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GENERIC WELL-POSEDNESS FOR PERTURBED OPTIMIZATION
PROBLEMS IN BANACH SPACES

L. H. Peng, C. Li* and J. C. Yao

Abstract. Let X be a Banach space and Z a relatively weakly compact subset
of X. Let J : Z — R be a upper semicontinuous function bounded from above
and p > 1. This paper is concerned with the perturbed optimization problem
of finding zp € Z such that ||z — 20||” + J(20) = sup,cz{l|lz — 2||” + J(2)},
which is denoted by max;(x, Z). We prove in the present paper that if X is
Kadec w.r.t. Z, then the set of all z € X such that the problem max;(z, Z)
is generalized well-posed is a dense Gs-subset of X. If X is additionally
J-strictly convex w.rt. Z and p > 1, we prove that the set of all € X such
that the problem max;(x, Z) is well-posed is a dense Gs-subset of X.

1. INTRODUCTION

Let X be a real Banach space endowed with the norm | - |. Let Z be a
nonempty closed subset of X, J : Z — R a function defined on Z and let p > 1.
The perturbed optimization problem considered here is of finding an element zy € Z
such that

(1.1) [l = 20" + J(20) =Slelg{Hw—2Hp+J(Z)}

which is denoted by max ;(z, Z). Any point z, satisfying (1.1) (if exists) is called
a solution of the problem max;(x, Z). In particular, if J = 0, then the perturbed
optimization problem max ;(x, Z) reduces to the well-known furthest point problem.
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The perturbed optimization problem max ;(z, Z) was presented and investigated
by Baranger in [3, 4] for the case when p = 1, and by Bidaut in [5] for the case
when p > 1. The existence results have been applied to optimal control problems
governed by partial differential equations, see for example, [2, 3, 5, 6, 7, 8, 12, 21].

Let Z be a bounded closed subset of X and let J be a upper semicontinuous,
bounded from above on Z. In the case when p = 1, Baranger proved in [4] that
if X is a reflexive and locally uniformly convex Banach space then the set of all
x € X such that the problem max ;(x, Z) has a solution is a dense G s-subset of X .
This result extends Edelstein’s [14] and Asplund’s [1] results on farthest points. In
the recent paper [24], we extended this result to the setting of nonreflexive Banach
spaces, and established porosity results. Consider the problem in an arbitrary Banach
space, Cobzas proved in [8] that if Z is a weakly compact subset of X, then the set
of all z € X such that the problem max ;(z, Z) has a solution is a dense G s-subset
of X, which extends Lau’s result in [17].

In the case when p > 1, this kind of perturbed optimization problems was studied
by Bidaut in [5]. Recall that a sequence {z,,} C Z is a maximizing sequence of
the problem max;(z, Z) if

lim (|| =z [P + J(20)) = sup(||lz — 2" + J (),

and that the problem max ;(z, Z) is well-posed if max ;(x, Z) has a unique solution
and any maximizing sequence of the problem max;(z, Z) converges to the solution.
Bidaut proved that if X is a reflexive, strictly convex and Kadec Banach space, then
the set of all x € X such that the problem max ;(x, Z) is well-posed is a dense G 5-
subset of X. The approach used there depends closely on the reflexivity property of
the underlying space X. The corresponding perturbed minimization problems have
be studied extensively, and the reader is referred to [2, 5, 8, 9, 18, 19, 23, 24] and
the references there.

The purpose of the present paper is to extend the results due to Bidaut in [5] to
the general setting of nonreflexive Banach spaces. More precisely, assume that Z
is a relatively weakly compact subset of X and X is Kadec w.r.t.Z. Then we show
in the present paper that the set of all z € X such that the problem max ;(z, Z) is
generalized well-posed is a dense Gs-subset of X. If X is additionally J-strictly
convex w.rt.Z and if p > 1, then the set of all x € X such that the problem
max;(z, Z) is well-posed is a dense G s-subset of X. It should be noted that, as it
will be seen, such an extension is nontrivial. A similar work was done for the case
of minimization problems in the recent paper [25], where the main technique is the
use of the Holder inequality. However, this technique used there doesn’t work here
because J(z) is negative for most points z € Z, which makes the maximization
problem more complicated.
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2. PRELIMINARIES

We begin with some standard notations. Let X be a Banach space with the
dual X*. We use (-,-) to denote the inner product connecting X* and X. The
closed (resp. open) ball in X at center x with radius r is denoted by B x (x,r)
(resp. U(z,r)) while the corresponding sphere by Sx (z, r). In particular, we write
Bx =Bx(0,1) and Sx = Sx(0,1). Sometimes, the subscripts are omitted if no
confusion caused. For a subset A of X, the linear hull and the closure of A are
respectively denoted by span A and A. For z € X, the distance from = to A is
denoted by d(z, A) and defined by d(z, A) := inf,ca ||z — al.

Let Z be a subset of X and J be a real-valued function on Z. We introduce
the following definition, where items (i) and (ii) are well-known in [11, 22], while
items (iii)-(v) are extensions of (i) and (ii), which were first introduced in [25].

Definition 2.1. X is said to be

(i) strictly convex if, for any 1,z € S, the condition ||z; + x2| = 2 implies
that T = T2,

(ii) (sequentially) Kadec if, for any sequence {z,} C S,z € S, the condition
xn, — x weakly implies that lim,, ., ||z, — z| = 0.

(iii) J-strictly convex with respect to (w.r.t) Z, if, for any z;, zo € Z such that
| —z1|| = ||z — 22| for some = € X, the conditions that ||x — 21 + 2 — 2z2|| =
|l — 21| + ||z — 22]| and J(z1) = J(22) imply that z; = zo;

(iv) J-strictly convex, if X is J-strictly convex w.r.t X;

(v) (sequentially) Kadec with respect to (w.r.t) Z, if, for any sequence {z,} C Z
and zp € Z such that there exists a point x € X satisfying lim, . ||z —
zn|| = ||z — 2o0l|, the condition z, — 2z, weakly implies that lim,,_, ||z, —
ZQH = 0.

In the case when Z = X, the Kadec property w.r.t Z reduces to the Kadec
property, while in the case when J = 0, the J-strict convexity w.r.t Z reduces to
the strict convexity w.r.t Z. Moreover, the following implications are clear for any
subset Z of X and real-valued function J on Z:

the strict convexity=—-the J-strict convexity

1) —the J-strict convexity w.r.t.Z
and
(2.2) the Kadec property =—> the Kadec property w.r.t. Z.

It should be noted that each converse of implications (2.1) and (2.2) doesn’t
hold, in general, see [25, Examples 2.1 and 2.2].
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The following two propositions are known (see [26] for the fist one and [13] for
the second one) and play an important role for our study. Recall that a real-valued
function f on an open subset D C X is Fréchet differentiable at x € D if there
exists z* € X* such that

iy W) = fl&) =%y — @)

= 0.
y—w ly — =]

The element x* is called the Fréchet differential at = and is denoted by D f(x).

Proposition 2.1. Let f be a locally Lipschitz continuous function on an open
subset D of X. Suppose that X is a reflexive Banach space. Then f is Fréchet
differentiable on a dense subset of D.

Proposition 2.2. Let A be a weakly compact subset of a Banach space X and
let Y = span A. Then there exist a reflexive Banach space R and a one-to-one
continuous linear mapping 7' : R — Y such that T(B r) 2 A.

3. GENERIC ExISTENCE AND WELL-POSEDNESS RESULTS

Let p > 1. For the remainder of the present paper, we always assume that Z
is @ nonempty bounded closed subset of X, J : Z — R is a upper semicontinuous
function bounded from above. Furthermore, without loss of generality, we also
assume that

(3.1) o :=supJ(z) > 0.
z€Z
Hence,
(3.2) sup(||z — z||P + J(2)) > o >0 foreach z € X.
z€Z

Define functions ¢ : X x Z — R and ¥ : X — R respectively by
(e —2lP + J(2)}r  if o — =[P + J(2) > 0,
((L‘, Z) =
(3.3) 0 otherwise,
for each (z,z) € X x Z.
and

(3.4) Y(x) =sup(x,z) foreach z € X.
zeZ
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Then, zp € Z is a solution to the problem max ;(x, Z) if and only if z, satisfies
that

(3.5) §(x, 20) = sup&(z, z) = ().

zeZ

The set of all solutions to the problem max ;(x, Z) is denoted by F ;(x), that is,
Fz(@):={z0€ Z: &{(x,20) = ¢(x)} = {20 € Z: {[|lz—20"+J(20)}> = ¢ ()}
Again define the function b: X — R by

(3.6) b(x) = lim inf |z —z|| foreachz € X,
§—01 2€27(z,6)

where, for each z € X and each § > 0,
(3.7) 77 (x,0)={z€ Z: €&, 2) > p(x) — 0}

Obviously, the function b is Lipschitz continuous.

Lemma 3.1. Let A > 0 and z € X. There exists L > 0 such that

(38)  |€(y,2) —é(x,2)| < Llly—f» foranyy € B(x,\) and = € Z.

Proof. Let s > 0 and ¢t > 0. We first note the following elementary inequalities:
1 1 1
(3.9) |sp —tr| <|s—t|r and |[sP —tP| < p max{s,t}|s—t|.
Let z, y € X and z € Z. We claim that

(3.10) €y, 2) — £z, 2)] < [l|lz = 2l — |y — 2|”|7.

To verify this claim, without loss of generality, assume ||z — z|P + J(z) > 0. Thus,
if ||y — 2||” + J(2) > 0, then (3.10) follows directly from the first inequality of
(3.9) (with ||y — z||[P + J(z) and ||x — z||P + J(z) in place of s and ¢ respectively).
Now assume ||y — z||P + J(z) < 0, then J(z) < —||y — z||P and

0 <flz—2P+J(2) <z = 2" = lly = =|I".
Hence

B &y, 2) — (@, 2) = ||z — 2|P + J()|7 < |(le = =[P = [ly— [|?)|7
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Hence the claim (3.10) holds. Since Z is bounded, it follows that A := sup ¢ ||z —
z|| < 4o00. Thus applying the second inequality of (3.9) (to ||« — z|| and ||y — z||
in place of s and ¢ respectively), we deduce from (3.10) that

1 1 1
3.12) [§(z,2) =&y, 2)| < llw = 2[|P = [ly — 2[I|» < (p(A+A)7 [z —yll7.
This means that (3.8) holds with L := (p (A + )\))% and the proof is complete. m

The following lemma shows that the function ¢ is locally Lipschitz on X.

Lemma 3.2. Let x € X. There are A > 0 and L > 0 such that

(3.13) [W(y) — ()| < Llly —«f| for each y € B(z, A).

Proof. It suffices to verify that there exist A > 0 and L > 0 such that
(3.14) Y(x) —¢(y) < Ll|z —y|| for each y € B(z, A).

Let o > 0 be given by (3.1). Then, by (3.2), ¢)(z) > o holds for each z € X.
Lety € X and » > 0. Set

D(y,r)={z€ Z:&(y,z) >r}.

Since 5 5
E(z,2) < 27 < Y(x) foreach z € Z\ T'(z, ZJ),

it follows that

(3.15) r <x, ZU) # 0 and sup  &(z, 2) = ().

z€T(z,30)

By Lemma 3.1, there exist \; > 0 and L; > 0 such that (3.8) holds. Let A =

1

<ﬁ)5. Then for each y € B(z, \) and z € Z(z, 30) , we have

3 1 1
(3.16) E(y,z) > &(x,z) — Lyl — y||P > 17 19= 5%
That is, I'(z, 20) C I'(y, 30) for each y € B(z, \). Write A :=sup,.; ||z — 2|| <
co. Let z € T(z, 20) and y € B(z, ). Then, by the Mean-Valued Theorem, there
exists ¢ satisfying

317)  min{flz = 2|, ly = 2[[} <0 < max{[Jx — z[|, [y - 2} <A+ A
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such that

E(2,2) = b(y) < {le— 2P+ T2} = {lly— 2IPP + T(2)}>

(3.18) -
= (0" +J(2)) 7 " (||l = 2l = lly = 2])).

By (3.17) and the fact that z € I'(z, 20) C I'(y, 20), one gets that

g.

DO

(67 + J(2))7 > min{&(x, 2), E(y, 2)} >

This together with (3.18) and (3.17) implies that

£, 2) — ) <@ +(2) 70l — 2]l — 1y — 2I)

1 \'P
<(37) @yl

Hence (see (3.15))

1 \'"?
V@) - v) = s (6o -v) < (30) @A lay

2€Z(w,20)
and (3.14) is seen to hold with L = (%a)l_p (A + NP1 n

Lemma 3.3. Let Y be a subspace of X containing Z. Letx € Y and y* € Y*.
Suppose that

(3.19) lim (Wmﬂh) —v@) _ <y*,h>> —0

t—0— t
holds for each h € Y, and holds uniformly for all » € Z — x. Then
(3.20) ly* |l = P ()b~ ().

Furthermore, if {z,} C Z is a maximizing sequence of the problem max ;(z, Z),
then

(3.21) lirf |z — zp|| = b(x) and  lim (y* 2 — 2,) = ' P(x)bP(z).

Proof. Let {z,} C Z be a maximizing sequence of the problem max;(x, Z),
without loss of generality, assume that

(3.22) c(x) = lim ||z — 2]

n—-+o00
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exists. Then

(3.23) nli)rgo (zn) = PP (x) — P(x).
Below we first show that

(3.24) ly*| < 1P (@) (2).

By the assumption (3.19), it suffices to verify that

(325) lim L@ Z0@)

- < Y7 P(x)P"Y(x)||h|| for each 0 # h €Y.
t—0~

Suppose on the contrary that (3.25) doesn’t hold. Then, there existe > 0and h € Y
with ||h|| = 1 such that

(3.26) tl_lgl_ w(x + th;f) — ¢($) > wl—p(x)cp—l(x) Te

This implies that there exists some tg < 0 such that
(3.27) (z +th) —(x) <t P(x)cP " Hx) + €) < te foreacht € [ty,0).

Fix ¢ € [to,0). There exists N > 0 such that
(3.28) &(x, z) > () + %t for each n > Ny

(see (3.4)). By (3.27) and (3.28), one has that

€

(329) &(x-+th, 20) (s, 20) < Y(a-+th)— () — 5

t < %t for each n > NV, .
Fix n > Ny, and write s,, = ||z + th — z,|| — || — 2,||. Then
(3.30) 0> s, > t|h].

By the Mean-Value Theorem, we have that

E(x+th,zy) — &(x, 2zp)

Sn
(3.31) = [l = zall + 050)7 + J(z0)] 7 (| — 2| + 05 )P "

]1_2

< [l = zall + tR1)? + T (20)] 7 |z = 2zl
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where 6 € (0,1) and the inequality holds because of (3.30) (noting 1 — p < 0).
Hence,

f(fI,' + thv Zn) B 5(‘7:7 Zn)

t
(3.32) _ (f(ﬂﬂu zn)—fi(wvzn)> Sn
Sn, 715_p
< [l — 2l + IR + ) Tl — 2P 12
and
tim sup ST 20 T8 1) y mlP P () — (@) TR (@) [

n—-+00 t

thanks to (3.22) and (3.23). Consequently,

(3.33) lim sup lim sup Ez+th, zn) = €, 2n) < P1P(z) P (x)||h].

t—0— n—+oo t

By (3.29), we have that
Pz t+th) —¢(x) _ (@ +th z,) —§(x,20) | €
< + =
t - t 2
Combining this with (3.33), we get that

i Uz th) = v()
t—0~ t

< 9! (@)e (@) bl + 5.
This together with assumption (3.19) implies that

@30 (= i R < )

which contradicts (3.26).
Next we shall prove that

(3.35) liminf(y*, & — 2) > ¢! 7 (2)c"(x)
For this purpose, take ¢,, € (—1,0) such that

(3.36) t, — 0 and 2 > P(x) — EP(z, 2,).
Write ®,, = max{¢(z), ¢¥(z + t,(z, — x)}. Then

(3.37) lim @, = ().
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By the Mean-value Theorem, one can conclude that

V(@ + tn(2n — ) — ()
YP(x + tn(2n — x)) — YP(x)
1 dL7P

= (@) + O+ b0 — ) = (@) 7 < 2

(3.38)

where 6,, € (0,1). Since
PP(2 + tn(zn — @) = PP(2) = (|2 + ta(zn — 2) = 20 [P + T (20)) — 9" (2)
= (1 =t2)" = Dz = za) [I” = [P () = (=, 20)];
it follows from (3.36) that
WPz +ta(zn —2)) —9P(2)  _ ((A—tn)” = Dz = 2) [P

i . tn.
Combining this together with (3.38), we get that
Y(z +tn(2n — 2)) —(2)
ln

_ Y@t in(z —2) =) PP(@+ta(zn — ) — ¥P(2)
B3 T gtz — ) — 92 (0) b

< B " (((1 — )’ — Dz —z)|IP tn) _

P ln

Passing to the limits and by the given assumption, we have that

o . B ?((A=ta)P=D)|[(w—2)|IP
(3.40) hnrggolf ((y,x—zn>—|— ) < —tn> > 0.

P >
From (3.22) and (3.37), one sees that (3.35) holds. Consequently,
ly*| = ' P (@) (2),
and, together with (3.34),
(3.41) ly*ll = ' 7P (2)e" ().

Thus we have proved that, for any maximizing sequence {z,} C Z of the problem
max;(z, Z),

_1
(342) Jim [l — 2| = (@) ly* 7
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In particular, let {z,,} C Z be such that lim, .o ||#—2, | = b(z) and 2, € Z7/(z, 1)
for each n (by the definition of b(z), such a sequence {z,} C Z exists). Then
{zn} € Z is a maximizing sequence {z,} C Z of the problem max;(z, Z), and

b(z) = ¥(x)||y*||7T by (3.42). Thus (3.20) is seen to hold. To show (3.21), we
note by (3.20) that

limsup(y*, @ — z) < lim [[y*[|[lo = 2o ]| = [y llb(x) = 7P (2)b"(2).
Hence (3.21) holds by (3.35). Thus the proof is complete. ]
Define the real-valued function a on X by

a(x) = P(x)bP~ (z) for each z € X.

Then « is continuous on X. Set, for each n € N,

there are >0 and z* € X* such that ||z*||—a(z)| <2™"
HY(Z)={z€X: :
and infzéZ"(a;,é){( x*,x—z) ‘HPH)(x)J(Z)} > (1_2_")¢($)
Also set
o
(3.43) HY(Z)= (| HY(2).
n=1

Let A¥(Z) denote the set of all point = € X for which there exists z* € X* with
||l*|| = a(x) such that, for each e € (0, 1), there is § > 0 such that

(3.44) inf {(x*2—2) + ' P(2)J(2)} > (1 — ().
2677 (x,0)

Obviously,

(3.45) A¥(Z) C HY(Z).

Lemma 3.4. Suppose that Z is a relatively weakly compact closed subset of
X. Then H¥(Z) is a dense Gg-subset of X.

Proof.  To show that H¥(Z) is a Gs-subset of X, we only need to prove that
HY(Z) is open for each n. For this end, let n € N and € HY(Z). Then there
exist x* € X* and § > 0 such that

(3.46) a:=2""— ||z —a(z)] >0
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and
(3.47) B:=inf{(z*, z—2)+' P(2)J(2): 2z € Z7(x,8)} —(1—2"")ep(x) > 0.

without loss of generality, assume that § > 0 is such that £(x,z) > 0 for each
z € Z7(x,5). Thus

(3.48) M = M(x,0):= sup [J(z)|< sup {[{(z,2)["+ [z —z[P} <oo
2627 (,0) 2627 (,0)

as Z is bounded. Since the functions ¢'=?(-) and a(-) are continuous on X, it
follows that there exists Ag > 0 such that

(3.49) Ja(y)—a(z)]| <% and [P (y) = P (z)| <% for each y e U(z, \o).

By Lemmas 3.1 and 3.2, there exist 0 < A < A\; and L > 0 such that (3.8) and
(3.13) hold. Without loss of generality, assume that A < 1 and L > 1. Thus (3.13)
implies that

(3.50) [(y) — ()| < Llly—=||» for each y € B(w, \)

as |z —y|| <A< 1landi <1). Let >0 be such that
p

-1 . ) I6]
AP < mln{)\,ﬁ,m} .

Then U(z, \) € U(z, \) and

~ (a(z) + 2L)77 > 0.

S =

(3.51) B (a(e)+1+ L)

>
B =

|

Below we will show that U(z, \) C H}f(Z). Granting this, the openness of H}f(Z)
— —1

is proved. Lety € U(x, \). Set 6* := 5 —2LA» > 0and let z € Z7(y, 6*). Then,

by (3.7), £(y, z) > ¥ (y) — 0*. Thus, using (3.8) and (3.50), one has that

E(x,2) > €(y,2) - Llly — |7
> d(y)— 6" — LAr
> (x) — 0% — 2LA
= P(x) — 4

hence z € Z7(z,§). Consequently,

(3.52) (22— 2)+ 0" P(2)J(2) > B+ (1—27")()
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thanks to (3.47). Note that

(353) (%, y—a) > —|2"|[Jo—yl| = ~(a(z)427") |z — yll'ge—(a(z) + 1) |z—y]| 7.
It follows from Lemma 3.1 that
(a*,y—2) + ¢ P(y)J(2)
= (z%2—2) —|—w1_p(x J(2)
+( 2ty —z) + (@' P(y) — ' P (2)) I (2)

)
)

> 2 (1= 27)(@) ~ (a(e) + Dlle - ¥
> § + (1= 27)(y) — (a(@) + 1+ (1 — 27" L)@ — y||7
> (12" )(y) + 5 — (o) + 14 LA,

where the first inequality holds because of (3.49), (3.52) and (3.53), while the second
one because of (3.50). By (3.51),

(354)  inf{(a"y—2) + 0" P(y)J(2) 2 € Z7(y,6%)} > (1 -27")d(y)

since z € Z7(y, §*) is arbitrary. On the other hand, by (3.46) and (3.49),
* % n o .
el = a(w)] < 2"~ a(a)| + la(z) ~ a(y)] < 27—+ & <27

This together with (3.54) implies that y € HY(Z) and so U(z, \) C HY (Z).

To prove the density of H¥(Z) in X, it suffices to prove that A¥(Z) is dense
in X since A¥(Z) ¢ HY(Z). To this end, take xo € X and § > 0 such that
M (zg,d) defined by (3.48) is finite. Let K denote the weak closure of the set
(B(0,N)N Z) U {xo}, where N = |zo|| + (¢P(xq) + M + Ly)/? + 1. Then
K is weakly compact in Y := spanK. By Proposition 2.2, there exist a reflexive
Banach space R and a one-to-one continuous linear mapping 7' : R — Y such that
T(Bgr) 2 K. Define a function fz : R — (—o0, 4+00) by

(3.55) fz(u) =¢(xg+ Tu) foreach u € R.

Then f7 is locally Lipschitz continuous on R by Lemma 3.2. Thus Proposition 2.1
is applicable to concluding that f is Fréchet differentiable on a dense subset of R.
Let 1/3 > e > 0. It follows that there exists a point of differentiability v € R with
y=Tv € U(0,¢). Let v* = Dfz(v). Then

(3.56) i L @0+ T(v + 1)) — ¢(zo + Tv) — (0", )
| = Al

:07
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and hence

(3.57) hnl¢%x04'y*‘TWJ“¢($04—y)—-@ﬁ,h>

=0.
h—0 2]

For each u € R, substituting tu for A in the above expression as ¢ — 0 and using
Lemma 3.2, we have there exists L > 0 such that
(3.58) (v*,u) < L||Tu|| for each u € R.
Define a linear functional y* on TR by
(y*, Tu) = (v*,u) for each u € R.

Then, y* € (TR)* by (3.58) and so y* € Y* because T' has dense range. Clearly,
v* = T*y* by definition. Set x = y+x. Then ||z—xz¢|| < eand z € K+Tv C TR.
Moreover, by (3.57), we have that

(3.59) iy Y@t h) = () -y h)

=0.
TR>h—0 |7l

To complete the proof, it suffices to show that = € A¥(Z), that is, there exists
x* € X* with ||z*|| = a(z) such that, for each € > 0, there is 1 > § > 0 such that

(3.60)  (z*,z—2) + ¢ P(x)J(2) > (1 —e)p(x) for each z € Z7(x,6).

To do this, note by the Hahn-Banach theorem that, ¢* can be extended to an element
x* € X* such that ||z*|| = ||y*||. Below we shall show that =* is as desired. Since
TR D K, it follows (3.59) that (3.19) holds for each h € Y and holds uniformly
for all h € Z —z. Thus, Lemma 3.3 is applicable and hence ||z*|| = ||y*|| = a(x).
Suppose on the contrary that there exist g > 0 and a sequence {z,} in Z such that

(3.61) Tim (|l = 2P + J(z0))> = ()
but
(3.62) (x*, 0 — 2z,) + V17P(2)J(2,) < (1 —€o)tp(x) for each n € N,
Then, by (3.21) and (3.61), one concludes that
Jim o= 2 = ba) and  lim J(z) = 00(x) P (@)

Hence
lim (2", 2z 7P(2) (20)) =9 P (@) (1) (@) (47 () () = (=),
which contradicts (3.62) and the proof is complete. ]

For the main theorem of the present paper we introduce the notion of generalized
well-posedness, see for example [15, 16, 20, 27].
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Definition 3.2. Let x € X. The problem max;(z, Z) is said to be generalized
well-posed if any maximizing sequence {z,} of the problem max;(z, Z) has a
convergent subsequence.

It is clear that the well-posedness implies the generalized well-posedness for the
problem max;(x, Z) and the converse is true if Fz j(x) is a singleton.
Now we are ready to prove the main theorem.

Theorem 3.1. Let Z be a relatively weakly compact subset of X. Suppose that
X is Kadec w.r.t. Z. Then the following assertions hold.

(i) The set of all z € X such that the problem max ;(z, Z) is generalized well-
posed is a dense Gs-subset of X.

(i) If X is J-strictly convex w.r.t. Z and p > 1, then the set of all z € X such
that the problem max ;(z, Z) is well-posed is a dense G s-subset of X.

Proof. (i). By Lemma 3.4, it suffices to verify that, for each z € HY(Z), any
maximizing sequence of the problem max;(x, Z) has a convergent subsequence.
For this purpose, let z € H¥(Z). In view of definition, there exist a positive
sequence {4, } and a sequence {z}} C X* with |||z} | — a(z)| < 2™ such that

inf{( zf, 2 —2) + ' P(x)J(2) : 2 € Z7(2,6,)}

(3.63)
> (1—2"")¢(x) foreachn e N.

Without loss of generality, assume that 6,, < d,, if m < n. Let {z,} be any
maximizing sequence of the problem max;(z, Z), i.e.,

(364) Jim (= zall? + T ()7 = (@)

Note that {z,} is bounded and Z is relatively weakly compact. Without loss of
generality, we may assume that {||z — z,||} and {J(z,)} are convergent, and that
{zn} converges to z, weakly for some z € X. Then we have that

(3.65) |z — 20l < lim || — 2z, and b(z) < lim ||z — 2,].

Furthermore, we assume that z, € Z7(x, §,,) for all n > m. Thus,

(3.66) (ah,x—zp) + W P(2)(2,) > (1 = 27™)(z) foralln >m

m)

and so, for each m,

Izh |2 = zoll + " P(x) lim J(z,)
n—oo

(3.67) 2 (0 = 20 + 9777 (@) Jim J(en) 2 (1= 27" (@),
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Because limy, oo |25, || = 1 7P(2)bP~1(x), letting m — oo, we get that
G @) @) o — z0l] + 41 (w) Tim J(z) > (@),
that is
b @) o — z0ll + lim () > 47(a).
This together with (3.64) implies that
b (@)|lz = 2]l > Tim |z — 2o
Combining this and (3.65), one has that

(369 Jim o = 2] = o =zl

Since X is Kadec w.r.t. Z and z,, — zo weakly, it follows that lim,, .~ |20 — 2n || =
0 and hence zy € Z, which completes the proof of (i).

(if). By the proof for assertion (i), one sees that the problem max;(z, Z)
is generalized well-posed for each € HY(Z). Thus we only need to prove
that Fz ;(x) is a singleton for each x € H¥(Z). Let 2 € HY(Z) and suppose
21,29 € Fy j(z). Then, by the definition of H¥(Z), for each n € N, there exists
x} € X* such that |||z}| — a(z)| < 27" and

(af, o —2) + 7 P(x)J(2) > (1 —27)(z) foreachi=1,2.

n’

Without loss of generality, we may assume that {z;} converges weakly* to some
x* € X*. Then ||z*| = a(z) and

(3.69) (2% x— 2z) +17P(x)J(z) = () foreachi=1,2.
Since

|z*]| = ¥ P (2)bP L (2) < ' 7P(a) || — z| P~ foreach i =1,2,

it follows that

2(2) = (2", 0 — 21 + & — 29) + 1 P(x) T (21) + P (2) T (22)
< la*llle = 21+ @ — 2] + ' P(2) I (21) + ' P (2) I (22)
< l(lz = 21l + |2 = zal)) + 9" P(2) (1) + ' P(2) ] (22)
= P P(@) PP (@)lz — 21| + 07 (@) @ — 22| + J(21) + J(22)]
< YU P@) [l — 2P + e — 2P+ J(21) + T (22)]
2¢(z).
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This means that
(3.70) |z — 21+ 2 — 22| = ||z — 21]| + ||z — 22|
and ||z — z1|| = ||z — 22| = b(z). Consequently,
J(z1) = PP(2) = |lz — 2P = ¥P(2) — [l — 22" = J(z2).
Thus the assumed J-strict convexity of X implies that x — z; = x — 25 and so

z1 = z3. This completes the proof. ]

By (2.1) and (2.2), the following corollary is a direct consequence of Theorem
3.1.

Corollary 3.1. Let Z be a relatively weakly compact subset of X. Suppose that
X is Kadec. Then the following assertions hold.

(i) The set of all z € X such that the problem max ;(z, Z) is generalized well-
posed is a dense Gs-subset of X.

(i) If X is strictly convex and p > 1. Then the set of all € X such that the
problem max ;(z, Z) is well-posed is a dense G s-subset of X .
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