |\nabla \xi|^2 \le 0.$$

By (2.11) and (2.12), we have for 0 < c < 2

$$\partial_t f + c \frac{f^2}{\int e^{\xi} q^2} \le (-2 + c) \int e^{\xi} (Aq)^2 + (2 + 2c) \left(\int e^{\xi} (Aq)^2 \right)^{1/2} \left(\int e^{\xi} |\nabla q|^2 |\nabla \xi|^2 \right)^{1/2} + \left(c - \frac{1}{4\alpha} \right) \int e^{\xi} |\nabla q|^2 |\nabla \xi|^2.$$

If we choose $c = (2 - 4\alpha)/(1 + 16\alpha)$, then it is easy to check that

(2.13)
$$\partial_t f + c \frac{f^2}{\int e^{\xi} q^2} \le 0.$$

Denote

$$\phi(t) = \left(\frac{\rho(y, y_0)}{\sqrt{t}}\right)^{2\tau} \frac{C_{\alpha}}{V(\sqrt{t})}.$$

By (2.13) and Lemma 2.7, we have

(2.14)
$$\frac{\partial_t f}{f^2} \le -\frac{c}{\int e^{\xi} q^2} \le -\frac{c}{\phi(t)}.$$

An integration on [0, t] in the two sides of (2.14) implies that

$$f(y,t) \le \frac{1}{c \int_0^t \frac{du}{\phi(u)}}.$$

Since

$$\int_0^t \frac{du}{\phi(u)} \ge C_\alpha^{-1} \int_{t/2}^t \left(\frac{u}{\rho(y, y_0)^2} \right)^\tau V(\sqrt{u}) \, du \ge C_\alpha' \frac{t}{2} \left(\frac{t}{\rho(y, y_0)^2} \right)^\tau V(\sqrt{t}),$$

we finally get that

$$f(y,t) \le \frac{C_{\alpha}''}{t} \left(\frac{\rho(y,y_0)^2}{t}\right)^{\tau} \frac{1}{V(\sqrt{t})}.$$

Thus we complete the proof of Lemma 2.8.

Now we give the definition of $H^1(\mathbb{G})$ atom.

Definition 2.1. A complex-valued function a defined on \mathbb{G} is said to be an $H^1(\mathbb{G})$ atom, if it is supported on a ball B in \mathbb{G} and satisfies

$$\int_{\mathbb{G}} a(x) \, dx = 0 \quad \text{and} \quad ||a||_{L^{2}(\mathbb{G})} \le |B|^{-1/2}.$$

Remark 2.1. Obviously, if a is an $H^1(\mathbb{G})$ atom, then $||a||_{L^1(\mathbb{G})} \leq 1$.

The following conclusion will be used in the proof of our main theorem.

Theorem 2.2. For any $H^1(\mathbb{G})$ atom a and $0 < \epsilon < 1$,

$$\int_{\mathbb{G}} R^{\epsilon} a(x) \, dx = 0.$$

Proof. Suppose that supp $a \subset B(y_0, r)$. For $k \geq 2$ sufficiently large, we can choose $\phi_k \in C_c^{\infty}(\mathbb{G})$ such that $0 \leq \phi_k \leq 1$ and

$$\phi_k(x) = \begin{cases} 1, & \text{for } x \in B(y_0, k-1) \\ 0, & \text{for } x \notin B(y_0, C_0(k+1)), \end{cases}$$

where $C_0 \ge 1$ is a constant and

$$\|\nabla \phi_k\|_{\infty} \leq C$$

for some absolute constant C > 0, see [6], Lemma 3.2. Denote

$$I = \int_{\mathbb{G}} |a(y)| \int_{\epsilon}^{1/\epsilon} \int_{\mathbb{G}} |\nabla_x p_t(x, y)| |\phi_k(x)| dx \frac{dt}{\sqrt{t}} dy.$$

By Hölder's inequality and Lemma 2.5, taking $0 < \delta < \min\{2c_1, 2c_2\}$ we have

$$\int_{\mathbb{G}} |\nabla_{x} p_{t}(x,y)| |\phi_{k}(x)| dx \leq C \left(\int_{\mathbb{G}} |\nabla_{x} p_{t}(x,y)|^{2} dx \right)^{1/2} V(C_{0}(k+1))^{1/2}
\leq C \left(\int_{\mathbb{G}} e^{\delta \rho(x,y)^{2}/t} |\nabla_{x} p_{t}(x,y)|^{2} dx \right)^{1/2} V(C_{0}(k+1))^{1/2}
\leq \frac{C}{\sqrt{t}} \left(\frac{V(C_{0}(k+1))}{V(\sqrt{t})} \right)^{1/2}
\leq \frac{C}{\sqrt{t}} \left(\frac{k+1}{\sqrt{t}} \right)^{D/2},$$

where in the last inequality, we use (1.1) for a sufficiently large k. Hence, we get

$$I \leq C \int_{B(y_0,r)} |a(y)| \int_{\epsilon}^{1/\epsilon} \left(\frac{k+1}{\sqrt{t}}\right)^{D/2} \frac{dt}{t} dy$$

$$\leq C \left(\frac{k+1}{\sqrt{\epsilon}}\right)^{D/2} \int_{B(y_0,r)} |a(y)| \int_{\epsilon}^{1/\epsilon} \frac{dt}{t} dy < \infty.$$

By Fubini's theorem,

$$\int_{\mathbb{G}} \phi_k(x) R^{\epsilon} a(x) dx = \frac{1}{\sqrt{\pi}} \int_{\mathbb{G}} \phi_k(x) \int_{\epsilon}^{1/\epsilon} \int_{\mathbb{G}} \nabla_x p_t(x, y) a(y) dy \frac{dt}{\sqrt{t}} dx
= \frac{1}{\sqrt{\pi}} \int_{\mathbb{G}} a(y) \int_{\epsilon}^{1/\epsilon} \int_{\mathbb{G}} \nabla_x p_t(x, y) \phi_k(x) dx \frac{dt}{\sqrt{t}} dy
= -\frac{1}{\sqrt{\pi}} \int_{\mathbb{G}} a(y) \int_{\epsilon}^{1/\epsilon} \int_{\mathbb{G}} p_t(x, y) \nabla_x \phi_k(x) dx \frac{dt}{\sqrt{t}} dy.$$

Notice that

$$\int_{\mathbb{G}} R^{\epsilon} a(x) dx = \lim_{k \to \infty} \int_{\mathbb{G}} \phi_k(x) R^{\epsilon} a(x) dx,$$

applying dominated convergence theorem, Theorem 2.2 therefore is a consequence of

(2.15)
$$\lim_{k \to \infty} \int_{\mathbb{G}} |a(y)| \int_{\epsilon}^{1/\epsilon} \int_{\mathbb{G}} |\nabla_x \phi_k(x)| p_t(x, y) \, dx \, \frac{dt}{\sqrt{t}} \, dy = 0$$

and

$$(2.16) R^{\epsilon}a \in L^1(\mathbb{G}).$$

To show (2.15), if denotes

$$I_k = \int_{\mathbb{G}} |a(y)| \int_{\epsilon}^{1/\epsilon} \int_{\mathbb{G}} |\nabla_x \phi_k(x)| p_t(x, y) \, dx \, \frac{dt}{\sqrt{t}} \, dy,$$

then by the choice of ϕ_k and (2.2), using the volume growth condition (1.1), we have

$$I_{k} \leq C \int_{B(y_{0},r)} |a(y)| \int_{\epsilon}^{1/\epsilon} \int_{B(y_{0},C_{0}(k+1))\backslash B(y_{0},k-1)} p_{t}(x,y) dx \frac{dt}{\sqrt{t}} dy$$

$$\leq C \int_{B(y_{0},r)} |a(y)| \int_{\epsilon}^{1/\epsilon} \int_{B(y_{0},C_{0}(k+1))\backslash B(y_{0},k-1)} V(\sqrt{t})^{-1} e^{-c_{1}\rho(x,y)^{2}/t} dx \frac{dt}{\sqrt{t}} dy$$

$$\leq C \int_{B(y_{0},r)} |a(y)| \int_{\epsilon}^{1/\epsilon} \left(\frac{k+1}{\sqrt{t}}\right)^{D} e^{-c_{1}(k-r)^{2}/t} \frac{dt}{\sqrt{t}} dy$$

$$= C \|a\|_{L^{1}(\mathbb{G})} \int_{\epsilon}^{1/\epsilon} \left(\frac{k+1}{\sqrt{t}}\right)^{D} e^{-c_{1}(k-r)^{2}/t} \frac{dt}{\sqrt{t}}.$$

Hence, the dominated convergence theorem yields $\lim_{k\to\infty}I_k=0$. As for (2.16), by the definition of R^{ϵ} ,

(2.17)
$$R^{\epsilon}a(x) = \frac{1}{\sqrt{\pi}} \int_{\epsilon}^{1/\epsilon} \nabla_{x}e^{-tA}a(x)\frac{dt}{\sqrt{t}}$$
$$= \frac{1}{\sqrt{\pi}} \int_{\epsilon}^{1/\epsilon} \int_{\mathbb{G}} \nabla_{x}p_{t}(x,y)a(y)dy\frac{dt}{\sqrt{t}}.$$

By Lemma 2.5, it is not hard to see

(2.18)
$$\int_{\mathbb{G}} |\nabla_x p_t(x, y)| dx \le C_{\epsilon}$$

which further implies

(2.19)
$$\frac{1}{\sqrt{\pi}} \int_{\mathbb{G}} \int_{\epsilon}^{1/\epsilon} |\nabla_x p_t(x, y)| \frac{dt}{\sqrt{t}} dx \le C_{\epsilon},$$

then from Minkowski's inequality and (2.17), we get

$$||R^{\epsilon}a||_{L^{1}(\mathbb{G})} \leq C_{\epsilon}||a||_{L^{1}(\mathbb{G})} \leq C_{\epsilon}.$$

Thus, (2.16) holds and Theorem 2.2 follows.

Finally, let us recall the definition and properties of $BMO(\mathbb{G})$. A locally square integrable function ϕ is said to be a $BMO(\mathbb{G})$ function if

(2.20)
$$\|\phi\|_{BMO(\mathbb{G})}^2 = \sup \frac{1}{|B|} \int_B |\phi(x) - \phi_B|^2 dx < +\infty,$$

where the supremun is taken over all the balls in \mathbb{G} . By the definition (2.20), it is easy to see that

$$|\phi_B - \phi_{2B}| \le C \|\phi\|_{BMO(\mathbb{G})}.$$

(2.21) yields, as in [4], that there exists C>0 such that for $\phi\in BMO,\,k\geq 1$ and all balls $B\subset \mathbb{G}$

(2.22)
$$\frac{1}{|2^k B|} \int_{2^k B} |\phi(x) - \phi_{2B}|^2 dx \le Ck^2 \|\phi\|_{BMO(\mathbb{G})}^2.$$

3. Proof of Theorem 1.1

Let a be an $H^1(\mathbb{G})$ atom supported in $B=B(y_0,r)$. Taking $\phi \in C_c(\mathbb{G})$ (the continuous functions with compact support in \mathbb{G}). Without lost the generality, we may assume that $0 < \epsilon < \min\{1, r^2, r^{-2}\}$. Applying Theorem 2.2, we may write

$$\int_{\mathbb{G}} R^{\epsilon} a(x) \, \phi(x) \, dx = \int_{\mathbb{G}} R^{\epsilon} a(x) \, \left(\phi(x) - \phi_{2B} \right) \, dx.$$

Decompose $\phi - \phi_{2B}$ as

$$\phi - \phi_{2B} = (\phi - \phi_{2B})\chi_{2B} + (\phi - \phi_{2B})\chi_{(2B)c} := \phi_1 + \phi_2.$$

Thus, we have

$$\int_{\mathbb{G}} R^{\epsilon} a(x) \, \phi(x) \, dx = \int_{\mathbb{G}} R^{\epsilon} a(x) \, \phi_1(x) \, dx + \int_{\mathbb{G}} R^{\epsilon} a(x) \, \phi_2(x) \, dx := E_1 + E_2.$$

By Cauchy-Schwarz inequality,

$$|E_1| \le \int_{\mathbb{G}} |R^{\epsilon} a(x)| |\phi_1(x)| dx \le ||R^{\epsilon} a||_{L^2(\mathbb{G})} ||(\phi - \phi_{2B}) \chi_{2B}||_{L^2(\mathbb{G})}$$

$$\le ||R^{\epsilon} a||_{L^2(\mathbb{G})} |2B| ||\phi||_{BMO(\mathbb{G})}.$$

We now deal with E_2 .

$$\begin{split} E_2 &= \sum_{k \geq 1} \int_{2^{k+1} B \setminus 2^k B} R^{\epsilon} a(x) \, \phi_2(x) \, dx \\ &= \frac{1}{\sqrt{\pi}} \sum_{k \geq 1} \int_{2^{k+1} B \setminus 2^k B} \phi_2(x) \int_{\epsilon}^{r^2} \int_{B} \nabla_x p_t(x, y) \, a(y) \, dy \, \frac{dt}{\sqrt{t}} \, dx \\ &+ \frac{1}{\sqrt{\pi}} \sum_{k \geq 1} \int_{2^{k+1} B \setminus 2^k B} \phi_2(x) \int_{r^2}^{1/\epsilon} \int_{B} \nabla_x p_t(x, y) \, a(y) \, dy \, \frac{dt}{\sqrt{t}} \, dx \\ &:= \sum_{k \geq 1} I_k + \sum_{k \geq 1} J_k. \end{split}$$

Fix $k\geq 1$. When $y\in B(y_0,r)$ and $2^kr\leq \rho(x,y_0)\leq 2^{k+1}r$, we have $2^{k-1}r\leq \rho(x,y)\leq 2^{k+2}r$. The Cauchy-Schwarz inequality, Lemma 2.5, (2.22) and (1.1) yield

$$\int_{2^{k+1}B\setminus 2^{k}B} |\nabla_{x}p_{t}(x,y)| |\phi_{2}(x)| dx$$

$$\leq \left(\int_{\mathbb{G}} |\nabla_{x}p_{t}(x,y)|^{2} e^{\gamma\rho(x,y)^{2}/t} dx\right)^{1/2} \left(\int_{2^{k+1}B\setminus 2^{k}B} |\phi_{2}(x)|^{2} e^{-\gamma\rho(x,y)^{2}/t} dx\right)^{1/2}$$

$$\leq \frac{C}{(tV(\sqrt{t}))^{1/2}} e^{-\gamma(2^{k-1}r)^{2}/2t} \left(\int_{2^{k+2}B} |\phi(x) - \phi_{2B}|^{2} dx\right)^{1/2}$$

$$\leq \frac{C\|\phi\|_{BMO(\mathbb{G})}(k+2)}{\sqrt{t}} e^{-\gamma(2^{k-1}r)^{2}/2t} \left(\frac{V(2^{k+2}r)}{V(\sqrt{t})}\right)^{1/2}$$

$$\leq \frac{C\|\phi\|_{BMO(\mathbb{G})}(k+2)}{\sqrt{t}} e^{-\gamma(2^{k-1}r)^{2}/2t} \max\left\{1, \left(\frac{2^{k+2}r}{\sqrt{t}}\right)^{D/2}\right\}$$

$$\leq \frac{C\|\phi\|_{BMO(\mathbb{G})}(k+2)}{\sqrt{t}} e^{-\beta 2^{2^{k}}r^{2}/t},$$

for $0 < \beta < \gamma/8$. Therefore,

$$\int_{\epsilon}^{r^2} \int_{2^{k+1}B\backslash 2^k B} |\nabla_x p_t(x,y)| |\phi_2(x)| dx \frac{dt}{\sqrt{t}}$$

$$\leq Ck \int_0^{r^2} e^{-\beta 2^{2k}r^2/t} \frac{dt}{t}$$

$$\leq Ck \int_{2^{2k}}^{\infty} e^{-\beta t} \frac{dt}{t}$$

$$\leq Ck 2^{-2k}.$$

which yields $\sum_{k\geq 1} |I_k| \leq C \|\phi\|_{BMO(\mathbb{G})}$, since $\|a\|_{L^1(\mathbb{G})} \leq 1$. The treatment of J_k is similar. Since a has mean value zero, we have

$$\int_{\mathcal{B}} a(y) \, \nabla_x p_t(x, y) \, dy = \int_{\mathcal{B}} a(y) \, \left(\nabla_x p_t(x, y) - \nabla_x p_t(x, y_0) \right) \, dy$$

 $= \int_{\mathbb{R}} a(y) \, \nabla_x q_t(x,y) \, dy.$

Thus we have

$$|J_k| \le c \int_B |a(y)| \int_{r^2}^{1/\epsilon} \int_{2^{k+1}B\setminus 2^k B} |\nabla_x q_t(x)| |\phi_2(x)| dx \frac{dt}{\sqrt{t}} dy.$$

When $t \le 2^{2k+4}r^2$, use Lemma 2.8 and (2.22) for $0 < 4\beta < \alpha < \min\{2c_3,1/2\}$ we have

$$\begin{split} & \int_{2^{k+1}B\backslash 2^kB} |\nabla_x q_t(x)| \, |\phi_2(x)| \, dx \\ & \leq \bigg(\int_{\mathbb{G}} |\nabla_x q_t(x)|^2 e^{\alpha \rho(x,y)^2/t} dx \bigg)^{1/2} \bigg(\int_{2^{k+1}B\backslash 2^kB} |\phi_2(x)|^2 e^{-\alpha \rho(x,y)^2/t} \, dx \bigg)^{1/2} \\ & \leq \frac{C\|\phi\|_{BMO(\mathbb{G})}(k+2)}{\sqrt{t}} \, e^{-\alpha 2^{2k-2}r^2/t} \, \bigg(\frac{r}{\sqrt{t}} \bigg)^{\tau} \, \bigg(\frac{V(2^{k+2}r)}{V(\sqrt{t})} \bigg)^{1/2} \\ & \leq \frac{C\|\phi\|_{BMO(\mathbb{G})}(k+2)}{\sqrt{t}} \, \bigg(\frac{r}{\sqrt{t}} \bigg)^{\tau} \, \bigg(\frac{2^{k+2}r}{\sqrt{t}} \bigg)^{D/2} \, e^{-\alpha 2^{2k-2}r^2/t} \\ & \leq \frac{C\|\phi\|_{BMO(\mathbb{G})}(k+2)}{\sqrt{t}} \, \bigg(\frac{r}{\sqrt{t}} \bigg)^{\tau} \, e^{-\beta 2^{2k}r^2/t}. \end{split}$$

When $t > 2^{2k+4}r^2$, the result still holds. Indeed,

$$\int_{2^{k+1}B\backslash 2^{k}B} |\nabla_{x}q_{t}(x)| |\phi_{2}(x)| dx$$

$$\leq \left(\int_{\mathbb{G}} |\nabla_{x}q_{t}(x)|^{2} e^{\alpha\rho(x,y)^{2}/t} dx\right)^{1/2} \left(\int_{2^{k+1}B\backslash 2^{k}B} |\phi_{2}(x)|^{2} e^{-\alpha\rho(x,y)^{2}/t} dx\right)^{1/2}$$

$$\leq \frac{C\|\phi\|_{BMO(\mathbb{G})}(k+2)}{\sqrt{t}} e^{-\alpha 2^{2k-2}r^{2}/t} \left(\frac{r}{\sqrt{t}}\right)^{\tau} \left(\frac{V(2^{k+2}r)}{V(\sqrt{t})}\right)^{1/2}$$

$$\leq \frac{C\|\phi\|_{BMO(\mathbb{G})}(k+2)}{\sqrt{t}} e^{-\alpha 2^{2k-2}r^{2}/t} \left(\frac{r}{\sqrt{t}}\right)^{\tau}$$

$$\leq \frac{C\|\phi\|_{BMO(\mathbb{G})}(k+2)}{\sqrt{t}} e^{-\beta 2^{2k}r^{2}/t} \left(\frac{r}{\sqrt{t}}\right)^{\tau}.$$

Consequently,

$$\begin{split} & \int_{r^2}^{1/\epsilon} \int_{2^{k+1}B \setminus 2^k B} |\nabla_x q_t(x)| \, |\phi_2(x)| \, dx \, \frac{dt}{\sqrt{t}} \\ & \leq C \|\phi\|_{BMO(\mathbb{G})}(k+2) \int_{r^2}^{\infty} e^{-\beta 2^{2k}r^2/t} \left(\frac{r}{\sqrt{t}}\right)^{\tau} \frac{dt}{t} \\ & \leq C \|\phi\|_{BMO(\mathbb{G})}(k+2) 2^{-k\tau} \int_{0}^{2^{2k}} e^{-\beta v} v^{\tau/2-1} dv \\ & \leq C \|\phi\|_{BMO(\mathbb{G})}(k+2) 2^{-k\tau} \int_{0}^{\infty} e^{-\beta v} v^{\tau/2-1} dv. \end{split}$$

Thus, we have $\sum_{k\geq 1} |J_k| \leq C \|\phi\|_{BMO(\mathbb{G})}$ from the above estimate and the fact that $\|a\|_{L^1(\mathbb{G})} \leq 1$ (see Remark 2.1).

Summing up the above process, we prove that for all functions $\phi \in C_c(\mathbb{G})$ and $0 < \epsilon < \min\{1, r^2, r^{-2}\}$,

$$\left| \int_{\mathbb{G}} R^{\epsilon} a(x) \phi(x) \, dx \right| \leq \|R^{\epsilon} a\|_{L^{2}(\mathbb{G})} |2B|^{1/2} \|\phi\|_{BMO(\mathbb{G})} + C\|\phi\|_{BMO(\mathbb{G})},$$

where C is independent of the atom a. Applying Lemma 2.1 and the L^2 -boundedness of R (see Remark 1.1), we get

$$\left| \int_{\mathbb{G}} \!\! Ra(x) \phi(x) \, dx \right| \leq \|Ra\|_{L^2(\mathbb{G})} |2B|^{1/2} \|\phi\|_{BMO(\mathbb{G})} + C \|\phi\|_{BMO(\mathbb{G})} \leq C \|\phi\|_{BMO(\mathbb{G})},$$

where C is independent of the choice of atom a.

Now for $f \in H^1(\mathbb{G})$, write $f = \sum_i \lambda_k a_k$, then

$$\langle Rf, \phi \rangle = \langle R \sum_{k} \lambda_{k} a_{k}, \phi \rangle = \left\langle \sum_{k} \lambda_{k} a_{k}, R^{*} \phi \right\rangle = \sum_{k} \lambda_{k} \left\langle a_{k}, R^{*} \phi \right\rangle = \sum_{k} \lambda_{k} \langle Ra_{k}, \phi \rangle.$$

Hence,

$$|\langle Rf, \phi \rangle| \leq \sum_{k} |\lambda_{k}| |\langle Ra_{k}, \phi \rangle| \leq C \left(\sum_{k} |\lambda_{k}| \right) ||\phi||_{BMO(\mathbb{G})} \leq C ||f||_{H^{1}(\mathbb{G})} ||\phi||_{BMO(\mathbb{G})},$$

where C is independent of f. Note that $C_c(\mathbb{G})$ is dense in $VMO(\mathbb{G})$, and the dual spaces of $VMO(\mathbb{G})$ is $H^1(\mathbb{G})$ (see [1]), we get $Rf \in H^1(\mathbb{G})$. Therefore, Theorem 1.1 is proved.

ACKNOWLEDGMENTS

The authors would like to express their deep gratitude to the referee for his/her reading carefully and valuable comments and suggestions.

REFERENCES

- 1. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis *Bull. Amer. Math. Soc.*, **83** (1977), 569-645.
- J. Dziubański, G. Garrigós, T. Mart´nez, J. Torrea and J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality Math. Z., 249 (2005), 329-356.
- 3. J. Dziubański and J. Zienkiewicz, H^p spaces associated with Schrödinger operators with potentials from reverse Hölder classes *Collog. Math.*, **98** (2003), 5-38.
- 4. C. Fefferman and E. M. Stein, H^p spaces of several variables *Acta Math.* **129** (1972), 137-193.
- 5. K. Kurata, An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials *J. London Math. Soc.*, **62** (2000), 885-903.
- 6. H-Q. Li, Estimations L^p des opérateurs de Schrödinger sur les groupes nilpotents J. Func. Anal., **161** (1999), 152-218.
- 7. A. McIntosh, Operators which have an H_{∞} functional calculus, in: *Miniconference on Operator Theory and Partial Differential Equations*, (B. Jefferies, A. McIntosh and W. J. Ricker, eds.), Vol. 14 of Proceedings of the Center for Mathematical Analysis, pp. 210-231, CMA, ANU, Canberra, Australia, 1986.
- 8. Z. Shen, L^p estimates for Schrödinger operators with certain potentials *Ann. Inst. Fourier (Grenoble)*, **45** (1995), 513-546.

- 9. E. M. Stein Harmonic Analysis, Princeton University Press, Princeton, 1993.
- 10. N. T. Varopoulos, L. Saloff-Coste and T. Coulhon *Analysis and Geometry on Groups*, Cambridge University Press, Cambridge, 1992.
- 11. A. Yagi, Coïncidence entre des espaces d'interpolations et des domaines de puissances fractionnaires d'opérateurs, *C. R. Math. Acad. Sci. Paris*, **299** (1984), 173-176.

Yong Ding School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China

E-mail: dingy@bnu.edu.cn

Xinfeng Wu
Department of Mathematics,
China University of Mining and Rechnology (Beijing),
Beijing 100083,
E-mail: wuxf@mail.bnu.edu.cn