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SEMIGROUP OF RATIONAL p-ADIC FUNCTIONS FOR COMPOSITION

Abdelaziz Bellagh

Abstract. We are interested in the Julia set of a semigroup of rational functions
with coefficients in Cp where the semigroup operation is composition. We
prove that if a semigroup G is generated by a finite number of rational functions
of degree at least two with coefficients in a finite extension of Qp, and has a
nonempty Julia set J (G), then J (G) is perfect and has an empty interior.

1. INTRODUCTION AND RESULTS

In recent years, the Julia sets of rational functions with coefficients in a complete
local field have been the subject of several investigations.

These sets are studied in [7, 2, 3, 4], etc... .
In this paper, we prove that some of the properties of the Julia set of a rational

function with coefficients in Cp are also true for the Julia set of a semigroup of
rational functions with coefficients in Cp (where the operation of semigroup is
composition).

First, we recall some basic notions (exceptional points, spherical distance, equicon-
tinuity, etc...) and some preliminary results we shall need later (see Section 2). Then,
we give the definitions of the Julia set J (G) and the Fatou set F (G) of a semi-
group G of rational functions with coefficients in Cp, and we prove some of their
immediate properties (see Proposition 1, Corollary 2 and Corollary 3).

In Section 4 we are interested in the invariance of the Julia set J (G) under
elements of G, and we prove that as in the case of a semigroup G of rational func-
tions with complex coefficients (see [6]) the Julia set J (G) is backward invariant
(see Proposition 2) but not always forward invariant under the elements of G (see
Example 1).

It is well known that if R is a rational function of degree at least two with
coefficients in Cp, then its Julia set J (R) is either empty or infinite (see [7]).
Section 5 is devoted to the case where the Julia set J (G) is finite, and we prove:
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Theorem 1. Let R1, . . . , Rn be rational functions of degree at least two with
coefficients in Cp and G = 〈R1, . . . , Rn〉, then J (G) is either empty or infinite.

Then, we give examples of finite Julia sets (see Corollary 4, Corollary 5, Remark
4 and Example 2).

In Section 6 we prove that J (G) can be infinite even if all its generators have
empty Julia sets (see Corollary 6).

It is well known that if R is a rational function of degree at least two with
coefficients in Cp, then its Fatou set F (R) is not empty (see [3]) and its Julia
set J (R) has an empty interior and J (R) is either perfect or empty (see [7]). In
Section 7 we give partial generalizations of these results. We consider the case
where G is a semigroup of rational functions with coefficients in a finite extension
of Qp and G has a finite number of generators all of which are of degree at least
two, and we prove that its Julia set J (G) is perfect or empty and that J (G) has
an empty interior. More precisely, we have:

Theorem 2. Let K be a finite extension of the field Qp and G the semigroup
〈R1, R2, . . . , Rn〉, where R1, R2, . . . , Rn are rational functions of degree at least
two with coefficients in K, then J (G) is either perfect or empty.

Theorem 3. Let K be a finite extension of Qp and G = 〈R1, . . . , Rn〉 where
R1, . . . , Rn ∈ K(z)− K, then J (G) has an empty interior.

In Section 8 we compare the properties of the Julia sets in the p-adic case with
the properties of the Julia sets in the complex case. For the properties of the Julia
set of a semigroup of rational functions with complex coefficients, the reader can
see for example [1, 6, 12].

2. NOTATIONS AND PRELIMINARY RESULTS

Let p be a fixed prime number, let Cp be the completion of a fixed algebraic
closure of the field Qp of p-adic rationals, and let |.| denote the p-adic absolute
value on Cp extending the one on Qp such that |p| = 1/p. If r > o and a ∈ Cp, we
set B+(a, r) = {x ∈ Cp / |x − a| ≤ r} and B−(a, r) = {x ∈ Cp / |x − a| < r}.
Let P1(Cp) denote the projective line over Cp (in the sequel P1(Cp) is viewed as
Cp ∪ {∞}). We define an open (resp., closed) P1(Cp) disk to be any subset of
P1(Cp) of the form {x ∈ Cp/|x− a| < r} or {x ∈ Cp/|x− a| > r} ∪ {∞} (resp.,
{x ∈ Cp/|x−a| ≤ r} or {x ∈ Cp/|x−a| ≥ r}∪{∞}) where a ∈ Cp, r ∈ R+−{0}.
We define the spherical metric on P1(Cp) as follows (see [2, p. 3]), if (α, β) and
(γ, δ) are two points in P1(Cp), we set:

∆((α, β), (γ, δ)) =
|αδ − γβ|

Max(|α|, |β|)Max(|δ|, |γ|)
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We easily check that the P1(Cp) disks are open sets of P1(Cp) for the spherical
metric ∆, and that they form a base for the topological space P1(Cp). We will need
the following two properties of the rational functions:

Lemma 1. [8, p. 104]. If R is a rational function with coefficients in C p,
then there exists a positive constant C such that for any α, β in P 1(Cp), we have
∆(R(α), R(β)) ≤ C∆(α, β). In particular R is uniformly continuous on P 1(Cp).

Lemma 2. If R is a (non-constant) rational function with coefficients in C p,
then R is an open map from the metric space P 1(Cp) to itself.

Proof. Indeed, if U is an open set of P1(Cp), then U is the union of a family
(Di)i∈I of P1(Cp) disks. Given that the image of a P1(Cp) disk by a (non-constant)
rational function is either a P1(Cp) disk or P1(Cp) (see [3, p. 5]), we deduce that
R(Di) is an open set of P1(Cp) for any i in I . It follows that R(U) is also an open
set of P1(Cp).

Now we introduce the notion of equicontinuity. Roughly speaking, the equicon-
tinuity of a family F of rational functions with coefficients in Cp in a neighborhood
V of a point x, means that if two points of V are close together, then their images
under application of an element of F are also close together. On the other hand,
the non-equicontinuity of the family F means that small errors on x may become
arbitrarily large under application of elements of F . More precisely:

Definition 1. Let D be a P1(Cp) disk and F a family of rational functions with
coefficients in Cp, we say that F is an equicontinuous family on D, if for any real
number ε > 0 there exists a real number η > 0 such that for any f in F and any
x, y in D, ∆(x, y) < η implies that ∆(f(x), f(y)) < ε.

The following theorem is an equicontinuity criterion that we shall use afterwards.
It is the p-adic analogous of Montel’s Theorem in the complex case (see [1, p. 57]).

Hsia’s Criterion. [7, p. 691]. Let D be a P1(Cp) disk, let Y be a subset of
P1(Cp) whose complement contains at least two points, and let F be a family of
rational functions such that f(D) ⊂ Y for any f in F . Then F is an equicontinuous
family on D.

In this paper F will be a semigroup of rational functions. A semigroup of
rational functions with coefficients in Cp is by definition a subset G of Cp(z)−Cp

containing the polynomial z, such that if S, R ∈ G, then the composition R ◦ S of
R and S is also in G. If A is a nonempty subset of Cp(z)−Cp, then the semigroup
generated by A is denoted by 〈A〉. If a semigroup G of rational functions is a subset
of Cp[z] − Cp, we say that G is a polynomial semigroup. If n is a positive integer
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and R is a rational function with coefficients in Cp, we denote by R[n] the n-th
iterate of R, where by convention R[0](z) = z. We also need the notion of degree.
If P (z) is a polynomial with coefficients in Cp, the degree of P is denoted by degP .
If R(z) is a rational function with coefficients in Cp such that R(z) = P (z)

Q(z) where
P and Q are relatively prime polynomials (with coefficients in Cp), the degree of
R is by definition degR = max(degP, degQ).

3. JULIA SETS: DEFINITIONS AND IMMEDIATE PROPERTIES

In this Section, we will give a definition of the Julia set and the Fatou set of a
semigroup of rational functions with coefficients in Cp, which is a natural extension
of the definition given in the classical case of the Julia set and the Fatou set of
a rational function with coefficients in Cp (see [7, p. 691]). This definition is
analogous to the one given in the complex case (see [6, p. 360] and [1, Theorem
3.3.2]). However, we will see that as in the case of the Julia set and the Fatou set of
a semigroup of rational functions with complex coefficients, the properties of these
sets are less interesting than in the case the semigroup has only one generator (see
[6, p. 361]).

Definition 2. Let G be a semigroup of rational functions with coefficients in
Cp (where the semigroup operation is composition). The Fatou set of G is the set
of points z of P1(Cp), such that there exists a P1(Cp) disk containing z, where the
family of elements of G is equicontinuous for the spherical metric. The Fatou set
of G is denoted by F (G). The Julia set of G is the complement of the Fatou set
in P1(Cp), and is denoted by J (G).

Remark 1. It is clear from the above definition that if G is a semigroup of
rational functions with coefficients in Cp, then the Fatou set of G is open in the
metric space P1(Cp) and the Julia set of G is closed. In addition, if G is generated
by a single rational function g, the Julia (resp., Fatou) set of G coincides with the
Julia (resp., Fatou) set of g defined in the classical way (for example as in [2, p.
1]) and is denoted by J (g) (resp., F (g)).

Here we need the following definition:

Definition 3. Let R, S be two rational functions with coefficients in Cp, we say
that R and S are conjugate if there exists a rational function ϕ of degree one, such
that S = ϕ ◦ R ◦ ϕ−1.

We know that if R is a rational function of degree at least two, then J (R) is
either empty or infinite (see [7, p. 694]). When R is a degree one rational function,
it’s well known that R is conjugate either to z + α or to αz (where α ∈ Cp −{0});
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and it is easy to prove that for λ, µ ∈ Cp − {0} we have J (z + µ) = ∅, and that
J (λz) = ∅ if |λ| = 1, J (λz) = {∞} if |λ| < 1, J (λz) = {0} if |λ| > 1. Now we
prove some elementary facts about the Fatou set and the Julia set of a semigroup G

of rational functions with coefficients in Cp.

Lemma 3. Let U be an open set of P1(Cp), and Y a subset of P1(Cp) whose
complement contains at least two points. Assume that g(U) ⊂ Y for any g in G,
then we have U ⊂ F (G).

Proof. Results from Hsia’s Criterion.

We will also need the notions of invariance backward and forward by a rational
function.

Definition 4. Let g be a rational function with coefficients in Cp and A a subset
of P1(Cp), we say that:

(1) A is forward invariant by g if g(A) ⊂ A.
(2) A is backward invariant by g if g−1(A) ⊂ A.
(3) A is completely invariant by g if g(A) ⊂ A and g−1(A) ⊂ A.

Corollary 1. Let F be a closed set (of P1(Cp)) backward invariant by every
element g of G. If F contains at least two points, then we have:

J (G) ⊂ F .

Proof. If we set U = F c, then we have g(U) ⊂ U for every element g of G.
Given that the complement F of U contains at least two points, Lemma 3 implies
that U ⊂ F (G) and thus J (G) ⊂ F .

Lemma 4. Let G1 and G2 be two semigroups of rational functions. Assume that
G1 ⊂ G2, then we have F (G2) ⊂ F (G1) and J (G1) ⊂ J (G2). In particular if G
is a semigroup of rational functions, then for any g in G, we have F (G) ⊂ F (g)
and J (g) ⊂ J (G).

Proof. Let z be a point of F (G2). There exists a P1(Cp) disk D containing z
where the family of elements of G2 is equicontinuous. Given that every subfamily
of an equicontinuous family is also equicontinuous, we deduce that the family of
elements of G1 is equicontinuous on D. It follows that z is in F (G1), and this
proves the first inclusion. The second inclusion results by taking the complement
in P1(Cp). The final assertion is straightforward.
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Remark 2. If R is an element of a semigroup G = 〈Ri /i ∈ I〉 such that
|J (R)| ≥ 2 and R−1

i (J (R)) ⊂ J (R) for any i in I , then we deduce from Corollary
1 and Lemma 4 that J (G) = J (R). In particular if f, g are two rational functions
of degree at least two with the same nonempty Julia set, then we have J (〈f, g〉) =
J (f).

3.1. Conjugation by a degree one rational function

Now we consider the conjugation of a semigroup G of rational functions by a
degree one rational function ϕ. We set Gϕ = {ϕ ◦ g ◦ ϕ−1 / g ∈ G}.

Proposition 1. Gϕ is a semigroup of rational functions, and we have the equal-
ities:

F (Gϕ) = ϕ(F (G)) and J (Gϕ) = ϕ(J (G)).

Proof. The fact that Gϕ is a semigroup is obvious. For the second asser-
tion, it suffices to prove that F (Gϕ) ⊂ ϕ(F (G)). According to Lemma 1, there
exists two positive real numbers b1, b2 such that for any x, y in P1(Cp) we have
∆(ϕ(x), ϕ(y))≤ b1∆(x, y), and ∆(ϕ−1(x), ϕ−1(y)) ≤ b2∆(x, y). If z ∈ F(Gϕ),
there exists a P1(Cp) disk D containing z such that for any ε > 0 there exists
η > 0 such that for any f in G and for any x, y in D, ∆(x, y) < η implies that
∆(f ◦ϕ−1(x), f ◦ϕ−1(y)) ≤ b2∆(ϕ◦f ◦ϕ−1(x), ϕ◦f◦ϕ−1(y)) < ε. Let η′ =

η

b1
,

then for any u, v in D′ = ϕ−1(D), ∆(u, v) < η′ implies that ∆(f(u), f(v)) < ε.
It follows that the family of elements of G is equicontinuous on D′, and so z is in
ϕ(F (G)).

3.2. Rational functions with good reduction

When J (G) is empty, Lemma 4 implies that for any g in G, we have J (g) = ∅
(but we prove in Section 6 that the converse is false). Here we give a condition on
the elements of G sufficient to have J (G) empty. Let f(X) = P (X)

Q(X)
be a rational

function of degree d with coefficients in Cp where P (X), Q(X) are relatively prime
polynomials. We can assume that the coefficients of P and Q are in the ring of
integers of Cp, and that one of these coefficients has absolute value 1. Then we
set P1(X, Y ) = Y dP (X

Y ) and Q1(X, Y ) = Y dQ(X
Y ). Following [2] we say that

the rational function f has good reduction if the polynomials P1 and Q1 have no
common zeros in Fp

2 other than (0, 0). If f has not good reduction we say that f

has bad reduction. We note that the reduction type (good or bad) is independent of
the choice of the polynomials P and Q such that f(X) = P (X)

Q(X) . We know that if a
semigroup of rational functions has only one generator R and R has good reduction,
then for any x, y in P1(Cp), we have ∆(R(x), R(y)) ≤ ∆(x, y) (see [8, p. 105]),
in particular the Julia set of R is empty. It easily follows that:



Semigroup of Rational Functions 1391

Corollary 2. Let A be a nonempty subset of C p(z)−Cp and G the semigroup
of rational functions generated by A. If any element of A has good reduction, then
the Julia set of G is empty.

3.3. Fixed points

We need the notions of repelling fixed point, attracting fixed point and neutral
fixed point of a rational function. Let R be a rational function with coefficients in
Cp and z0 a point of P1(Cp). We say that z0 is a fixed point of R if R(z0) = z0.
When z0 is in Cp, we say that the fixed point z0 is repelling if |R ′(z0)| > 1,
attracting if |R ′(z0)| < 1, neutral if [R′(z0)| = 1. When z0 ∈ Cp, it is easy to
prove that if R is a rational function and z0 a fixed point of R, the type of the
fixed point z0 (repelling, attracting or neutral) is invariant by conjugation. This
allows us to define the type of ∞ when it is a fixed point of R. We know that if
R is a rational function with coefficients in Cp, then the repelling fixed points of
R are in J (R) and the non-repelling fixed points of R are in F (R) (see [3, p. 2]).
In this Section we will prove that if the generators of a semigroup G of rational
functions have a common non-repelling fixed point ω, then under certain conditions,
ω is the centre of a P1(Cp) disk (contained in F (G)) of which we can compute
the radius. By conjugating (if necessary) by an appropriate linear fractional map,
we can suppose that ω = 0. Now let R be a rational function such that 0 is a
non-repelling fixed point of R and let R(z) =

∑∞
i=0 aiz

i+1 be the expansion of R

as a power series in a neighborhood of 0. If the ai are not all 0 (for i in N − {0})
we set τ(R)−1 = sup

{|an| 1
n / n ∈ N−{0}}, and if R is a degree one polynomial

we set τ(R) = ∞. Then we use the following lemma:

Lemma 5. [9, pp. 38, 47]. If 0 < t < τ(R), then we have

R(B+(0, t)) ⊂ B+(0, t)

. Corollary 3. Let (Ri)i∈I be a family of (non-constant) rational functions with
coefficients in Cp and G = 〈Ri, /i ∈ I〉. We assume that 0 is a non-repelling fixed
point of Ri for any i in I , and we set τ = inf{τ(Ri), /i ∈ I}. If τ �= 0, then we
have B−(0, τ) ⊂ F (G).

Proof. If r < τ , we have for any i in I , Ri(B+(0, r)) ⊂ B+(0, r). Hence,
the result follows from Hsia’s Criterion.

Remark 3. If G = 〈R1, R2, . . . , Rn〉 where R1, R2, . . . , Rn are (non-constant)
rational functions with coefficients in Cp and ω is a common non-repelling fixed
point (in P1(Cp)) of R1, R2, . . . , Rn, then there exists a (P1(Cp)) disk D such that
ω ∈ D ⊂ F (G). Indeed, by conjugating G (if necessary) by an appropriate degree
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one rational function, we can suppose that ω = 0. Then we apply the preceding
corollary. In particular if G is generated by a finite number of polynomials of degree
at least two, then ∞ ∈ F(G) (since ∞ is in this case a common non-repelling fixed
point of the generators of G).

4. INVARIANCE OF JULIA AND FATOU SETS

Now we examine the invariance of Julia and Fatou sets. In the case of a single
rational function R, we know that the sets J (R) and F (R) are completely invariant
by R (see, for example, [3, p. 1]). Here we will see that it is not always the case
for Fatou and Julia sets of a semigroup of rational functions with coefficients in Cp.
We will need the following lemma:

Lemma 6. [5, p. 41]. Let D be a P1(Cp) disk, let R be a (non-constant) rational
function with coefficients in C p and D∗ = R(D). For any α > 0 there exists
α∗ > 0 with the following property: For any u, v in D ∗ such that ∆(u, v) < α∗,
there exists x, y in D such that R(x) = u, R(y) = v and ∆(x, y) < α.

As in the complex case (see [6, p. 360]), we have:

Proposition 2. Let G be a semigroup of rational functions with coefficients
in Cp. For any g in G, F (G) is forward invariant by g and J (G) is backward
invariant by g (that is to say g(F (G)) ⊂ F (G) and g−1(J (G)) ⊂ J (G)).

Proof. If g ∈ G and z ∈ F(G), there exists a P1(Cp) disk D containing
z such that the family of rational functions of G is equicontinuous on D. Then
for any ε > 0 there exists η > 0 such that for any f in G and for any x, y in
D, ∆(x, y) < η implies that we have ∆(f(x), f(y)) < ε. According to Lemma
6, there exists η ′ > 0 with the following property: for any u, v in g(D) such that
∆(u, v) < η′, there exists x, y in D such that u = g(x), v = g(y) and ∆(x, y) < η.
Then for any f in G and any u, v in g(D) such that ∆(u, v) < η′, we have

∆(f(u), f(v)) = ∆(f(g(x)), f(g(y))) < ε

(recall that f ◦ g ∈ G since G is a semigroup). It follows that the family of rational
functions of G is equicontinuous on g(D). Hence, we have g(F (G))⊂F(G). The
second assertion results from the first becauseJ (G) is the complement ofF (G).

The following example shows that in general we do not have the equality
g−1(J (G)) = J (G) for any g in G. In fact, we have the same problem in the
complex case (see [6, p. 361]).
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Example 1. Let p, q be two different prime numbers, such that q is prime
to p − 1, and let G be the semigroup generated by the rational functions with

coefficients in Cp, g1(z) =
zp − z

p
and g2(z) = zq. First, we note that if we set

Y = B+(0, 1)c, then for any g in G we have g(Y ) ⊂ Y (since g1(Y ) ⊂ Y and
g2(Y ) ⊂ Y ). Hence, Lemma 3 implies that Y ⊂ F (G). For any k in N we set

Ak = {x ∈ Cp/x = pk(l + pω), ω ∈ Zp, l ∈ N, 1 ≤ l ≤ p − 1}

(then we have Zp = (∪k≥0Ak) ∪ {0}). For any m and k in N we set

Bk,m = {x ∈ Cp/x = u(l + pθ), θ ∈ Zp, l ∈ N, 1 ≤ l ≤ p − 1, uqm
= pk}.

Now we show that the inverse image of Ak by g
[m]
2 is Bm,k. It is clear that

the image of Bm,k by g
[m]
2 is a subset of Ak . Conversely, if x is a point of Cp

such that g
[m]
2 (x) = pk(l + pω) and ω ∈ Zp, l ∈ N, 1 ≤ l ≤ p − 1, we set

P (y) = yqm − (l + pω). Given that q is prime to p − 1, we deduce that there
exists an integer j between 1 and p−1 such that j qm ≡ l(mod p). Hence, we have
|P (j)| = |jqm − (l + pω)| ≤ 1

p < 1 and |P ′(j)| = 1, and Hensel’s Lemma (see,
for example, [10]) implies that there exists y0 in Zp such that |y0 − j| ≤ 1

p and
P (y0) = 0. If we set y0 = j + pθ, it follows that θ ∈ Zp and yqm

0 = l + pω. Then
u =

x

y0
satisfies uqm

= pk, and we have x = u(j + pθ), where θ ∈ Zp. We deduce

that x ∈ Bk,m and that (g [m]
2 )−1(Ak) = Bk,m.

According to Proposition 2, we have g−1
2 (J (G)) ⊂ J (G). If we set B =

(
∞⋃

m=0

∞⋃
k=0

Bk,m)
⋃

{0}, then Bk,0 = Ak implies that Zp ⊂ B, and taking into

account that the Julia set of g1 is Zp (see [11] or [7]), we deduce that Ak ⊂ Zp =
J (g1) ⊂ J (G). It follows that Bk,m ⊂ J (G), and that Zp ⊂ B ⊂ J (G) ⊂ Y c =
B+(0, 1). However, there exists an element of B which does not belong to Zp. For

example, if w satisfies g2(w) = wq = p, then its p-adic absolute value is
1
q
√

p
�∈ pZ

and thus we have w /∈ Zp.
Furthermore, for a positive integer N sufficiently large we have

g
[N ]
1 (w) ∈ Y.

Indeed, we know that Zp is the filled Julia set of g1 (see [4, p. 23]); hence for
any x in B+(0, 1)− Zp the sequence g

[n]
1 (x) tends towards ∞. We deduce that in

general J (G) is not completely invariant by the elements of G.
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5. THE CASE WHERE THE JULIA SET IS FINITE

Let R be a rational function with coefficients in Cp, we know that if R is of
degree at least two then J (R) is either empty or infinite (see, for example, [7,
p. 694]). In this Section, we prove Theorem 1 which is a generalization of the
preceding result to the case of the Julia set of a semigroup of rational functions with
coefficients in Cp. Now we suppose that G is an arbitrary semigroup of rational
functions (with coefficients in Cp) which can contain degree one rational functions
and that G is not necessarily finitely generated. We begin with some preliminary
definitions and lemmas. Let a be a point of P1(Cp), the union of the sets g−1({a})
where g is an arbitrary element of G is called the backward orbit of a by G, and
is denoted by O−

G(a). In the same way, the union of the sets {g(a)} where g is
an arbitrary element of G is called the forward orbit of a by G, and is denoted by
O+

G(a). If O−
G(a) is finite, we say that a is an exceptional point of G. We denote

by E(G) the set of exceptional points of G. If G is generated by a non-constant
rational function R, the set of exceptional points of G is denoted by ER. We know
that if a rational function R is of degree at least two, then |ER| ≤ 2 (see [1, p. 65]).
We can easily check that if R is a rational function of degree one with infinite order
(that is to say R[n](z) �= z for any n in N − {0}), then we also have |ER| ≤ 2.
Given that E(G) ⊂ Eg for any g in G, it follows that:

Lemma 7. If G contains a rational function of degree at last two or of degree
one with infinite order, then we have |E(G)| ≤ 2.

If J (G) is finite, then the elements of G are either degree one rational functions
or rational functions of degree at least two with empty Julia sets (because J (g) ⊂
J (G) for any g in G); and in this case J (G) is completely invariant by the elements
of G.

Lemma 8. If J (G) is finite, then J (G) has at most two elements.

Proof. If G contains a rational function of degree at least two, then we have
J (G) ⊂ E(G), hence this lemma results from Lemma 7. If G contains only degree
one rational functions, we consider two cases:

(1) Assume G is infinite and J (G) = {x1, . . . , xn} where n is a positive in-
teger. If n ≥ 3, given that J (G) is completely invariant by the elements
of G and that an element g of G is perfectly determined by the images
g(x1), g(x2), g(x3) (because g is of degree one), we deduce that G has at
most n(n − 1)(n − 2) elements, and this contradicts the hypotheses. It fol-
lows that |J (G)| ≤ 2.

(2) Assume G is finite, then Lemma 1 implies that there exists a positive constant
C such that for any g in G and any x, y in P1(Cp), we have ∆(g(x), g(y))≤
C∆(x, y). It follows that J (G) = ∅.
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Now we consider the case where J (G) has one or two elements.

Lemma 9. Let G be a semigroup of rational functions.

(1) If |J (G)| = 1, then G is conjugate to a polynomial semigroup.
(2) If |J (G)| = 2, then G is conjugate to a semigroup whose elements are all

of the form azm where a ∈ Cp − {0} and m ∈ Z − {0}.

Proof.

(1) If J (G) = {a}, then by conjugating (if necessary) by the rational function

ϕ(z) =
1

z − a
we may assume that J (G) = {∞}. If g is an element of G,

we have g−1({∞}) = {∞}, and it follows that g has no pole in Cp (thus g
is a polynomial).

(2) If J (G) = {α, β}, then by conjugating (if necessary) by the rational function

ϕ(z) =




z − α

z − β
if α, β ∈ Cp

1
z − β

if α = ∞

we may assume that J (G) = {0,∞}. It follows that for any g in G, we have
g−1({0,∞}) = {0,∞} = g({0,∞}).

Now we consider two cases:

(a) If g(0) = 0 and g(∞) = ∞, then we have g−1({∞}) = {∞}. Hence, g is a
polynomial and g is of the form azm where a ∈ Cp − {0} and m ∈ Z− {0}
(because g−1({0}) = {0}).

(b) If g(0) = ∞ and g(∞) = 0, we set h(z) = (g(z))−1. Then we have
h−1({∞}) = {∞} and h−1({0}) = {0}. Hence we see as in the first case
that h is of the form azm where a ∈ Cp − {0} and m ∈ Z − {0}. It follows
that g has the form indicated in the lemma.

When |J (G)| = 1, we state:

Lemma 10. Let (Ri, i ∈ I) be a family of rational functions of degree at least
two and G = 〈Ri, i ∈ I〉. If |J (G)| = 1, then the set I is infinite.

Proof. According to Lemma 9, we can assume that G is a polynomial
semigroup. Suppose that G is generated by the polynomials (of degree at least
two) P1, . . . , Pn and that J (G) = {∞}, then ∞ is a common non-repelling fixed
point of P1, . . . , Pn, and Remark 3 implies that ∞ ∈ F(G) (contradicting the
hypotheses).
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In order to complete the study of the case where J (G) is finite, we need to
examine the Julia set of G when G is a subsemigroup of the semigroup S of rational
functions of the form azm where a ∈ Cp − {0} and m ∈ Z − {0}.

Lemma 11. If G is a subsemigroup of S , then we have:

J (G) ⊂ {0,∞}.

Proof. For any element g of G, we have g(Cp−{0}) ⊂ Cp−{0}. Given that
Cp −{0} is an open set of P1(Cp) whose complement contains two points, Lemma
3 implies that Cp − {0} ⊂ F (G) and J (G) ⊂ {0,∞}.

If G is a finitely generated subsemigroup of S , then the following lemma shows
that we can’t have |J (G)| = 2.

Lemma 12. Let G = 〈Rj / j ∈ J〉 where Rj(z) = (λjz)rj , λj ∈ Cp − {0}
and rj ∈ Z−{0,−1, 1} for any j in J . If sup

j∈J
|λj| �= ∞ and inf

j∈J
|λj| �= 0, then we

have J (G) = ∅.

Proof. First, we note that every element R of S can be written in the form
R(z) = (αz)n where α ∈ Cp − {0} and n ∈ Z − {0}, and that if T (z) = (βz)m

where β ∈ Cp−{0} and m ∈ Z−{0}, then we have R◦T (z) = (α(m)βz)nm, where
α(m) denotes an element of Cp−{0} such that α(m)m = α (in particular we have
|α(m)| = |α|1/m). In addition, it is easy to see (by induction on n ∈ N−{0}) that if
for i = 1, . . . , n we have Ti(z) = (µiz)mi where mi ∈ Z−{0}, µi ∈ Cp−{0}, then
we have Tn ◦ Tn−1 ◦ · · · ◦ T1(z) = (λz)m where m = mnmn−1 · · ·m2m1 and λ =
µn(mn−1mn−2 · · ·m2m1)µn−1(mn−2 · · ·m2m1) · · ·µ2(m1)µ1. It follows that

(1) |λ| = |µn|
1

mn−1mn−2···m2m1 |µn−1|
1

mn−2···m2m1 · · · |µ2|
1

m1 |µ1|
Now we set E = {|λj|ε / j ∈ J, ε = ±1} and δ = sup E , and we prove that if
R(z) = (λz)m ∈ G, then we have δ−2 ≤ |λ| ≤ δ2. First, we note that δ ∈ [1, +∞[
and that E ⊂ [δ−1, δ]. If R is an element of G, then R can be written in the form
R = Tn◦Tn−1◦· · ·◦T1, where Ti(z) = (µiz)mi ∈ {Rj / j ∈ J}, µi ∈ {λj / j ∈ J}
and mi ∈ {rj / j ∈ J} for i = 1 . . . , n. It is easy to see that if t ∈ [δ−1, δ] and
α ∈ R − {0}, then we have tα ∈ [δ−|α|, δ|α|]. Hence, it follows from Equality (1)
that

|λ| ≤ δ

∣∣∣ 1
mn−1mn−2···m2m1

∣∣∣
δ

∣∣∣ 1
mn−2···m2m1

∣∣∣ · · · δ
∣∣∣ 1
m1

∣∣∣
δ

and given that
1

|m1|+· · ·+ 1
|mn−2 · · ·m2m1|+

1
|mn−1mn−2 · · ·m2m1| ≤

n−1∑
i=1

1
2i

<

1, we deduce that δ−2 ≤ |λ| ≤ δ2.
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Now we prove that 0 ∈ F(G). It suffices to verify that the family of rational
functions of G is equicontinuous on the disk B−(0, δ−2). More precisely, we will
prove that for ε > 0 and y1, y2 ∈ B−(0, δ−2) the inequality ∆(y1, y2) ≤ ε/δ2

implies that ∆(R(y1), R(y2)) ≤ ε for every element R of G.
If y is an element of B−(0, δ−2) and R(z) = (λz)m is an element of G, we

have |λy| ≤ δ2|y| < 1. Then we consider two cases:

(i) If m > 1, then |R(y)| < 1. Hence, we have

∆(R(y1), R(y2)) = |R(y1) − R(y2)| = |(λy1)m − (λy2)m|
= |(λy1 − λy2)

∑
k+l=n−1

(λy1)k(λy2)l| ≤ |λy1 − λy2|

≤ δ2∆(y1, y2)| ≤ ε

(ii) If m < −1, then for y �= 0, we have |R(y)| > 1. Hence, for y1y2 �= 0,

we have ∆(R(y1), R(y2)) =
∣∣∣∣ 1
R(y1)

− 1
R(y2)

∣∣∣∣ = |(λy1)m′ −(λy2)m′ | where

m′ = −m, and as in the first case we have ∆(R(y1), R(y2)) ≤ ε. For y1 �= 0

and y2 = 0, we have ∆(R(y1), R(y2)) =
∣∣∣∣ 1
R(y1)

∣∣∣∣ = |(λy1)m′ | ≤ |λy1| ≤
δ2∆(y1, 0)| ≤ ε.

In addition, we have ∞ ∈ F(G). Indeed, if we set i(z) = 1/z and note H the
conjugate of G by i, then H satisfies the hypotheses of the lemma, and the preceding
proof implies that 0 ∈ F(H) = i(F (G)). Hence, we have ∞ = i(0) ∈ F(G).

Finally, we have {0,∞} ⊂ F (G), and according to Lemma 11 we have J (G) ⊂
{0,∞}. Hence, we deduce that J (G) = ∅.

Now we are ready to give the proof of Theorem 1.

Proof. [Proof of Theorem 1]. If J (G) is neither empty nor infinite, Lemma
8 implies that |J (G)|≤2, and using Lemmas 9, 10and12we get a contradiction.

The following two corollaries give examples of semigroups of rational functions
whose elements are of the form azm (where a ∈ Cp−{0}, m ∈ Z−{0}) and whose
Julia set has one or two elements.

Corollary 4. If G = 〈Pi / i ∈ I〉 where Pi(z) = (λiz)mi , λi ∈ Cp−{0}, |λi| ≥
1 and mi ∈ N − {0, 1} for any i in I , then we have J (G) ⊂ {0}. In addition
J (G)={0} if and only if sup

i∈I
|λi|=∞.

Proof. For any i in I we have Pi(B−(0, 1)c) ⊂ B−(0, 1)c (since |λi| ≥
1). Hence, Hsia’s Criterion implies that B−(0, 1)c ⊂ F (G) and in particular that
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∞∈F (G). According to Lemma 11 J (G) is a subset of {0,∞}; it follows that
J (G)⊂{0}.

Now we prove that if we have mi ∈ N − {0} for any i in I and sup
i∈I

|λi| = ∞,

then we have 0 ∈ J (G). If D is a disk containing 0 and ε is a real positive
number, then for any real positive number η, there exists an element i of I such
that ∆(λ−1

i , 0) = |λ−1
i | < η. Given that ∆(Pi(λi

−1), Pi(0)) = ∆(1, 0) = 1 > ε,
we conclude that the family of rational functions of G is not equicontinuous on any
disk containing 0. It follows that 0 ∈ J (G).

Conversely, if we have mi ∈ N − {0, 1} for any element i of I and 0 ∈ J (G),

then Corollary 3 implies that inf
i∈I

τ(Pi) = 0, where τ(Pi) = |λi|
−mi
mi−1 (see Section

3.3 page 1391 for the definition of τ(Pi)). Given that |λi| ≥ 1 and mi
mi−1 ≤ 2, we

deduce that τ(Pi) ≥ |λi|−2. It follows that 0 = inf
i∈I

τ(Pi) ≥ (sup
i∈I

|λi|)−2, and this

implies that sup
i∈I

|λi| = ∞.

Corollary 5. Let G = 〈Qi / i ∈ I〉 where Qi(z) = (λiz)−mi , λi ∈ Cp − {0}
and mi ∈ N−{0, 1} for any i in I . Then J (G) = {0,∞} if and only if sup

i∈I
|λi| =

∞ or inf
i∈I

|λi| = 0.

Proof. We verify as in the preceding corollary that if we have mi ∈ N − {0}
for any i in I and sup

i∈I
|λi| = ∞, then 0 ∈ J (G). Given that ∞ ∈ Q−1({0}) ⊂

Q−1(J (G)) ⊂ J (G), Lemma 11 implies that J (G) = {0,∞}. In the same way
we verify that inf

i∈i
|λi| = 0 implies that J (G) = {0,∞}.

Conversely, if we have J (G) = {0,∞}, then Lemma 12 implies that either
inf
i∈I

|λi| = 0 or sup
i∈I

|λi| = ∞.

Remark 4. If R is a rational function of the form azm (where a ∈ Cp−{0}, m ∈
Z−{0, 1,−1}), then R is conjugate (by an appropriate rational function of the form
δz where δ ∈ Cp−{0}) to the rational function zm. Given that the rational function
zm has good reduction, it follows that R has an empty Julia set. Hence, we deduce
from Corollaries 4 and 5 that even if all the elements of a semigroup G have
empty Julia sets, the Julia set of G can be nonempty. In particular, we don’t have
J (G) = ∪g∈GJ (g) as in the complex case (see [6, p. 365]).

Remark 5. If G contains a degree one element, we can have |J (G)| = 1 with
G finitely generated. Take for example, f(z) = pz, g(z) = z2, G = 〈f, g〉, then
we have {∞} = J (f) ⊂ J (G) and Lemma 11 implies that J (G) ⊂ {0,∞}.
Given that f(B+(0, 1)) ∪ g(B+(0, 1)) ⊂ B+(0, 1), Hsia’s Criterion implies that
0 ∈ F(G). It follows that J (G) = {∞}.
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If |J (G)| = 1, are all the elements of G of the form azm (where a ∈ Cp −{0}
and m ∈ Z−{0}) ? The following example shows that the answer to this question
is no.

Example 2. Let G be a semigroup generated by a set E of polynomials such
that every element T of E satisfies the following condition: All the roots of T have
the same p-adic absolute value ρ(T ) > 1 and |T (0)| = 1. In addition, we assume
that supT∈E ρ(T ) = ∞, then it easy to prove that J (G) = {∞}.

6. THE JULIA SET OF THE COMPOSITION OF TWO RATIONAL FUNCTIONS

In this Section we are interested in the following question: ” if two rational
functions have empty Julia sets, does their composition have an empty Julia set ?
” We know that if the two rational functions have both good reduction, then the
answer is yes (see [2, p. 4]). Here we give a case where the answer to the previous
question is no. In particular, if all the generators of a semigroup G have empty Julia
sets, this does not imply that J (G) is empty (it can even be infinite as we will see).
We will need the following lemma whose proof is easy.

Lemma 13. If P (x) = usx
s + · · · + u0 is a non-constant polynomial with

coefficients in Cp such that max(|us|, |us−1|, . . . , |u0|) = |us| = 1, then:
(1) P has good reduction.
(2) |P (x)| > 1 if and only if |x| > 1.
(3) For |x| > 1 we have |P (x)| = |x|s.

Corollary 6. Let f, g ∈ Cp[x]. Assume that:
(1) f(x) = adx

d + · · ·+ a0 where

max(|ad|, |ad−1|, . . . , |a0|) = |ad| = |a0| = 1.

(2) The degree d of the polynomial f is 1 or prime to p.
(3) All the roots of f ′ are in the disk B−(0, 1).
(4) The degree m of the polynomial g is prime to p and greater than 2.
(5) g(0) = 0.
(6) There exists a constant c in Cp such that 0 �= |c| < 1 and that for h(x) =

c−1g(cx) = bmxm + · · ·+ b1x, we have

max(|bm|, |bm−1|, . . . , |b1|) = |bm| = 1.

Then every fixed point (in Cp) of the polynomial gof is repelling with p-adic
absolute value 1, the set J (gof) is infinite and the sets J (f) and J (g) are
empty.
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Proof. First, we note that according to the hypotheses (of the corollary), the
preceding lemma applies to f, h and h′.

Now we show that all the fixed points (in Cp) of the polynomial gof have
p-adic absolute value 1.

If g(f(x)) = x, we have h

(
f(x)

c

)
=

x

c
and we prove that |x| > |c|. Indeed,

if
∣∣∣x
c

∣∣∣ ≤ 1, the hypotheses on h imply that |f(x)| ≤ |c| < 1; but |x| ≤ |c| < 1 and
|f(0)| = 1 imply that |f(x)| = |f(0)| = 1. Thus we have a contradiction.

Then the hypotheses on h imply that
∣∣∣∣f(x)

c

∣∣∣∣ > 1 and that h

(
f(x)

c

)
has p-adic

absolute value
∣∣∣∣f(x)

c

∣∣∣∣
m

. Hence, we have |f(x)|m = |c|m−1|x|. If |x| < 1, again

we have the contradiction |f(0)| = |f(x)| < 1. If |x| > 1, then the hypotheses on
f imply that |f(x)| = |x|d. Hence, |x|dm−1 = |c|m−1 < 1, and again we have a
contradiction. We conclude that |x| = 1.

It remains to prove that every fixed point (in Cp) of the polynomial gof is

repelling. First we note that |(g ◦ f)′(x)| = |f ′(x)|
∣∣∣∣h′

(
f(x)

c

)∣∣∣∣ and that |f ′(x)| =

|dadx
d−1| = 1 and

∣∣∣∣f(x)
c

∣∣∣∣
m

=
∣∣∣x
c

∣∣∣. Hence,
∣∣∣∣f(x)

c

∣∣∣∣ > 1 and the hypotheses on

h(x) and m imply that ∣∣∣∣h′
(

f(x)
c

)∣∣∣∣ =
∣∣∣∣f(x)

c

∣∣∣∣
m−1

> 1.

It follows that x is a repelling fixed point of g ◦ f and that J (g ◦ f) is infinite
(because g ◦ f is of degree at least two).

In addition, J (g) = J (f) = ∅, because the polynomials f(x) and h(x) both
have good reduction (according to Lemma 13) and g is conjugate to h.

Remark 6. If we set G = 〈f, g〉, then J (G) is infinite although the generators
f and g of G both have an empty Julia set.

7. TWO TOPOLOGICAL PROPERTIES OF J (G)

In this Section, we are interested in the following two questions: When is a
semigroup G of rational functions with coefficients in Cp perfect? When does a
semigroup G of rational functions with coefficients in Cp have an empty interior
(in the metric space P1(Cp))? We begin by proving some preliminary results.

Lemma 14. Let G be a semigroup of rational functions with coefficients in C p

and F a subset of J (G). If |F | ≥ 2, then we have J (G) =
⋃
g∈G

g−1(F ).
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Proof. We set B =
⋃
g∈G

g−1(F ). Then we have g−1(F ) ⊂ g−1(J (G)) ⊂

J (G) for any g in G. It follows that B ⊂ J (G) (because J (G) is closed). In ad-
dition, we know that a rational function is an open map (according to Lemma
2); hence for any element h of G, we have h−1(B) = h−1(

⋃
g∈G

g−1(F )) ⊂

h−1(
⋃
g∈G

g−1(F )) ⊂
⋃
g∈G

h−1(g−1(F )) ⊂ B. Then, Corollary 1 implies that J (G) ⊂

B, because B is closed and contains at least two elements.

Corollary 7. If a is an element of J (G) whose backward orbit O −
G(a) contains

at least two points, then we have J (G) = O−
G(a).

Proof. If we apply Lemma 14 with F = O−
G(a), we obtain that J (G) =⋃

g∈G

g−1(O−
G(a)) = O−

G(a).

7.1. Case where J (G) is perfect

We have seen that if g is a rational function of degree one (with coefficients
in Cp), then J (g) is either empty or has only one element. For a rational function g
(with coefficients in Cp) of degree at least two, we know (see [7, p. 694]) that J (g)
is either empty or perfect (in particular J (g) is uncountable if it is not empty). The
following lemma describes the structure of J (G) and G when J (G) is not perfect.

Lemma 15. Let G = 〈R1, . . . , Rn〉 where R1, . . . , Rn ∈ Cp(z) − Cp. We
suppose that J (G) has an isolated point a, then we have two cases: 1)

Either all the points of J (G) are isolated points and J (G) ⊂ O +
G(a) and

J (G) is at most countable. 2)
Or there exists only one non-isolated point b in J (G) and J (G) ⊂ O +

G(a)∪{b}.
In the second case, b is a repelling fixed point of a degree one element of G, the
backward orbit of b by G is {b}, G is conjugate to a polynomial semigroup and
J (G) is countable. In both cases every element of G whose degree is at least two
has an empty Julia set.

Proof. Given that a is isolated, there exists a (P1(Cp)) disk B containing a
such that B ∩ J (G) = {a}. We set U =

⋃
g∈G g(B), then U is clearly forward

invariant by the elements of G. Therefore |Uc| ≤ 1 (if not, Lemma 3 implies that
U ⊂ F (G) and this contradicts a ∈ J (G)).

In addition, if |U c| = 1, then there exists an element b of P1(Cp) such that
U c = {b}; hence for any element g of G we have g−1({b}) = {b} (because
g(U) ⊂ U ). It follows that for any element g of G, the backward orbit of b by g is
{b}, b is an exceptional point of g, b is a fixed point of g.
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Now we set

E = J (G) if U c = ∅ and E = J (G)− {b} if U c = {b}.

Then we have E ⊂ U =


 ⋃

g∈G

g(B − {a})

⋃

O+
G(a). Given that B−{a} ⊂ F (G)

and F (G) is forward invariant by the elements of G and that E ⊂ J (G), we deduce
that we have E ⊂ O+

G(a).

Now we prove that every element of E is isolated. Indeed, if a′ is a point of
E , then there exists an element g of G such that a′ = g(a). It follows that the set
B′ = g(B) is an open set containing a′. If β is an element of B′ ∩ E , then there
exists α ∈ B such that g(α) = β. Given that J (G) is backward invariant by the
elements of G, we deduce that α ∈ J (G)∩B = {a}. It follows that β = g(a) = a′,
and that a′ is isolated in E .

Taking into account that G is generated by a finite family of rational functions,
the inclusion E ⊂ O+

G(a) implies that J (G) is at most countable.
Furthermore if R is an element of G of degree at least two, then J (R) = ∅

(because we have J (R) ⊂ J (G) and we know that if J (R) is not empty then
J (R) is infinite and perfect (see [7, p. 694])).

Now we consider two cases:

Case 1. R1, . . . , Rn, are all of degree at least two. If |Uc| = 1, then b is an
exceptional point of Ri (for i = 1, . . . , n). Hence, b ∈ F(Ri) for i = 1, . . . , n
(see, for example, [5, p. 43]). It follows that b is a common non-repelling fixed
point of R1, . . . , Rn. Hence, Remark 3 implies that b ∈ F(G). We deduce that for
|U c| ≤ 1, we have J (G) = E ⊂ O+

G(a).

Case 2. for m ≤ n the rational functions R1, . . . , Rm are all of degree one.
If |Uc| = 0 or |Uc| = 1 where b is a common non-repelling fixed point of

R1, . . . , Rm, we see as in the first case that J (G) = E ⊂ O+
G(a).

If |Uc| = 1 and b is a repelling fixed point of (for example) R1, then we
have J (G) − {b} = E ⊂ O+

G(a). Hence, J (G) ⊂ O+
G(a) ∪ {b} and b is a non-

isolated point in this case. Indeed, by conjugating G (if necessary) by an appropriate
linear fractional map, we can suppose that b = 0 and that R1(z) = λz where
|λ| > 1. It follows that for any n in N − {0}, we have (R[n]

1 )−1(a) =
a

λn
∈ J (G)

(because J (G) is backward invariant by the elements of G). Given that the sequence
(R[n]

1 )−1(a) tends towards b = 0, we deduce that b is not isolated (because the
elements of the sequence (R[n]

1 )−1(a) are all different) and in particular that J (G)
is countable.

Furthermore, by conjugating G (if necessary) by an appropriate linear fractional
map, we can suppose that b = ∞. Hence, the backward orbit of ∞ is {∞} and
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we have R−1
i ({∞}) = {∞} for i = 1, . . . , n. It follows that the rational functions

R1, R2, . . . , Rn are polynomials.

Remark 7. It follows from Lemma 15 that when G is finitely generated and
J (G) is infinite, then J (G) is countable if and only if J (G) is not perfect. How-
ever, we have not found a semigroup G where J (G) is countable.

A straightforward consequence of Lemma 15 is:

Corollary 8. Let G = 〈R1, . . . , Rn〉 where R1, . . . , Rn ∈ Cp(z) − Cp. We
suppose that R1 is of degree at least two and has a nonempty Julia set. Then
J (G) is perfect.

If G is generated by degree one rational functions, J (G) can be perfect as in
the following example:

Example 3. Let f(z) = z
p , g(z) = z + 1 and G = 〈f, g〉. Then we have

0 ∈ J (f) ⊂ J (G) and −n = g[−n](0) ∈ J (G) for every positive integer n. Given
that f−1(−N) ⊂ −N and g−1(−N) ⊂ −N, we deduce that f−1(−N) ⊂ −N and
g−1(−N) ⊂ −N. Then Corollary 1 and the inclusion Zp = −N ⊂ J (G) imply that
J (G) = Zp.

When G is generated by a finite number of rational functions of degree at least
two with coefficients in a finite extension of Qp, Lemma 15 leads to Theorem 2
which is a more precise result.

Proof. [Proof of Theorem 2] If J (G) = P1(Cp), then J (G) is perfect.
If J (G) �= P1(Cp), then by conjugating G (if necessary) by an appropriate

linear fractional map, we can suppose that ∞ /∈ J (G). Furthermore, if J (G) is
not empty, Theorem 1 implies that J (G) is infinite.

Here, we prove that if J (G) is infinite and has an isolated point a, then a is
algebraic over Qp. Indeed, Lemma 15 implies that J (G) ⊂ O+

G(a). Therefore, if
α is another element of J (G), there exists an element g1 of G such that α = g1(a).
Given that α is also an isolated point of J (G), we have a ∈ J (G) ⊂ O+

G(α).
Hence, there exists an element g2 of G such that a = g2(α). It follows that if we
set g = g2 ◦ g1 and g(z) = P (z)

Q(z) where P and Q are relatively prime polynomials
with coefficients in K and T (z) = zQ(z)−P (z), then T is a non-zero polynomial
such that T (a) = 0.

Now, we show that if J (G) is infinite and has an isolated point a, then we
have a contradiction. Indeed, ∞ ∈ F(G) implies that there exists a positive real
number r such that J (G) ⊂ B+(a, r). In addition according to Lemma 15, all the
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elements of J (G) are isolated and we have J (G) ⊂ O+
G(a) ⊂ K(a). It follows

that the compact set B+(a, r) ∩ K(a) contains a convergent sequence of elements
of J (G). Hence, J (G) has a non-isolated point. This contradiction completes the
proof.

7.2. Case where J (G) has an empty interior

We know that if R is a rational function with coefficients in Cp, then J (R) has
an empty interior (see [7, p. 692]). Here we consider the case of the Julia set of
a semigroup of rational functions with coefficients in Cp. In particular, we prove
that if G is generated by a finite number of rational functions with coefficients in a
finite extension of Qp, then Jp(G) has an empty interior. We need two preliminary
lemmas.

Lemma 16. Let G be a semigroup of rational functions with coefficients in C p.
We assume that:

(1) There exists an element R of G of degree at least two such that J (R) is not
empty.

(2) J (G) is contained in a closed set F (of P1(Cp)) which is completely invariant
by the elements of G and that F �= P1(Cp). Then J (G) has an empty interior.

Proof. The proof is similar to the proof of [12, Lemma 2]. Given that J (R)
is not empty, Lemma 14 implies that we have

J (G) =
⋃

h∈G h−1(J (R)).

Suppose that J (G) has a nonempty interior, then there exists a (P1(Cp)) disk
D contained in J (G). Hence, there exists an element h of G such that D ∩
h−1(J (R)) �= ∅. Then we use the following remark: If f is a rational function
and B, C are two subsets of P1(Cp), then we have B ∩ f(C) �= ∅ if and only if
f−1(B) ∩ C �= ∅. In our case we deduce that h(D) ∩ J (R) �= ∅.

Now we set V = h(D) and W =
⋃

n∈N
R[n](V ), and we prove that the comple-

ment (in P1(Cp)) of W has at most one point. Indeed, since W is forward invariant
by R, if |Wc| ≥ 2, Hsia’s Criterion would imply that W ⊂ F (R), and this con-
tradicts V ∩ J (R) �= ∅. It follows that W is either P1(Cp) or the complement (in
P1(Cp)) of a point. Hence, we have W = P1(Cp).

Therefore F = P1(Cp) (because F is a closed set containing W ), contradicting
the hypothesis.

In the sequel, we denote by Qp the set of elements of Cp which are algebraic
over Qp.
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Lemma 17. Let K be a finite extension of Qp and G = 〈Ri / i ∈ I〉 where
Ri ∈ K(z)− K for any i in I . We assume that:

(1) The degrees of the rational functions R i (i ∈ I) are bounded by a constant.
(2) The set J (G) ∩ Qp is infinite. Then, there exists a closed set F containing

J (G) and completely invariant by the elements of G, and there exists a
positive integer D such that: for any element θ of C p with absolute value
equal to p− 1

ρ where ρ ∈ N−{0, 1} and ρ prime to D, we have B−(θ, |θ|) ⊂
P1(Cp) − F (in particular P1(Cp) − F and F (G) are not empty).

Proof. First, we prove that if J (G) ∩ Qp is infinite, then there exists an
element of J (G) ∩ Qp whose backward orbit by G contains at least two elements.
We consider two cases:

(i) If G contains a rational function R of degree at least two then J (G) ∩ Qp

contains a non-exceptional point of R, since R has at most two exceptional
points (see [5, p. 43]).

(ii) If G contains a degree one rational function h(z) �= z, then h−1 has at most
two fixed points. Hence, J (G) ∩ Qp contains a non-fixed point a of h−1.
Given that there exists an element a of J (G) which is algebraic over Qp and
whose backward orbit by G contains at least two points, Corollary 7 implies
that J (G) = O−

G(a).

We denote by M the field K(a), d the degree of M over Qp, di the degree
of Ri (for any i in I) and δ the maximum of the degrees of the rational functions
Ri (for i in I) and D = d(δ!). Let N be the set of elements of N − {0} whose
prime divisors are divisors of D (in particular 1 ∈ N ). We denote by L the set
containing ∞ and all the elements of Qp whose degree over M is in N , and we set
F = L (closure of L in the metric space P1(Cp)). Then we note that the product
of two elements of N is an element of N , and that every positive integer dividing
an element of N is also an element of N .

Now we prove that L is completely invariant by the elements of G. For any i

in I we set Ri(z) = Pi(z)
Qi(z)

where Pi(z), Qi(z) ∈ K[z] and Pi(z) prime to Qi(z).
If x ∈ L and y = Ri(x) then: For x �= ∞, either x is a pole of Ri and we have
y = ∞ ∈ L, or x is not a pole of Ri and we have y = Ri(x) ∈ L (since the degree
of Ri(x) over M divides the degree of x over M ). For x = ∞, we have in the case
degPi < degQi that y = 0 ∈ L, in the case degPi > degQi that y = ∞ ∈ L, and
in the case degPi = degQi that y = Ri(x) ∈ K ⊂ L. It follows that Ri(L) ⊂ L.

If x ∈ L, y �= ∞ and Ri(y) = x, then: For x �= ∞, y is a root of the polynomial
Pi(z)− xQi(z) (with coefficients in M(x)). Hence, the degree of y over M(x) is
in N (since it is less than or equal to d i). Therefore the degree of y over M is in
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N (since [M(y) : M ] = [M(y) : M(x)][M(x), M ], and the degree of x over M

is in N ). It follow that y ∈ L. For x = ∞, y is a pole of Ri and y ∈ L (since
the degree of y over M is in N ). It follows that R−1

i (L) ⊂ L. We deduce that
O−

G(a) ⊂ L and that F is completely invariant by the elements of the semigroup
G. Hence, we have J (G) = O−

G(a) ⊂ F .
Now we prove that if θ is an element of Cp whose absolute value is p−

1
ρ , where

ρ ∈ N − {0, 1} and ρ prime to D, then we have

B−(θ, |θ|) ⊂ P1(Cp) − F .

First, we show that |θ| /∈ |L|. Indeed, otherwise there would exist a sequence xn

of elements of L − {∞} such that limn→∞ xn = x ∈ L and |x| = |θ|. Hence, for
n sufficiently large, we have |xn| = |x| = |θ| and |θ| = p−

m
λ where λ ∈ N , m ∈ Z

(since the degree of xn over Qp is in N ). It follows that ρm = λ. Then ρ ∈ N
contradicting the hypotheses.

In addition, if rθ denotes the distance between θ and the closed set L, then we
have rθ ≥ |θ| (if not, there exists an element x in L such that |x − θ| < |θ|, and
thus we have |x| = |θ| and |θ| ∈ |L|, contradicting what precedes). We deduce that
B−(θ, |θ|) ⊂ P1(Cp) − F ⊂ F (G) as promised.

It follows that if q is a prime number greater than D, and θ is a root of the
polynomial zq − p, we have |θ| = p

− 1
q , and thus

θ ∈ P1(Cp) − F ⊂ F (G).

Now we are ready to give the proof of Theorem 3.
Proof. [Proof of Theorem 3]. First we prove that if J (G) ∩ Qp is finite

then J (G) has an empty interior. Indeed, if J (G)∩Qp = {a1, a2, . . . , an} we set
E = Qp−{a1, a2, . . . , an}. Hence, we have E ⊂ F(G) and the closure of E (in the
metric space P1(Cp)) is P1(Cp). It follows that J (G) has an empty interior. When
J (G)∩Qp is infinite, we first note that we can assume that G contains an element
R of degree at least two whose Julia set J (R) is not empty (if not we replace G

by 〈G ∪ {R0}〉 where R0(z) =
zp − z

p
(recall that J (R0) = Zp)). Then, Lemma

17 implies that P1(Cp)− F is not empty and we use Lemma 16 to conclude.

8. COMPARATIVE TABLE WITH THE COMPLEX CASE

In this Section, we compare the properties of the Julia set of a semigroup of
rational functions with coefficients in Cp with the properties of the Julia set of a
semigroup of rational functions with complex coefficients. We denote by Jp(R)
the Julia set of a rational function R of degree at least two with coefficients in
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Cp. We denote by Jp(G) the Julia set of a semigroup G = 〈R1, . . . , Rn〉 where
R1, . . . , Rn are rational functions with coefficients in Cp, n �= 1 and degRi ≥ 2
for i = 1, . . . , n. We denote by Jc(R) the Julia set of a rational function R of
degree at least two with complex coefficients. We denote byJc(G) the Julia set of a
semigroup G=〈R1, . . . , Rn〉 where R1, . . . , Rn are rational functions with complex

Property Jp(R) Jp(G) Jc(R) Jc(G)
1 backward invariant A A A A
2 empty P P N N
3 finite+nonempty N N N N
4 perfect P P A A
5 infinite+ not perfect N O.Q N N
6 infinite+empty interior P P P P
7 infinite+nonempty interior N O.Q P P

coefficients, n �= 1 and degRi ≥ 2 for i = 1, . . . , n. In the table, A means always,
P means possible, N means never, O.Q means open question.

Comments

(1) Jp(R) is completely invariant by R (see, for example, [3, p. 1]). Jp(G)
is backward invariant by the elements of G according to Proposition 2, but
it is shown in Example 1 that Jp(G) is not always forward invariant by
the elements of G. In the complex case, Jc(R) is completely invariant by
R (see [1, Theorem 3.2.4]). Jc(G) is backward invariant by the elements
of G according to [6, Lemma 2.1], but it is shown in [6, Example 1] that
Jc(G) is not always forward invariant by the elements of G (if |a| > 1, and
G = 〈z2, a−1z2〉, it is proven that Jc(G) = {z ∈ C, / 1 < |z| ≤ |a|}).

(2) If R has good reduction then Jp(R) is empty (see [8, p. 105]). If G is
a semigroup generated by rational functions (with coefficients in Cp) which
all have good reduction, then Jp(G) = ∅ according to Corollary 2. In the
complex case, Jc(R) is infinite according to [1, Theorem 4.2.1], hence Jc(G)
is also infinite.

(3) We know that Jp(R) is empty or infinite (see [7, Theorem 2.9]), and according
to Theorem 1 Jp(G) is empty or infinite. In the complex case, Jc(R) and
Jc(G) are infinite from what precedes.

(4) and (5) We know that if Jp(R) is not empty, then Jp(R) is perfect, and thus
Jp(R) is uncountable (see [7, p. 694]). In the complex case, we know that
Jc(R) is perfect (see [1, Theorem 4.2.4]), and thus Jc(R) is uncountable.
Under the hypotheses of Theorem 2 Jp(G) is perfect or empty. Jc(G) is
perfect according to [6, Lemma 3.1], and thus Jc(G) is uncountable.
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(6) We know that if Jp(R) is not empty, then Jp(R) has an empty interior (see,
for example, [7, p. 692] and [5, p. 52]). According to Theorem 3, if G is
generated by rational functions with coefficients in a finite extension of Qp,
then Jp(G) has an empty interior. In the complex case, it is shown in [1,
Theorem 1.4.1] that if we define the polynomials Tn (where n ∈ N) by the
relations T0(z) = 1, T1(z) = z, and Tn+1(z) = 2zTn(z) − Tn−1(z), then
Jc(Tn) = Jc(−Tn) = [−1, 1] for n ≥ 2, and it is shown in [6, Example 2]
that if G = 〈Tn, n ∈ N − {0, 1}〉, then Jc(G) = [−1, 1].

(7) In the complex case, it is shown in [1, p. 271] that if R(z) = (1 − 2z−1)2,
then Jc(R) = P1(C). It is shown in [6, Example 3] that if G = 〈z2, 2z2−1〉,
then Jc(G) = {z ∈ C / |z| ≤ 1}.
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de Doctorat, Université d’Orsay 2003.
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