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GENERALIZED HYERS-ULAM STABILITY
OF UNCTIONAL EQUATIONS: A FIXED POINT APPROACH

Choonkil Park

Abstract. Using the fixed point method, we prove the generalized Hyers-
Ulam stability of a cubic and quartic functional equation and of an additive
and quartic functional equation in Banach spaces.

1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations originated from a question of
Ulam [51] concerning the stability of group homomorphisms. Hyers [12] gave a
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
Theorem was generalized by Aoki [2] for additive mappings and by Th.M. Rassias
[41] for linear mappings by considering an unbounded Cauchy difference. The paper
of Th.M. Rassias [41] has provided a lot of influence in the development of what we
call generalized Hyers-Ulam stability of functional equations. A generalization of
the Th.M. Rassias theorem was obtained by Gavruta [11] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Th.M. Rassias’
approach.

The functional equation

fla+y)+ flz—y) =2f(z)+2f(y)

is called a quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. A generalized
Hyers-Ulam stability problem for the quadratic functional equation was proved by
Skof [50] for mappings f : X — Y, where X is a normed space and Y is a Banach
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space. Cholewa [7] noticed that the theorem of Skof is still true if the relevant
domain X is replaced by an Abelian group. Czerwik [9] proved the generalized
Hyers-Ulam stability of the quadratic functional equation. The stability problems
of several functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem (see [1, 3, 8,
13, 18, 19, 22-24, 26-49]).

In [36, 37], J. M. Rassias first introduced and investigated the cubic functional
equation

fle+2y) +3f(x) =3f(x+y)+ flz —y) +6f(y).

In [15], Jun and Kim considered the following cubic functional equation

(1Y) fRx+y) +f2r—y) =2f(x+y)+2f(x—y) +12f(x).

It is easy to show that the function f(z) = =3 satisfies the functional equation
(1.1), which is called a cubic functional equation and every solution of the cubic
functional equation is said to be a cubic mapping.

J. M. Rassias [34, 35] first introduced and investigated the quartic functional
equation

(1.2)f 2z +y) + f2z —y) = 4f(z +y) +4f(z —y) + 24 (x) — 6 (y)

and Lee et al. [16] investigated the quartic functional equation (1.2). It is easy
to show that the function f(x) = x* satisfies the functional equation (1.2), which
is called a quartic functional equation and every solution of the quartic functional
equation is said to be a quartic mapping.

We recall a fundamental result in fixed point theory.

Let X be a set. A function d: X x X — [0, o] is called a generalized metric
on X if d satisfies

(1) d(z,y) =0 if and only if x = y;
(2) d(z,y)=d(y,z) forall z,y € X;
(3) d(z,2) < d(z,y)+d(y, z) forall z,y,z € X.

Theorem 1.1. [4, 10]. Let (X, d) be a complete generalized metric space and
let J: X — X be a strictly contractive mapping with Lipschitz constant L < 1.
Then for each given element x € X, either

d(J"z, J"z) = oo

for all nonnegative integers n or there exists a positive integer n o such that

(1) d(J"z, J"Hx) < o0, Vn > no;
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(2) the sequence {J"x} converges to a fixed point y* of .J;
(3) y* is the unique fixed point of J in the set Y ={ye X | d(J™x,y) <oo};
(4) d(y,y") < 12pd(y, Jy) forall y € Y.

This paper is organized as follows: In Sections 2 and 3, using the fixed point
method, we prove the generalized Hyers-Ulam stability of the cubic and quartic
functional equation

fQRr+y)+f(2r—y) = 3f(z+y)+f(=w—y)+3f(z—y)+f(y—2)

(1.3)
+18f(x)+6f(—x)—=3f(y)—3f(~y)

in Banach spaces.
In Sections 4 and 5, using the fixed point method, we prove the generalized
Hyers-Ulam stability of the additive and quartic functional equation

fQRr+y)+f(2r—y) = 2f(v+y)+2f(—z—y)+2f(z—y)+2f(y—=)

(1.4)
+14f(x) +10f(—z) = 3f(y) — 3f(—y)

in Banach spaces.

Throughout this paper, assume that X is a normed vector space with norm || - ||
and that Y is a Banach space with norm || - ||.

In 1996, G. Isac and Th.M. Rassias [14] were the first to provide applications
of stability theory of functional equations for the proof of new fixed point theorems
with applications. By using the fixed point method, the stability problems of several
functional equations have been extensively investigated by a number of authors (see
[6, 17, 20, 21, 25]).

2. Fixep PoiNTs AND GENERALIZED HYERS-ULAM STABILITY OF A CuBIC AND
QUARTIC FUNCTIONAL EQUATION: AN EVEN CASE

One can easily show that an even mapping f : X — Y satisfies (1.3) if and
only if the even mapping f : X — Y is a quartic mapping, i.e.,

fRr+y)+ f2x —y) =4f(v +y) +4f(x —y) +24f(x) — 6f(y),

and that an odd mapping f : X — Y satisfies (1.3) if and only if the odd mapping
mapping f : X — Y is a cubic mapping, i.e.,

fRx+y)+ f(2z —y) =2f(z +y) +2f(z —y) + 12f(x).

It is easy to show that the function f(z) = ax®+ba* satisfies the functional equation
(1.3).
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For a given mapping f : X — Y, we define
Df(z,y): = fx+y)+ fQz—y) = 3f(z+y) — f(—z —y) = 3f(z —y)
—fly —x) = 18f(x) = 6f(—x) +3/(y) + 3f(—y)

for all z,y € X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability of
the functional equation D f(z,y) = 0 in Banach spaces: an even case.

Theorem 2.1. Let f : X — Y be a mapping with f(0) = 0 for which there
exists a function ¢ : X2 — [0,00) such that there exists an L < 1 such that
¢(2,0) < 1xLyp(22,0) for all z € X and

; io (X i) _
2.1) lim 167¢ <2j, J 0,

J—00

(2.2) IDf(z,9) < e(z,y)
for all z,y € X. Then there exists a unique quartic mapping @ : X — Y satisfying

L

| < m(@(% 0) + ¢(—z,0))

23)  |If(z)+ f(—2) — Q)|
forall z € X.

Proof.  Consider the set
Si={g9: X =Y}
and introduce the generalized metric on S:
d(g,h) = inf{K € Ry : [|g(z) — h(z)|| < K(p(z,0) + ¢(—2,0)), Vze X}

It is easy to show that (S, d) is complete. (See the proof of Theorem 2.5 of [5].)
Now we consider the linear mapping J : S — S such that

Jg(x) := 16g (%)

for all z € X.
It follows from the proof of Theorem 3.1 of [4] that

d(Jg,Jh) < Ld(g, h)

forall g, h € S.
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Letting y = 0 in (2.2), we get
(2.4) 12 (22) — 24f(z) - 8f(~2)|| < ¢(x,0)
for all z € X. Replacing = by — in (2.4), we get
(2.5) 12f(=22) — 24f(~2) — 8(2)|| < ¢(~=,0)

forall z € X. Let g(z) := f(z) + f(—=z) forall z € X. Theng: X — Y is an
even mapping. It follows from (2.4) and (2.5) that

129(2z) — 32g()|| < ¢(x,0) + p(—2,0)

forall z € X. So
o160 (5)] < 3 (5 (5:0) + ¢ (-5:0)) < B (o10:0)+ t=2.0)

for all z € X. Hence d(g, Jg) < 2.
By Theorem 1.1, there exists a mapping @ : X — Y satisfying the following:

(1) @ is a fixed point of J, i.e.,

(26) Q(3) =

forall x € X. Then @ : X — Y is an even mapping. The mapping @ is a
unique fixed point of J in the set

M={geS:d(f, g) < oo}

This implies that () is a unique mapping satisfying (2.6) such that there exists
a K € (0, o0) satisfying

lg9(z) — Q(z)|| < K(p(x,0)+ ¢(—z,0))

for all z € X;
(2) d(J"g,Q) — 0 as n — oo. This implies the equality
. n (TN _
e i 1670 () =000
for all z € X;

(3) d(g,Q) < t1+d(g, Jg), which implies the inequality

< — .
9. = 5551
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This implies that the inequality (2.3) holds.
It follows from (2.1), (2.2) and (2.7) that

1DQ( )|l = Jim 16" | Dg (5=, L) |

n—oo
. Ty z Y
= —00 n( < ) <_ B ))
nhm 16" (o on? on + o " om 0

for all z,y € X. So DQ(z,y) =0 forall z,y € X. Since @ : X — Y is
even, the mapping @ : X — Y is a quartic mapping.

Therefore, there exists a unique quartic mapping @ : X — Y satisfying (2.3),
as desired. -

Corollary 2.2. Let p > 4 and 8 > 0 be real numbers, and let f : X — Y be a
mapping such that

(2.8) 1D (2, y)ll < 0(lJ2ll? + llylP + lll] % - [ly]]%)

for all z,y € X. Then there exists a unique quartic mapping @ : X — Y satisfying

1f(2) + f(=2) = Q)] <

P
516/l

forall z € X.

Proof.  The proof follows from Theorem 2.1 by taking

P b
e, y) = 0(l[z[[” + lyl[” + l|]2 - |ly[|2)

for all =,y € X, which was introduced by J.M. Rassias et al. [49]. Then we can
choose L = 24P and we get the desired result. ]

Remark 2.3. Let f : X — Y be a mapping with f(0) = 0 for which there
exists a function ¢ : X2 — [0, co) satisfying (2.2) and

1 S
1 - J J —

(2.9) Jlim T (202, 27y) = 0

for all x,y € X. By a similar method to the proof of Theorem 2.1, one can show

that if there exists an L < 1 such that ¢(xz,0) < 16Ly(%,0) for all z € X, then

there exists a unique quartic mapping @ : X — Y satisfying

T, 0) + (P(_xv 0))

1
17(@)+ f(=2) = Q@) £ 55— (ol
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for all z € X.

For the case 0 < p < 4, one can obtain a similar result to Corollary 2.2: Let
0 <p<4and@ >0 be real numbers, and let f : X — Y be a mapping satisfying
(2.8). Then there exists a unique quartic mapping @ : X — Y satisfying

1f(2) + f(=2) = Q)| <

|zl

forall z € X.

3. Fixep PoiNnTs AND GENERALIZED HYERS-ULAM STABILITY OF A CuBIC AND
QUARTIC FUNCTIONAL EQUATION: AN ODD CASE

Using the fixed point method, we prove the generalized Hyers-Ulam stability of
the functional equation D f(x,y) = 0 in Banach spaces: an odd case.

Theorem 3.1. Let f : X — Y be a mapping with f(0) = 0 for which there
exists a function ¢ : X2 — [0, 0o) satisfying (2.2) such that there exists an L < 1
such that ¢(z,0) < £Lp(2%,0) for all 2 € X, and

(3.1) lim 87 (;—j y) ~ 0

J—00 ’ 2_3
for all x,y € X. Then there exists a unique cubic mapping C' : X — Y satisfying

L

(2 /@)~ f(—2) — C@)| < (ol

(I,',O)—FQO(—(II,O))
forall x € X.

Proof.  Consider the set
Si={g9: XY}
and introduce the generalized metric on S:
d(g,h) = inf{K € Ry : ||g(z) — h(z)|| < K(¢(2,0) + ¢(-2,0)), Vze X}

It is easy to show that (S, d) is complete. (See the proof of Theorem 2.5 of [5].)
Now we consider the linear mapping J : S — S such that

Jg(x) := 8¢ (%)

forall z € X.
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It follows from the proof of Theorem 3.1 of [4] that

d(Jg,Jh) < Ld(g, h)

forall g, h € S.
Letting y = 0 in (2.2), we get
(3.3) 12 (22) — 24 (z) — 8f(—z)|| < ¢(x,0)
for all z € X. Replacing z by —z in (3.3), we get
(34) 12f(=22) = 24f(—x) = 8f(z) < ¢(-,0)

forall x € X. Let g(x) := f(z) — f(—=z) forall x € X. Theng: X — Y is an
odd mapping. It follows from (3.3) and (3.4) that

129(22) — 16g(2)|| < ¢(x,0) + p(—2,0)

forall z € X. So
oo s ()] < 3 (5 (5:0) + 2 (-5:)) < Etota0)+ 2,00

for all 2 € X. Hence d(g, Jg) < £.
By Theorem 1.1, there exists a mapping C' : X — Y satisfying the following:
(1) C is a fixed point of J, i.e.,
T 1
forall z € X. Then C : X — Y is an odd mapping. The mapping C' is a
unique fixed point of J in the set
M ={geS5:d(f g) < oo}

This implies that C'is a unique mapping satisfying (3.5) such that there exists
a K € (0, 00) satisfying

lg(z) — C(2)|| < K(¢o(z,0) + (-, 0))
forall z € X;

(2) d(J"g,C) — 0 as n — oo. This implies the equality

(3.6) lim 8"g (ﬁ) — O(x)

n—00 2m

for all z € X;
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(3) d(g,C) < X+d(g, Jg), which implies the inequality

G —
d9,:C) < {676

This implies that the inequality (3.2) holds.
It follows from (3.1), (2.2) and (3.6) that

Ty
D (5 55)|
9\gn> o0

: n Ty T Y
< - - e _—— pu—
< Jim 8 (o (57.57) + ¢ (-5 3)) =0
forall z,y € X. So DC(x,y) =0 forall z,y € X. Since C' : X — Y is odd, the
mapping C' : X — Y is a cubic mapping.
Therefore, there exists a unique cubic mapping C' : X — Y satisfying (3.2), as
desired. -

IDC(a,y)] = lim &

n—oo

Corollary 3.2. Let p > 3 and # > 0 be real numbers, and let f : X — Y be
a mapping satisfying (2.8). Then there exists a unique cubic mapping C' : X — Y
satisfying

15 () = f(=2) = C@)ll = o—ll=II”

for all x € X.
Proof.  The proof follows from Theorem 3.1 by taking

b b
e, y) = 0(l|=[ [P+ llyllP + [l]2 - lly[|2)

for all 2,y € X, which was introduced by J.M. Rassias et al. [49]. Then we can
choose L = 2377 and we get the desired result. ]

Combining Corollaries 2.2 and 3.2 yields the following.

Theorem 3.3. Let p > 4 and 6 > 0 be real numbers, and let f : X — Y be a
mapping satisfying (2.8). Then there exist a unique quartic mapping @ : X — Y
and a unique cubic mapping C : X — Y satisfying

1240) = Q@) - Cla)l < (g + 5 ) bl

forall x € X.
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Remark 3.4. Let f : X — Y be a mapping with f(0) = 0 for which there
exists a function ¢ : X2 — [0, co) satisfying (2.2) and
1 S
lim —¢(22,27y) =0
j—o0 &J
for all x,y € X. By a similar method to the proof of Theorem 3.1, one can show

that if there exists an L < 1 such that ¢(x,0) < 8Lp(%,0) for all z € X, then
there exists a unique cubic mapping C : X — Y satisfying

17(@) ~ f(=2) = C@)l| < 7= ((2,0) + pl—,0))

for all z € X.

For the case 0 < p < 3, one can obtain a similar result to Corollary 3.2: Let
0 <p<3and @ >0 be real numbers, and let f : X — Y be a mapping satisfying
(2.8). Then there exists a unique cubic mapping C : X — Y satisfying

1f(2) = f(=2) = C(z)|| <

—llalP

for all z € X.
Combining Remarks 2.3 and 3.4 yields the following.

Theorem 3.5. Let 0 < p < 3 and # > 0 be real numbers, andlet f : X — Y be
a mapping satisfying (2.8). Then there exist a unique quartic mapping @ : X — Y
and a unique cubic mapping C : X — Y satisfying

I24(0) - Qe) - Cl < (152 + g7 ) Al

forall z € X.

4. Fixep PoINTs AND GENERALIZED HYERS-ULAM STABILITY OF AN ADDITIVE AND
QuARTIC FUNCTIONAL EQUATION: AN EVEN CASE

One can easily show that an even mapping f : X — Y satisfies (1.4) if and
only if the even mapping f : X — Y is a quartic mapping, i.e.,

fRr+y)+ f(2z —y) =4f(v+y) +4f(x —y) +24f(x) - 6f(y),

and that an odd mapping f : X — Y satisfies (1.4) if and only if the odd mapping
mapping f : X — Y is an additive mapping, i.e.,

fle+y) = fl)+ fy).
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It is easy to show that the function f(z) = ax+ba* satisfies the functional equation
(1.4).
For a given mapping f : X — Y, we define

Cf(z,y): = fQRx+y)+ f2z—y) - 2f(z+y) - 2f(—x —y) — 2f(x — y)
—2f(y —x) — 14f(z) — 10f(—z) + 3f(y) + 3f(~y)

for all z,y € X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability of
the functional equation C'f(x,y) = 0 in Banach spaces: an even case.

Theorem 4.1. Let f : X — Y be a mapping with f(0) = 0 for which there
exists a function ¢ : X2 — [0,00) such that there exists an L < 1 such that
¢(2,0) < 7:Lp(22,0) for all z € X, and

; i, (2 i) _
(4.1) lim 167¢ <2j, Z) =o.

J—00

(4.2) 1Cf (@, )l < e(z,y)
for all z,y € X. Then there exists a unique quartic mapping @ : X — Y satisfying

L

(p(x,0) + p(—=,0))

forall x € X.

Proof.  Consider the set
Si={g: XY}
and introduce the generalized metric on S:
d(g,h) = inf{K € Ry : ||g(z) — h(z)|| < K(¢(2,0) + ¢(-2,0)), Vze X}

It is easy to show that (S, d) is complete. (See the proof of Theorem 2.5 of [5].)
Now we consider the linear mapping J : S — S such that

Jg(z) := 169 (%)

for all z € X.
It follows from the proof of Theorem 3.1 of [4] that
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d(Jg,Jh) < Ld(g, h)

forall g,h € S.
Letting y = 0 in (4.2), we get

(4.3) 12f(2z) — 18f(x) — 14f (=) < ¢(,0)
for all z € X. Replacing z by —z in (4.3), we get
(4.4) 12f(—22) = 18f(—x) — 14f(z)| < ¢ (—=,0)

forall z € X. Let g(z) := f(z) + f(—=z) forall z € X. Theng: X — Y is an
even mapping. It follows from (4.3) and (4.4) that

129(22) — 32g(2)|| < ¢(2,0) + ¢(—2,0)
forall x € X. So
o160 ()] = (4 (5:0) + (-5.0)) < o000 00

for all z € X. Hence d(g, Jg) < 2.
The rest of the proof is similar to the proof of Theorem 2.1. ]

Corollary 4.2. Let p > 4 and 8 > 0 be real numbers, and let f : X — Y be a
mapping such that

(4.5) ICf (@)l < 0(l2IIP + 1yl + lll|% - 1yl %)

for all z,y € X. Then there exists a unique quartic mapping @ : X — Y satisfying

1f(2) + f(=2) = Q2] <

el
2 — 16

forall z € X.

Proof.  The proof follows from Theorem 4.1 by taking

P b
e, y) = 0(l[z[[” + lyl[” + l|]2 - |ly[|2)

for all =,y € X, which was introduced by J.M. Rassias et al. [49]. Then we can
choose L = 2*~P and we get the desired result. ]
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Remark 4.3. Let f : X — Y be a mapping with f(0) = 0 for which there
exists a function ¢ : X2 — [0, co) satisfying (4.2) and

1 S
(4.6) lim —p(2/2,27y) =0

j—oo 167
for all x,y € X. By a similar method to the proof of Theorem 4.1, one can show
that if there exists an L < 1 such that ¢(z,0) < 16Lp(3,0) for all z € X, then
there exists a unique quartic mapping @ : X — Y satisfying

7@+ F(=2) = Q)| < 55— (9l 0) + p(~,0))

for all z € X.

For the case 0 < p < 4, one can obtain a similar result to Corollary 4.2: Let
0 <p<4and@ >0 be real numbers, and let f : X — Y be a mapping satisfying
(4.5). Then there exists a unique quartic mapping @ : X — Y satisfying

17(@) + f(=2) = Q)| £ =[xl

forall z € X.

5. Fixep PoIiNTs AND GENERALIZED HYERS-ULAM STABILITY OF AN ADDITIVE AND
QUARTIC FUNCTIONAL EQUATION: AN ODD CASE

Using the fixed point method, we prove the generalized Hyers-Ulam stability of
the functional equation C'f(x,y) = 0 in Banach spaces: an odd case.

Theorem 5.1. Let f : X — Y be a mapping with f(0) = 0 for which there
exists a function ¢ : X2 — [0, 00) satisfying (4.2) such that there exists an L < 1
such that ¢(z,0) < $Lp(2z,0) for all z € X, and

(5.1) lim 2 (;—j y) - 0

J—00 1 9J

for all z,y € X. Then there exists a unique additive mapping A : X — Y
satisfying

[7@) ~ F(~2) ~ A@)]| < g (ol 0) + p(—,0)

forall x € X.
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Proof.  Consider the set
Si={g9: X =Y}
and introduce the generalized metric on S:
d(g,h) = inf{K € Ry : [lg(z) — h(z)|| < K(p(z,0) + ¢(—2,0)), Vze X}

It is easy to show that (S, d) is complete. (See the proof of Theorem 2.5 of [5]).
Now we consider the linear mapping J : S — S such that

Jg(x) == 2g (%)

for all z € X.
It follows from the proof of Theorem 3.1 of [4] that

d(Jg,Jh) < Ld(g, h)

forall g, h € S.
Letting y = 0 in (4.2), we get
(5.2) 12f(22) — 18f(z) — 14f(—2)|| < p(z,0)
for all z € X. Replacing z by —z in (5.2), we get
(5.3) 12f(—22) = 18f(—z) — 14f(z)|| < ¢(—,0)

forall x € X. Let g(x) := f(z) — f(—=z) forall x € X. Theng: X — Y is an
odd mapping. It follows from (5.2) and (5.3) that

129(22) — 4g9(z)| < ¢(z,0) + (==, 0)
forall x € X. So
ot 20 (5)] < 5 (6 (5:0) 0 (-5:)) < Etpt0.0 -0

for all x € X. Hence d(g, Jg) < £.
The rest of the proof is similar to the proofs of Theorems 2.1 and 3.1. ]

Corollary 5.2. Let p > 3 and 8 > 0 be real numbers, and let f : X — Y be a
mapping satisfying (4.5). Then there exists a unique additive mapping A: X — Y
satisfying

1f(2) = f(=2) = A2)]| <

||| 1P
2% —2

forall z € X.
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Proof.  The proof follows from Theorem 5.1 by taking

b b
e, y) = 0[] [P+ |[yll” + [l - lly[|>)

for all 2,y € X, which was introduced by J.M. Rassias et al. [49]. Then we can
choose L = 2P and we get the desired result. ]

Combining Corollaries 4.2 and 5.2 yields the following.

Theorem 5.3. Let p > 4 and 6 > 0 be real numbers, and let f : X — Y be a
mapping satisfying (4.5). Then there exist a unique quartic mapping @ : X — Y
and a unique additive mapping A : X — Y satisfying

I240) = Qe) ~ Al < (g + 57 ) Al

forall x € X.

Remark 5.4. Let f : X — Y be a mapping with f(0) = 0 for which there
exists a function ¢ : X2 — [0, 0o) satisfying (4.2) and

1 o
lim —p(2/2,27y) =0
j—oo 27

for all x,y € X. By a similar method to the proof of Theorem 5.1, one can show
that if there exists an L < 1 such that ¢(x,0) < 2Lp(%,0) for all z € X, then
there exists a unique additive mapping A : X — Y satisfying

1f(2) = f(=2) = A)]| < ((2,0) + ¢(==,0))

4—4L
for all z € X.

For the case 0 < p < 1, one can obtain a similar result to Corollary 5.2: Let
0 <p<1andé@ >0 be real numbers, and let f : X — Y be a mapping satisfying
(4.5). Then there exists a unique additive mapping A : X — Y satisfying

1f(2) = f(=2) = A(z)]| <

——llal?

forall z € X.

Combining Remarks 4.3 and 5.4 yields the following.
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Theorem 5.5. Let 0 < p < 1and # > 0 be real numbers, andlet f : X — Y be
a mapping satisfying (4.5). Then there exist a unique quartic mapping @ : X — Y
and a unique additive mapping A : X — Y satisfying

I24(0) - Qo) - )] < (g5 + 5= ) Al

forall z € X.
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