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H' BOUNDEDNESS FOR RIESZ TRANSFORM RELATED
TO SCHRODINGER OPERATOR ON NILPOTENT GROUPS

Yong Ding and Xinfeng Wu

Abstract. Let G be a nilpotent Lie groups equipped with a Hormander system
of vector fields X = (Xi,...,X,,) and A = > X2 be the sub-Laplacians

=

associated with X. Let A = —A + W be the Schrodinger operator with the
potential function TV belongs to the reverse Holder class B, for some ¢ > D/2,
where D denote the dimension at infinity. In this paper, we prove that the
Riesz transform V.A~'/2 related to Schrodinger operator A is bounded from
the Hardy space H'(G) to itself.

1. INTRODUCTION AND MAIN RESULTS

Let G be a nilpotent Lie group associated to the Lie algebra G. Given X =
{X1,...,X,,} a Hormander system of left invariant vector fields on a nilpotent
group G and p be the Carnot-Carathéodory distance with respected to X. For each
x € G and each r > 0, we denote by B(z,r) = {y € G : p(z,y) < r} the ball with
center x and radius r. We fix a Haar measure dz on G. For £ C G measurable,
we use |E| to denote the measure of E. Throughout this paper, 0 € G denotes the
unit element of G. Denote V (t) = |B(0,t)| = |B(x,t)| on each = € G and each
t > 0. Then, there exists a constant C; > 0 such that

ol <v(t) < ¢yt Vo<t<l1
(1.1)
CrMP <v() <OoitP,  V1<t<oo
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where d and D are local dimension and the dimension at infinity of G. From this,
we can see that there exists constants C's = C2(C4,d, D) and C3 > 1 such that

d D
12 ;! (g) < “//((1:“)) < Oy (g) VO<r<R< oo
(1.3) V(2r) < Cs3V(r) Vor>0.

Let A = >, X? be the sub-Laplacian and Vf = (X1f,..., Xrf) be the
gradient. Consider the Schrodinger operator A on G defined by

A=—-A+W,

where W is a nonnegative potential. We say that W belongs to the reverse Holder
class B, for some ¢ > 1 if W satisfies the following inequality:

(ﬁ /B W(m)%lx)l/q §C<ﬁ /B W(w)dw)

for every ball B in G, where C'is independent of B. We use R to denote the Riesz
transforms V. A—1/2 (associated to the Schrodinger operator A).

In the special case G = R"™, Shen [8] proved the LP boundedness of the Riesz
transform R.

Theorem A. Suppose that W € B, for some d/2 < g < d. Thenfor 1 < p <
Po,
IRy < Cpllfllp, ¥ f € LP(RY)

where 1/pp =1/q —1/d.

In 1999, H-Q, Li [6] extended this result to general nilpotent Lie groups. More
precisely, he showed the following

Theorem B. Suppose that W € B, for some D/2 < ¢ < D. Then for
1 <p < po,
IR erc) < Cpllflle@), Y f€LP(G)

where 1/py =1/q —1/D.

Remark 1.1. Note that the L2-boundedness of R is always true under the
conditions in Theorems B since pg > 2.

The doubling conditions (1.3) implies that the nilpotent groups G is a space of
homogeneous type in the sense of Coifman and Weiss [1]. Thus the function spaces
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such as Hardy spaces H!, BMO, VMO are well defined on G (see [1]). In this
paper, we consider the endpoint case and we want to show the H !(G) boundedness
of R.

Theorem 1.1. Suppose that W € B, for some D/2 < ¢ < D. Then R is
bounded from H'(G) to itself. By duality, its adjoint R* := —A~'/2V is bounded
from BMO(G) to itself.

Remark 1.2. On R", if W = 0, then R is just the classical Riesz transform. It
is well known that, the classical Riesz transform is bounded from H(R") to itself.
Thus our results extend this result to the case that T belongs to the reverse Holder
class even in the classical setting G = R™.

2. SOME LEMMAS

We first introduce the truncated operator of Riesz transform R. For 0 < e < 1,
the truncated operator R¢ is defined by

Ry f/lsv—“‘ )j’;, VfeCr(@).

Lemma 2.1. For all f € C°(G), lime_o R°f = Rf in L*(G).
Proof. From (Af, f) > (W, ) = |[W/2f||2,, it follows that

O'(A) C R+,

where o (A) denotes the spectrum of A and R denotes all nonnegative real numbers.
Fix p e (0,7/2)and setT',, = {z € C: |arg z| < u}, define

1 1/e
Ye(z) = ﬁ/ e_tzzl/Q%, zel', and €>0.

For any function g € D(A/?) (the domain of A'/2) and € > 0, define

dt
—tA 1/2
uE \/— / t’

so that ue = ¥(A)g. Observe that lim. ., ¢.(z) = 1 uniformly on all compact
subsets of I',,. By H>° functional calculus for A (see [7] and [11]), we therefore
have

lim || A2, — AYg|| () = 0.
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By the L? boundedness of the operator VA~1/2 (see Remark 1.1), we get
lim | Vue — V| 2(g) = lim IVAV2AY 2y, — VAT2AY 2G| 1o
< Clim [| 420, — AY2g] a() = 0.
By (2.1) and taking g = A~/2f, we obtain

=0. []
L2(G)

lim
e—0

1 [l/e dt
ﬁ/ Ve‘tAf%—VA_l/Zf

Denote by p;(x,y) the heat kernel on G, then there exists positive constants
¢, ¢1 such that (see [10] p.48)

@D (X7 pu(e,y)| < et 2V (/D) exp (—q = (x;y)2> ,

where X' denotes the operator X!'... X for I = (iy,...,i,). Let p;(z,y) be
the kernel of Schrodinger heat semigroup e~*4. Since T is nonnegative, Trotter’s
formula implies that

2
(2.2) 0 < pe(x,y) < pelx,y) <V (V)™ exp <_CIM>

forall z,y € G, t > 0.

Lemma 2.2. For all v,¢> 0 and s > 0,

/ / 6_2'7p($’y)2/td$ < C’yv(\/%)e—’vs/t VyeG.
p(,y)>st/?

Proof.  First note that
/ e~ 2P@)?/t gy < e—’YS/t/ e~ 1P@ Yt gy oS/t
p(z,y)>st/2 G
By (1.2), we have

o
I =
k=0

< O30+ VPRV < GV (V)
k=0

_ 2
/ e 1P/t g0
ktl/2<p(z,y)<(k+1)t1/2

Inserting this estimate into the first one yields the desired conclusion. ]

The following lemma is a consequence of (2.2) and Lemma 2.2.
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Lemma 2.3. For all v € (0, 2¢;),
/ \pt(x,y)\QeW(“”’y)Q/tdx <CV(WH)T, VyeG, t>0.
G

Now we give estimates for d,p;(z,y) and V.p(z,y). Here and hereafter we
(sometimes) use 9; to denotes the operator % for simplicity.

Lemma 2.4. (i) There are constants C' and co such that,

0 ¢ 1 —eaplay)?/t
)| < Svivh e .
(if) The gradient of Schrodinger heat kernel vanishes at infinity; that is,
(2.3) lim  |Vgpi(z,y)| = 0.

p(z,0)—o00

Proof.  The conclusion (i) can be proved by using the same argument as [2],
Proposition 4. We only prove (ii). Fix ¢t > 0 and z € G. Choose zy such that
p(xo, z0) > 10. Take a cutoff function n € C§°(B(x¢, 2Cy))(Cy is a constant only
depends on G) such that » = 1 on B(z¢,3/2), and

(2.4) V| + V2| < C,

see Lemma 3.2 in [6]. Since (—A + W + 9;) pi(z, 2z0) = 0 for x € B(xp,2C))
(indeed for all = away form z),

pe(@, zo)n(x) =(=A + 0) T (= A + d)per) (=, 20)

:/(}ﬁt(x,y)(—Ay + 9¢) (pe(y, 20)n(y))dy

(25) _ /G B, )W (9)pey. 200 (y) — An(y)pely, z0)dy

Q/Gpt x y y) : (vypt)(ysz)dy-

Integrating by parts shows

/ B, 9) (V)W) - (V) (0, 20)dy
(2.6)

= 2/ Vypi(z,y) )(y)pt(y,ZO)dy+2/@@(%2/)An(y)pt(y720)dy-

By inserting (2.6) into (2.5), we get
pe(@, 20)n(x) = /Gjo}(w, YI=W(@)p(y, z0)n(y) + An(y)pe(y, z0)]dy

+2 /«; Vypi(x,y) - (Vyn)(y)pe(y, 20)dy.
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For x € B(xp, 1), by the choice of n we get

Vapi(a, 20)] < C [ / Va2, )| W () ey, 20)dy
B($0,2CO)

+ / Va2, )| pely, 20)dy
B($0,2CO)

+ / Va1 () ey, 20) |y
B($0,2CO)
:=C(h + I + I3),

where C'is constant in (2.4). When p(z¢,0) — oo, using (2.1), we can easily get
I, I3 — 0 since p.(y, z9) — 0.

It thus remains to show I; — 0 as p(xo, 0) goes to infinity. It is convenient to
use the following auxiliary function

7“2
o= { T a0 S 1} |

When p(z, 0) is sufficiently large, we have

(2.7) B(JJQ, 200) C B(ZQ, 2p(1‘0, ZQ)),

and
2p(xo, 20) > ro := 0(20).

From W e B, for ¢ > D/2 > 1, we know that W (y)dy is a doubling measure
(see [6], p.158). Thus, there exists C'; > 1 such that for any » > 0

/ W(y)dy < C1 / W (y)dy.
B(zo,2r)

B(zo,r)

From this and r§V (r0) " [5,., vy W (y)dy < 1, it follows that

log 2/3(9:”0720)_’_1
/ Wy < ¢ ) / W (y)dy
B(Zo,2p($0,20)) B(Zo,To)

log C1

2 2

<crb? (7;)(950, ) | 1) .
To

(2.8)

Hence, by (2.1), (2.7) and (2.8), we obtain

I <C; sup e_Cp(y’ZO)Q/t/ W (y)dy
yEB(J?Q,QCQ) B(J?Q,QCO)

< Ceoplwo,0)*/t / W (y)dy
B(20,2p(x0,20))
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log, C
< Cr0D_2 e—cP(z0,20)%/t (72/)(9507 20) + 1) 20
To

— 0, when p(zg,0) — oo.
Thus the proof of this lemma is finished. |

Lemma 2.5. For any v, 0 < v < min{2¢;, 2¢2}, and all y € G and ¢ > 0, we
have

x )iz 1P @Y/t g _
[ (¥t W o)) 7 <

Proof. By (2.3) and integration by parts, we get
I(t,y) ::/ (IVapi(@, y)[? + W (@)pi(x,)?) 7D
G

:/ |Vapi(, )77 d + / W (2)pi(w, y)2e 7 dy
G G

< I/ pt(xv y)(—A + W)pt(fI,’, y)eryp(m’y)z/tdx
G

+ ‘/Gpt(w, y)Vm(pt(x, y)) . vm(e'yp(m’y)z/t)dx

::Il(tv y) + I2(t7 y)
By (2.2) and Lemmas 2.4 and 2.2, we get

/ pt(x7 y)(atpt(x7 y))e’ﬂ?(l‘,y)g/tdx
G

Cy —(c1+ea—7)p(z,y)?/t
O VGE / e ) g
< C
TV (VE)
On the other hand, notice that v < 2¢;, we may choose v satisfying v < v <
c1 + (7v/2). For any Lipschitz function f with respect to p with Lipschitz constant
C, the distribution X is a locally integrable function and S°%|X,f|2 < C? ae.
(see [10], for instant). In particular,

(2.9) [Vp| <1 ae.

Il(tv y) -

Thus we have

L(t,y) < P (2, )| Vape (2, )| PE9 2y p(, y) Jtd

t(, )| Vape (, y) |7 P@* /.

IN

%LQ S
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Let n = v/2 and £ = v/ — +/2. Then using Holder’s inequality and Lemma 2.3,
we have

C - , 1/2 - , 1/2
Lty) < — </ lpe(,y)|%e Ep(w,y) ”dw) </ |Vapi(,y)| e no(x,y) ”dw)
Vi \Je G

1 ) 1/2
<C,—M— V. 7 2070(x,9)? /t g )
<O ([19ammGo e .

1
S@mm-

Hence

1 I(t,y)
I(t,y) < Cy <tV(\/¥) T t1/2v(\/g)1/2> '

From the above inequality, we get I(¢,y) < tV(C\/Z)' Thus, we finish the proof of

Lemma 2.5. m

Let q.(z,y) = pe(z,y) — pi(z,yo). The following lemma can be proved by
using the same argument in [3] thus we omit the proof here.

Lemma 2.6. There exist 7, c3 > 0 such that for all p(y, yo) < V1,

gt ()| < C(’)(Lﬁ“)ywﬁ)—lem <_M) |

Applying Lemmas 2.6 and 2.2, we can easily deduce

Lemma 2.7. If p(y, 1) < v/, then for any 0 < o < 2c3, there exists C,, > 0

such that .
2 ocp(a:,y)Q/td < <P(y7y0)> Ca
qe\ T, e r S .
/6‘ t(2, )| NG V(\/Z)

Lemma 2.8. If p(yo,y) < V1, then for any 0 < o < min{2c3,1/2}, there
exists C?, > 0 such that

x (a2 cor@nt g < L (P@ )\ Ca
/G(qu'f( )P+ W (@)a 72/)2) dr < t( Vit ) V(Vt)

Proof. Denote &(z,y,t) = ap(z,y)?/t. By (2.9), it is easy to check for almost
every z € G,
29

1 2
— + —|V£|° <0.
ot 404‘ é° =<
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Set
(2.10) fly,t) = /G UVJJQt(x7y)‘2 + W(m)q?(w,y)] @ g

For simplicity, the variables z, y, t will be omitted and V always denotes V. in the
proof below. By (2.3), integrating by parts yields,

f(y,t) =/qe§Aq—/qVq-V(e§)-

The Cauchy-Schwarz inequality shows that

e o< (| q2ef)m [( / ef<Aq>2) " (fewa vs)?)m] .

On the other hand, computing the time derivative of f in (2.10), we get

ot
1
< —2/€§V(AQ) -VQ—B/65(\VQ\2+W612)\V£\2—2/Aque§

d d d
of = 2/er(—q)-vq+/ef (IVq|*+Wq?) a_§+2/ 8—‘tlwqe§

212) = —2/65(AQ)2+2/A616§V£-Vq—i/eg(\Vq\QﬂLWq?)W&\Z
1/2 1/2
< -2 [ ([ ewar) ([ emame?)
- 1o [ Vet

where in the third line we use Lemma 2.4 and integration by parts and in the last
inequality we use the fact

1
——/Wqug\Vf\Q <0.
4o

By (2.11) and (2.12), we have for 0 < ¢ < 2
9 1/2 1/2
Ouf+e I(QQZ <(-2+0) [ (A0 +2+20) ( / ef<Aq>2) (/ ef\vmvsﬁ)
+ (c— i) /eg\VQ\Q\VfE\Q-

If we choose ¢ = (2 — 4a) /(1 + 16a), then it is easy to check that
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2

(2.13) 8tf—|—cf 52—0'
Denote ( ) )
)\ Cy
o0 = (") vV

By (2.13) and Lemma 2.7, we have

O f c c
7S TTEE S T

An integration on [0, ¢] in the two sides of (2.14) implies that

(2.14)

1. -
cf 4t gfii

Since

/ot % =G /t/tz (p(y,uyo)2>T V(vVu)duz Cé‘% (p(y,tyoﬁ)T v,

we finally get that

Ch (pyy)*\" 1

Thus we complete the proof of Lemma 2.8. ]
Now we give the definition of H'(G) atom.

Definition 2.1. A complex-valued function « defined on G is said to be an
H'(G) atom, if it is supported on a ball B in G and satisfies

/a(m) dr=0 and |a|2@g) < |B|7Y/2,
G

Remark 2.1. Obviously, if a is an H'(G) atom, then ||| ,1(g) < 1.
The following conclusion will be used in the proof of our main theorem.

Theorem 2.2. For any H'(G) atom ¢ and 0 < € < 1,

/G Rea(z)dz = 0.
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Proof.  Suppose that suppa C B(yo,r). For k > 2 sufficiently large, we can
choose ¢, € C°(G) such that 0 < ¢, < 1 and

_f1, for z € B(yo, k—1)
on(x) = 0, for z ¢ B(yo, Co(k +1)),

where Cy > 1 is a constant and

for some absolute constant C' > 0, see [6], Lemma 3.2. Denote

1/¢ dt
- /G a(y)| / /G Vil )l l0u(o)] oz dy.

By Holder’s inequality and Lemma 2.5, taking 0 < § < min{2cy, 2co} we have

1/2
[ 19aniteplouto)] dr < ( / \vxmx,y)\?dx) V(Colk + 1))
G G

IN
Q

1/2
</ eép(m,y)z/t‘vmpt(%y)\de) V(Co(k+1))"/?
G

()

k +1 D/2
()
where in the last inequality, we use (1.1) for a sufficiently large k. Hence, we get
Ve (k+1\P? dt
r<c [l [C(BE) T S
B(yo,r) € \/% 13

k+1\"/2 1e at
<C < ) / a(y) / —dy < 0.
Ve B(yo,r)‘ W e 1

By Fubini’s theorem,

c _ 1 e at
|oara@iz == [ @) [ [ Vantemaiy Zda
1 1/e dt
= Lo [ [ Venta oo ao T ay
1 1/e dt
— = Lo [ [ o) Voonta) da T,

IN

IN

SNISIRN IS
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Notice that
/Rga(x)dx: lim [ ¢x(x)Ra(x)dz,
G k—oo /G

applying dominated convergence theorem, Theorem 2.2 therefore is a consequence
of

. 1/e dt B
@) i [la)| [ [ Vaon@lpte. ) de Zdy =0
and
(2.16) Ra € LY(G).

To show (2.15), if denotes

1/e
@:éwm/ émmmmmwm%@,

then by the choice of ¢ and (2.2), using the volume growth condition (1.1), we
have

1/e€ dt
I, <C la(y)| / / pe(e,y) dz L ay
B(yo,r) € B(y0,Co (k+1))\B(yo0,k—1) \/%

1/e
<c la(y)| / / V(D) e/t gp U g
B(yo,T’) € B(yo,CO(k‘—f—l))\B(yo,k‘—l) \/%

Ve rk+1\7 2, dt
<C a(y) / (—) emer(b=r)"/t 2y
B(yo,r) ‘ ( ‘ € \/% \/%

Ve g +1\7 2/, dt
C —C1(k‘—7’) /t .
HaHLl(G)/g < \/% ) ‘ \/%

Hence, the dominated convergence theorem yields limy ., I = 0.
As for (2.16), by the definition of Rc,

1 [e dt
Rfa(z) = ﬁ/ Vme_tAa(x)%
dt

= %/gl/g/qgvmpt(x,y)a(y)dy%.

By Lemma 2.5, it is not hard to see

(2.17)

(2.18) / |Vaepi(z,y)|de < Ce
G
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which further implies

(2.19) ii//mﬁ7(x)¢%x<0
. ﬁ o). zPt\ T, Y \/g = Ve

then from Minkowski’s inequality and (2.17), we get
IR all 1) < Cellallpr ) < Ce
Thus, (2.16) holds and Theorem 2.2 follows. ]

Finally, let us recall the definition and properties of BAMO(G). A locally square
integrable function ¢ is said to be a BMO(G) function if

1
(2.20) 600 = s 75 /B 6(2) — é5|2dx < +oo,

where the supremun is taken over all the balls in G. By the definition (2.20), it is
easy to see that

(2.21) |oB — ¢28| < Cll¢llBMO(G):

(2.21) yields, as in [4], that there exists C' > 0 such that for ¢ € BMO, k > 1 and
all balls B C G

1 2 2 2
2.22) 5 . 166@) = daslde < ORI 00

3. ProoF oF THEOREM 1.1

Let a be an H'(G) atom supported in B = B(yo,r). Taking ¢ € C.(G) (the
continuous functions with compact support in G). Without lost the generality, we
may assume that 0 < e < min{1,72,r=2}. Applying Theorem 2.2, we may write

[ Faw) ota) do = [ Ra(w) (6l) - dap) do.
G

G
Decompose ¢ — ¢op as
¢ — g2 = (¢ — ¢2B)Xx2B + (¢ — P2B)X(2B)c 1= d1 + P2.

Thus, we have

/ Ra(z) ¢(x) dx = / Rfa(x) ¢1(x) dx —|—/ Rfa(z) ¢po(x) dx := Ey + Es.
G G G



1660 Yong Ding and Xinfeng Wu
By Cauchy-Schwarz inequality,

|E| < /G |Ra(z)| |p1(2)| dz < ||Ral|r2(q) [|(¢ — d2B)x2BlL2(0)
<Rl 2 12Blll¢ll Brmo(c)-

We now deal with E5.

E, :Z /2 Ra(z) ¢o(x) dx

k k
o1 J2MIB\2kB

i%}jémm@@mlﬁévMuwmw@%m:

k>1
b= [ [ St ey
= 2(T xPt\T,Y) a\y) ay — ax
ﬁkgl 2k+1B\2k B 2 JB ! Vit
:ZZ I —I—Z JE.
k>1 k>1

Fix k£ > 1. When y € B(yp, ) and 2ky < p(z,y0) < ok+1. e have 281y <
p(z,y) < 22, The Cauchy-Schwarz inequality, Lemma 2.5, (2.22) and (1.1)
yield

Lo 19yl 0a(o)] da
2k+1B\2kB

1/2
= (/ [Vapi(i, y)| 267w/t dw> </ | o ()| 2Pt dw)
G 2k+1B\2kB

L _ (2k—1r)2/2t < B ) )1/2
Swe g 0101 = a0l

1/2
< Cll9llrmoe)(k +2) (122 <w> /

1/2

- Vi V(Vt)
D/2
< Alsro@k+2) oetmrm o Sy (2’”27“)
Vit Vit

C”¢”BMO(G)(k + 2) e_ﬂ22k7’2/t
\/% I

<
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for 0 < 8 < /8. Therefore,
dt
t

~/6 ~/2k+1B\2kB ‘vmpt(x7y)“¢2(x)‘d$\/,

2

< Ck /” ¢—p22kr2/r dt
< A ;
< Ck /OO e_ﬁtﬂ
- 22k t

< Ck272F,

which yields 3, - |[Ix| < C|[¢| Brmoe). since [lallpie) < 1.
The treatment of J. is similar. Since a has mean value zero, we have

/B a(y) Vapi(a,y) dy = /B a(y) (Vapi(,y) — Vopelz, y0)) dy
=/B a(y) Vg (z,y) dy.

Thus we have

1/e dt
Tl < c/ \a(y)\/ / Va0(2)] [da(2)] di 2L
B r2  Jok+ip\2kB Vit

When ¢ < 22k+472 yse Lemma 2.8 and (2.22) for 0 < 483 < a < min{2c3, 1/2}
we have

Lo Va@)] lonta) ds
2k+1B\2kB

1/2
- (/ ‘Vm%<w>\2eo"’(m’”2”dx> </ \¢2<x>\2e—w<mvy>2/tdw)
G 2k+1B\2* B

- CH¢HBM$(%G)(/§+2) T <%>T <%>m

< C”¢”BMO(G)(k + 2) <L>T <2k+27“> b2 e—oc22k_2r2/t
B Vit Vit Vit
< CH‘bHBMO(G)(k"”Q) L)Te—ﬂf’“rg/t'

S €

1/2
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When ¢ > 22k+4y2 the result still holds. Indeed,
[ V@) e
2k+1B\2kB
) 1/2 , 1/2
= (/ |Vogs()| 2P (7) ﬁdw) </ | o () |2ePl@)/t dw)
G 2k+1B\2kRB

7 ()

CH¢HBMO(<G (k+2) _ gon2 2/t (
B Vi t
< CH¢HBMO(G (k+2 a22k 202 /¢ <L>
B Vit Vit
< C”¢”BMO(G)(k+2) B22kr2 /t <L>
B Vit Vit

Consequently,

- \V4 d dt

~/7’2 ‘/2k+1B\2kB ‘ qut(x)‘ ‘¢2(5I;)‘ X %
- Tdt
= 2 —p22kp2/p (T AL
< Cl9llBmo)(k + )/r2 e NG :

22]6
< Cll¢llBro)(k + 2)2_’” /0 e Py T/2=1

< Cllgll smoe)(k + 2)2"”/0 =Py 1y,

Thus, we have >, -, |Jk| < Cl|8|lpaos) from the above estimate and the fact
that ||al| 1 gy < 1 (see Remark 2.1).

Summing up the above process, we prove that for all functions ¢ € C.(G) and
0 < € < min{1,72, r=2},

/(}Rsa(xw(x) dx

< |R¢al 126 12B1" 2|9l Brios) + Clldll Baro),

where C is independent of the atom a. Applying Lemma 2.1 and the L2-boundedness
of R (see Remark 1.1), we get

‘/Ra x) dx

where C' is independent of the choice of atom a.

<||Rallr2(c) \QB\I/QWHBMO(G+CH¢HBMO(G < Cll¢llBrmo)s
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Now for f € HY(G), write f = >_; Akar, then

(RF,0)=(R>_Mar, 6)=( D Mk, B6)=> N aw, R6) = > Me(Rag, ).
k k k k

Hence,
(RE, A<D Ikl (Rax, )] SC(ZP\H) 16l Bro@) < Cllfllm @) el Broe),
B B

where C' is independent of f. Note that C.(G) is dense in VM O(G), and the dual
spaces of VMO(G) is H'(G) (see [1]), we get Rf € H'(G). Therefore, Theorem
1.1 is proved.
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