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GENERIC WELL-POSEDNESS FOR PERTURBED OPTIMIZATION
PROBLEMS IN BANACH SPACES

L. H. Peng, C. Li* and J. C. Yao

Abstract. Let X be a Banach space and Z a relatively weakly compact subset
of X. Let J : Z → R be a upper semicontinuous function bounded from above
and p ≥ 1. This paper is concerned with the perturbed optimization problem
of finding z0 ∈ Z such that ‖x− z0‖p + J(z0) = supz∈Z{‖x− z‖p + J(z)},
which is denoted by maxJ(x, Z). We prove in the present paper that if X is
Kadec w.r.t. Z, then the set of all x ∈ X such that the problem maxJ(x, Z)
is generalized well-posed is a dense Gδ-subset of X. If X is additionally
J-strictly convex w.r.t. Z and p > 1, we prove that the set of all x ∈ X such
that the problem maxJ(x, Z) is well-posed is a dense Gδ-subset of X.

1. INTRODUCTION

Let X be a real Banach space endowed with the norm ‖ · ‖. Let Z be a
nonempty closed subset of X , J : Z → R a function defined on Z and let p ≥ 1.
The perturbed optimization problem considered here is of finding an element z0 ∈ Z
such that

(1.1) ‖x− z0‖p + J(z0) = sup
z∈Z

{‖x− z‖p + J(z)}

which is denoted by maxJ(x, Z). Any point z0 satisfying (1.1) (if exists) is called
a solution of the problem maxJ (x, Z). In particular, if J ≡ 0, then the perturbed
optimization problem maxJ (x, Z) reduces to the well-known furthest point problem.
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The perturbed optimization problem maxJ(x, Z) was presented and investigated
by Baranger in [3, 4] for the case when p = 1, and by Bidaut in [5] for the case
when p ≥ 1. The existence results have been applied to optimal control problems
governed by partial differential equations, see for example, [2, 3, 5, 6, 7, 8, 12, 21].

Let Z be a bounded closed subset of X and let J be a upper semicontinuous,
bounded from above on Z. In the case when p = 1, Baranger proved in [4] that
if X is a reflexive and locally uniformly convex Banach space then the set of all
x ∈ X such that the problem maxJ(x, Z) has a solution is a dense Gδ-subset of X .
This result extends Edelstein’s [14] and Asplund’s [1] results on farthest points. In
the recent paper [24], we extended this result to the setting of nonreflexive Banach
spaces, and established porosity results. Consider the problem in an arbitrary Banach
space, Cobzas proved in [8] that if Z is a weakly compact subset of X , then the set
of all x ∈ X such that the problem maxJ(x, Z) has a solution is a dense Gδ-subset
of X , which extends Lau’s result in [17].

In the case when p > 1, this kind of perturbed optimization problems was studied
by Bidaut in [5]. Recall that a sequence {zn} ⊆ Z is a maximizing sequence of
the problem maxJ(x, Z) if

lim
n→∞(‖x− zn‖p + J(zn)) = sup

z∈Z
(‖x− z‖p + J(z)),

and that the problem maxJ(x, Z) is well-posed if maxJ(x, Z) has a unique solution
and any maximizing sequence of the problem maxJ (x, Z) converges to the solution.
Bidaut proved that if X is a reflexive, strictly convex and Kadec Banach space, then
the set of all x ∈ X such that the problem maxJ (x, Z) is well-posed is a dense Gδ-
subset of X . The approach used there depends closely on the reflexivity property of
the underlying space X . The corresponding perturbed minimization problems have
be studied extensively, and the reader is referred to [2, 5, 8, 9, 18, 19, 23, 24] and
the references there.

The purpose of the present paper is to extend the results due to Bidaut in [5] to
the general setting of nonreflexive Banach spaces. More precisely, assume that Z
is a relatively weakly compact subset of X and X is Kadec w.r.t.Z. Then we show
in the present paper that the set of all x ∈ X such that the problem maxJ(x, Z) is
generalized well-posed is a dense Gδ-subset of X . If X is additionally J-strictly
convex w.r.t.Z and if p > 1, then the set of all x ∈ X such that the problem
maxJ(x, Z) is well-posed is a dense Gδ-subset of X . It should be noted that, as it
will be seen, such an extension is nontrivial. A similar work was done for the case
of minimization problems in the recent paper [25], where the main technique is the
use of the Hölder inequality. However, this technique used there doesn’t work here
because J(z) is negative for most points z ∈ Z, which makes the maximization
problem more complicated.
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2. PRELIMINARIES

We begin with some standard notations. Let X be a Banach space with the
dual X∗. We use 〈·, ·〉 to denote the inner product connecting X∗ and X . The
closed (resp. open) ball in X at center x with radius r is denoted by BX(x, r)
(resp. U(x, r)) while the corresponding sphere by SX(x, r). In particular, we write
BX = BX(0, 1) and SX = SX(0, 1). Sometimes, the subscripts are omitted if no
confusion caused. For a subset A of X , the linear hull and the closure of A are
respectively denoted by spanA and A. For x ∈ X , the distance from x to A is
denoted by d(x, A) and defined by d(x, A) := infa∈A ‖x− a‖.

Let Z be a subset of X and J be a real-valued function on Z. We introduce
the following definition, where items (i) and (ii) are well-known in [11, 22], while
items (iii)-(v) are extensions of (i) and (ii), which were first introduced in [25].

Definition 2.1. X is said to be

(i) strictly convex if, for any x1, x2 ∈ S, the condition ‖x1 + x2‖ = 2 implies
that x1 = x2;

(ii) (sequentially) Kadec if, for any sequence {xn} ⊆ S, x ∈ S, the condition
xn → x weakly implies that limn→∞ ‖xn − x‖ = 0.

(iii) J-strictly convex with respect to (w.r.t) Z, if, for any z1, z2 ∈ Z such that
‖x−z1‖ = ‖x−z2‖ for some x ∈ X , the conditions that ‖x−z1 +x−z2‖ =
‖x− z1‖ + ‖x− z2‖ and J(z1) = J(z2) imply that z1 = z2;

(iv) J-strictly convex, if X is J-strictly convex w.r.t X ;
(v) (sequentially) Kadec with respect to (w.r.t) Z, if, for any sequence {zn} ⊆ Z

and z0 ∈ Z such that there exists a point x ∈ X satisfying limn→+∞ ‖x −
zn‖ = ‖x − z0‖, the condition zn → z0 weakly implies that limn→∞ ‖zn −
z0‖ = 0.

In the case when Z = X , the Kadec property w.r.t Z reduces to the Kadec
property, while in the case when J ≡ 0, the J-strict convexity w.r.t Z reduces to
the strict convexity w.r.t Z. Moreover, the following implications are clear for any
subset Z of X and real-valued function J on Z:

(2.1) the strict convexity=⇒ the J-strict convexity
=⇒ the J-strict convexity w.r.t.Z

and

(2.2) the Kadec property =⇒ the Kadec property w.r.t. Z.

It should be noted that each converse of implications (2.1) and (2.2) doesn’t
hold, in general, see [25, Examples 2.1 and 2.2].
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The following two propositions are known (see [26] for the fist one and [13] for
the second one) and play an important role for our study. Recall that a real-valued
function f on an open subset D ⊆ X is Fréchet differentiable at x ∈ D if there
exists x∗ ∈ X∗ such that

lim
y→x

f(y) − f(x) − 〈x∗, y − x〉
‖y − x‖ = 0.

The element x∗ is called the Fréchet differential at x and is denoted by Df(x).

Proposition 2.1. Let f be a locally Lipschitz continuous function on an open
subset D of X . Suppose that X is a reflexive Banach space. Then f is Fr échet
differentiable on a dense subset of D.

Proposition 2.2. Let A be a weakly compact subset of a Banach space X and
let Y = spanA. Then there exist a reflexive Banach space R and a one-to-one
continuous linear mapping T : R → Y such that T (BR) ⊇ A.

3. GENERIC EXISTENCE AND WELL-POSEDNESS RESULTS

Let p ≥ 1. For the remainder of the present paper, we always assume that Z
is a nonempty bounded closed subset of X , J : Z → R is a upper semicontinuous
function bounded from above. Furthermore, without loss of generality, we also
assume that

(3.1) σ := sup
z∈Z

J(z) > 0.

Hence,

(3.2) sup
z∈Z

(‖x− z‖p + J(z)) ≥ σ > 0 for each x ∈ X.

Define functions ξ : X × Z → R and ψ : X → R respectively by

(3.3)
(x, z) =

{
{‖x− z‖p + J(z)} 1

p if ‖x− z‖p + J(z) ≥ 0,

0 otherwise,

for each (x, z) ∈ X × Z.

and

(3.4) ψ(x) = sup
z∈Z

ξ(x, z) for each x ∈ X.
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Then, z0 ∈ Z is a solution to the problem maxJ(x, Z) if and only if z0 satisfies
that

(3.5) ξ(x, z0) = sup
z∈Z

ξ(x, z) = ψ(x).

The set of all solutions to the problem maxJ(x, Z) is denoted by FZ,J (x), that is,

FZ,J (x) := {z0 ∈ Z : ξ(x, z0) = ψ(x)} = {z0 ∈ Z : {‖x−z0‖p+J(z0)}
1
p = ψ(x)}.

Again define the function b : X �→ R by

(3.6) b(x) = lim
δ→0+

inf
z∈ZJ (x,δ)

‖x− z‖ for each x ∈ X,

where, for each x ∈ X and each δ > 0,

(3.7) ZJ(x, δ) = {z ∈ Z : ξ(x, z) > ψ(x)− δ}.

Obviously, the function b is Lipschitz continuous.

Lemma 3.1. Let λ > 0 and x ∈ X . There exists L > 0 such that

(3.8) |ξ(y, z)− ξ(x, z)| ≤ L‖y − x‖ 1
p for any y ∈ B(x, λ) and z ∈ Z.

Proof. Let s ≥ 0 and t ≥ 0. We first note the following elementary inequalities:

(3.9) |s 1
p − t

1
p | ≤ |s− t| 1p and |sp − tp| ≤ p max{s, t} |s− t|.

Let x, y ∈ X and z ∈ Z. We claim that

(3.10) |ξ(y, z)− ξ(x, z)| ≤ |‖x− z‖p − ‖y − z‖p| 1p .

To verify this claim, without loss of generality, assume ‖x− z‖p+J(z) > 0. Thus,
if ‖y − z‖p + J(z) > 0, then (3.10) follows directly from the first inequality of
(3.9) (with ‖y − z‖p + J(z) and ‖x− z‖p + J(z) in place of s and t respectively).
Now assume ‖y − z‖p + J(z) ≤ 0, then J(z) < −‖y − z‖p and

0 < ‖x− z‖p + J(z) < ‖x− z‖p − ‖y − z‖p.

Hence

(3.11) |ξ(y, z)− ξ(x, z)| = |‖x− z‖p + J(z)| 1p ≤ |(‖x− z‖p − ‖y − z‖p)| 1p .
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Hence the claim (3.10) holds. Since Z is bounded, it follows that ∆ := supz∈Z ‖x−
z‖ < +∞. Thus applying the second inequality of (3.9) (to ‖x− z‖ and ‖y − z‖
in place of s and t respectively), we deduce from (3.10) that

(3.12) |ξ(x, z)− ξ(y, z)| ≤ |‖x− z‖p − ‖y − z‖p| 1p ≤ (p (∆ + λ))
1
p ‖x− y‖ 1

p .

This means that (3.8) holds with L := (p (∆ + λ))
1
p and the proof is complete.

The following lemma shows that the function ψ is locally Lipschitz on X .

Lemma 3.2. Let x ∈ X . There are λ > 0 and L > 0 such that

(3.13) |ψ(y)− ψ(x)| ≤ L‖y − x‖ for each y ∈ B(x, λ).

Proof. It suffices to verify that there exist λ > 0 and L > 0 such that

(3.14) ψ(x)− ψ(y) ≤ L‖x− y‖ for each y ∈ B(x, λ).

Let σ > 0 be given by (3.1). Then, by (3.2), ψ(x) ≥ σ holds for each x ∈ X .
Let y ∈ X and r > 0. Set

Γ(y, r) = {z ∈ Z : ξ(y, z) > r}.

Since
ξ(x, z) ≤ 3

4
σ < ψ(x) for each z ∈ Z \ Γ(x,

3
4
σ),

it follows that

(3.15) Γ
(
x,

3
4
σ

)
�= ∅ and sup

z∈Γ(x, 3
4
σ)

ξ(x, z) = ψ(x).

By Lemma 3.1, there exist λ1 > 0 and L1 > 0 such that (3.8) holds. Let λ =(
σ

4L1

) 1
p . Then for each y ∈ B(x, λ) and z ∈ Z(x, 3

4σ) , we have

(3.16) ξ(y, z) > ξ(x, z)− L1‖x− y‖p > 3
4
σ − 1

4
σ =

1
2
σ.

That is, Γ(x, 3
4σ) ⊆ Γ(y, 1

2σ) for each y ∈ B(x, λ). Write ∆ := supz∈Z ‖x− z‖ <
∞. Let z ∈ Γ(x, 3

4σ) and y ∈ B(x, λ). Then, by the Mean-Valued Theorem, there
exists θ satisfying

(3.17) min{‖x− z‖, ‖y − z‖} ≤ θ ≤ max{‖x− z‖, ‖y− z‖} ≤ ∆ + λ
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such that

(3.18)
ξ(x, z)− ψ(y) ≤ {‖x− z‖p + J(z)} 1

p − {‖y − z‖p + J(z)} 1
p

= (θp + J(z))
1−p

p θp−1(‖x− z‖ − ‖y − z‖).

By (3.17) and the fact that z ∈ Γ(x, 3
4σ) ⊆ Γ(y, 1

2σ), one gets that

(θp + J(z))
1
p ≥ min{ξ(x, z), ξ(y, z)} ≥ 1

2
σ.

This together with (3.18) and (3.17) implies that

ξ(x, z)− ψ(y) ≤ (θp + J(z))
1−p

p θp−1(‖x− z‖ − ‖y − z‖)

≤
(

1
2
σ

)1−p
(∆ + λ)p−1‖x− y‖.

Hence (see (3.15))

ψ(x)− ψ(y) = sup
z∈Z(x, 3

4
σ)

(ξ(x, z)− ψ(y)) ≤
(

1
2
σ

)1−p
(∆ + λ)p−1‖x− y‖

and (3.14) is seen to hold with L =
(

1
2σ
)1−p (∆ + λ)p−1.

Lemma 3.3. Let Y be a subspace of X containing Z. Let x ∈ Y and y ∗ ∈ Y ∗.
Suppose that

(3.19) lim
t→0−

(
ψ(x+ th) − ψ(x)

t
− 〈y∗, h〉

)
= 0

holds for each h ∈ Y , and holds uniformly for all h ∈ Z − x. Then

(3.20) ‖y∗‖ = ψ1−p(x)bp−1(x).

Furthermore, if {zn} ⊆ Z is a maximizing sequence of the problem maxJ (x, Z),
then

(3.21) lim
n→+∞ ‖x− zn‖ = b(x) and lim

n→∞〈y∗, x− zn〉 = ψ1−p(x)bp(x).

Proof. Let {zn} ⊆ Z be a maximizing sequence of the problem maxJ (x, Z),
without loss of generality, assume that

(3.22) c(x) := lim
n→+∞ ‖x− zn‖
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exists. Then

(3.23) lim
n→∞ J(zn) = ψp(x)− cp(x).

Below we first show that

(3.24) ‖y∗‖ ≤ ψ1−p(x)cp−1(x).

By the assumption (3.19), it suffices to verify that

(3.25) lim
t→0−

ψ(x+ th) − ψ(x)
t

≤ ψ1−p(x)cp−1(x)‖h‖ for each 0 �= h ∈ Y.

Suppose on the contrary that (3.25) doesn’t hold. Then, there exist ε > 0 and h ∈ Y

with ‖h‖ = 1 such that

(3.26) lim
t→0−

ψ(x+ th) − ψ(x)
t

≥ ψ1−p(x)cp−1(x) + ε.

This implies that there exists some t0 < 0 such that

(3.27) ψ(x+ th) − ψ(x) < t(ψ1−p(x)cp−1(x) + ε) ≤ tε for each t ∈ [t0, 0).

Fix t ∈ [t0, 0). There exists Nt,ε > 0 such that

(3.28) ξ(x, zn) > ψ(x) +
ε

2
t for each n ≥ Nt,ε

(see (3.4)). By (3.27) and (3.28), one has that

(3.29) ξ(x+th, zn)−ξ(x, zn) ≤ ψ(x+th)−ψ(x)− ε

2
t <

ε

2
t for each n ≥ Nt,ε.

Fix n > Nt,ε and write sn = ‖x+ th − zn‖ − ‖x− zn‖. Then

(3.30) 0 > sn ≥ t‖h‖.

By the Mean-Value Theorem, we have that

(3.31)

ξ(x+ th, zn) − ξ(x, zn)
sn

= [(‖x− zn‖ + θsn)p + J(zn)]
1−p

p (‖x− zn‖ + θsn)p−1

≤ [(‖x− zn‖ + t‖h‖)p + J(zn)]
1−p

p ‖x− zn‖p−1,
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where θ ∈ (0, 1) and the inequality holds because of (3.30) (noting 1 − p ≤ 0).
Hence,

(3.32)

ξ(x+ th, zn) − ξ(x, zn)
t

=
(
ξ(x+ th, zn) − ξ(x, zn)

sn

)
sn
t

≤ [(‖x− zn‖ + t‖h‖)p + J(zn)]
1−p

p ‖x− zn‖p−1 ‖h‖
and

lim sup
n→+∞

ξ(x+th, zn)−ξ(x, zn)
t

≤ [(c(x)+t‖h‖)p+ψp(x)−cp(x)] 1−p
p cp−1(x) ‖h‖

thanks to (3.22) and (3.23). Consequently,

(3.33) lim sup
t→0−

lim sup
n→+∞

ξ(x+ th, zn) − ξ(x, zn)
t

≤ ψ1−p(x)cp−1(x)‖h‖.

By (3.29), we have that

ψ(x+ th) − ψ(x)
t

≤ ξ(x+ th, zn) − ξ(x, zn)
t

+
ε

2
.

Combining this with (3.33), we get that

lim
t→0−

ψ(x+ th) − ψ(x)
t

≤ ψ1−p(x)cp−1(x)‖h‖+
ε

2
.

This together with assumption (3.19) implies that

〈y∗, h〉 = lim
t→0−

ψ(x+ th) − ψ(x)
t

≤ ψ1−p(x)cp−1(x)‖h‖,(3.34)

which contradicts (3.26).
Next we shall prove that

(3.35) lim inf
n→∞ 〈y∗, x− zn〉 ≥ ψ1−p(x)cp(x)

For this purpose, take tn ∈ (−1, 0) such that

(3.36) tn → 0 and t2n > ψp(x) − ξp(x, zn).

Write Φn = max{ψ(x), ψ(x+ tn(zn − x)}. Then

(3.37) lim
n→∞ Φn = ψ(x).
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By the Mean-value Theorem, one can conclude that

(3.38)

ψ(x+ tn(zn − x))− ψ(x)
ψp(x+ tn(zn − x))− ψp(x)

=
1
p
[ψ(x) + θn(ψ(x+ tn(zn − x))− ψ(x))]1−p ≤ Φ1−p

n

p
,

where θn ∈ (0, 1). Since

ψp(x+ tn(zn − x)) − ψp(x) ≥ (‖x+ tn(zn − x) − zn‖p + J(zn)) − ψp(x)

= ((1− tn)p − 1)‖(x− zn)‖p − [ψp(x)− ξp(x, zn)],

it follows from (3.36) that

ψp(x+ tn(zn − x)) − ψp(x)
tn

<
((1− tn)p − 1)‖(x− zn)‖p

tn
− tn.

Combining this together with (3.38), we get that

(3.39)

ψ(x+ tn(zn − x))− ψ(x)
tn

=
ψ(x+ tn(zn − x))− ψ(x)
ψp(x+ tn(zn − x))− ψp(x)

· ψ
p(x+ tn(zn − x))− ψp(x)

tn

≤ Φ1−p
n

p
·
(

((1− tn)p − 1)‖(x− zn)‖p
tn

− tn

)
.

Passing to the limits and by the given assumption, we have that

(3.40) lim inf
n→∞

(
〈y∗, x−zn〉+ Φ1−p

n

p
·
(

((1−tn)p−1)‖(x−zn)‖p
tn

−tn
))

≥ 0.

From (3.22) and (3.37), one sees that (3.35) holds. Consequently,

‖y∗‖ ≥ ψ1−p(x)cp−1(x),

and, together with (3.34),

(3.41) ‖y∗‖ = ψ1−p(x)cp−1(x).

Thus we have proved that, for any maximizing sequence {zn} ⊆ Z of the problem
maxJ(x, Z),

(3.42) lim
n→∞ ‖x− zn‖ = ψ(x)‖y∗‖ 1

p−1 .
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In particular, let {zn} ⊆ Z be such that limn→∞ ‖x−zn‖ = b(x) and zn ∈ ZJ (x, 1
n)

for each n (by the definition of b(x), such a sequence {zn} ⊆ Z exists). Then
{zn} ⊆ Z is a maximizing sequence {zn} ⊆ Z of the problem maxJ (x, Z), and
b(x) = ψ(x)‖y∗‖ 1

p−1 by (3.42). Thus (3.20) is seen to hold. To show (3.21), we
note by (3.20) that

lim sup
n→∞

〈y∗, x− zn〉 ≤ lim
n→∞ ‖y∗‖‖x− zn‖ = ‖y∗‖b(x) = ψ1−p(x)bp(x).

Hence (3.21) holds by (3.35). Thus the proof is complete.

Define the real-valued function a on X by

a(x) = ψ1−p(x)bp−1(x) for each x ∈ X.

Then a is continuous on X . Set, for each n ∈ N,

Hψ
n (Z)=

{
x ∈ X :

there are δ>0 and x∗∈X∗ such that |‖x∗‖−a(x)|<2−n

and infz∈ZJ (x,δ){〈 x∗, x−z〉+ψ1−p(x)J(z)} > (1−2−n)ψ(x)

}
.

Also set

(3.43) Hψ(Z) =
∞⋂
n=1

Hψ
n (Z).

Let Λψ(Z) denote the set of all point x ∈ X for which there exists x∗ ∈ X∗ with
‖x∗‖ = a(x) such that, for each ε ∈ (0, 1), there is δ > 0 such that

(3.44) inf
z∈ZJ (x,δ)

{〈 x∗, x− z〉 + ψ1−p(x)J(z)} > (1 − ε)ψ(x).

Obviously,

(3.45) Λψ(Z) ⊆ Hψ(Z).

Lemma 3.4. Suppose that Z is a relatively weakly compact closed subset of
X . Then Hψ(Z) is a dense Gδ-subset of X .

Proof. To show that Hψ(Z) is a Gδ-subset of X , we only need to prove that
Hψ
n (Z) is open for each n. For this end, let n ∈ N and x ∈ Hψ

n (Z). Then there
exist x∗ ∈ X∗ and δ > 0 such that

(3.46) α := 2−n − |‖x∗‖ − a(x)| > 0
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and

(3.47) β := inf{〈 x∗, x−z〉+ψ1−p(x)J(z) : z ∈ ZJ (x, δ)}−(1−2−n)ψ(x)> 0.

without loss of generality, assume that δ > 0 is such that ξ(x, z) > 0 for each
z ∈ ZJ (x, δ). Thus

(3.48) M = M(x, δ) := sup
z∈ZJ (x,δ)

|J(z)| ≤ sup
z∈ZJ (x,δ)

{|ξ(x, z)|p+‖x− z‖p} <∞

as Z is bounded. Since the functions ψ1−p(·) and a(·) are continuous on X , it
follows that there exists λ0 > 0 such that

(3.49) |a(y)−a(x)|<α
2

and |ψ1−p(y)−ψ1−p(x)|< β

2M
for each y∈U(x, λ0).

By Lemmas 3.1 and 3.2, there exist 0 < λ ≤ λ1 and L > 0 such that (3.8) and
(3.13) hold. Without loss of generality, assume that λ ≤ 1 and L ≥ 1. Thus (3.13)
implies that

(3.50) |ψ(y)− ψ(x)| ≤ L‖y − x‖ 1
p for each y ∈ B(x, λ)

(as ‖x− y‖ ≤ λ < 1 and 1
p ≤ 1). Let λ̄ > 0 be such that

λ̄
1
p < min

{
λ,

δ

2L
,

β

2(a(x) + 2L)

}
.

Then U(x, λ̄) ⊂ U(x, λ) and

(3.51)
β

2
− (a(x) + 1 + L)λ̄

1
p ≥ β

2
− (a(x) + 2L)λ̄

1
p > 0.

Below we will show that U(x, λ̄) ⊂ Hψ
n (Z). Granting this, the openness of Hψ

n (Z)
is proved. Let y ∈ U(x, λ̄). Set δ∗ := δ− 2Lλ̄

1
p > 0 and let z ∈ ZJ(y, δ∗). Then,

by (3.7), ξ(y, z) > ψ(y)− δ∗. Thus, using (3.8) and (3.50), one has that

ξ(x, z) ≥ ξ(y, z)− L‖y − x‖ 1
p

> ψ(y)− δ∗ − Lλ̄
1
p

≥ ψ(x)− δ∗ − 2Lλ̄
1
p

= ψ(x)− δ;

hence z ∈ ZJ (x, δ). Consequently,

(3.52) 〈 x∗, x− z〉 + ψ1−p(x)J(z) ≥ β + (1 − 2−n)ψ(x)
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thanks to (3.47). Note that

(3.53) 〈 x∗, y−x〉≥−‖x∗‖‖x−y‖≥−(a(x)+2−n)‖x−y‖!ge−(a(x)+1)‖x−y‖ 1
p .

It follows from Lemma 3.1 that

〈 x∗, y − z〉 + ψ1−p(y)J(z)

= 〈 x∗, x− z〉+ ψ1−p(x)J(z)

+〈 x∗, y − x〉 + (ψ1−p(y)− ψ1−p(x))J(z)

≥ β

2
+ (1− 2−n)ψ(x)− (a(x) + 1)‖x− y‖ 1

p

≥ β

2
+ (1− 2−n)ψ(y)− (a(x) + 1 + (1 − 2−n)L)‖x− y‖ 1

p

≥ (1 − 2−n)ψ(y) +
β

2
− (a(x) + 1 + L)λ̄

1
p ,

where the first inequality holds because of (3.49), (3.52) and (3.53), while the second
one because of (3.50). By (3.51),

(3.54) inf{〈 x∗, y − z〉 + ψ1−p(y)J(z) : z ∈ ZJ (y, δ∗)} > (1 − 2−n)ψ(y)

since z ∈ ZJ (y, δ∗) is arbitrary. On the other hand, by (3.46) and (3.49),

|‖x∗‖ − a(y)| ≤ |‖x∗‖ − a(x)|+ |a(x)− a(y)| ≤ 2−n − α+
α

2
< 2−n.

This together with (3.54) implies that y ∈ H ψ
n (Z) and so U(x, λ̄) ⊂ Hψ

n (Z).
To prove the density of Hψ(Z) in X , it suffices to prove that Λψ(Z) is dense

in X since Λψ(Z) ⊂ Hψ(Z). To this end, take x0 ∈ X and δ > 0 such that
M(x0, δ) defined by (3.48) is finite. Let K denote the weak closure of the set
(B(0, N )∩ Z) ∪ {x0}, where N = ‖x0‖ + (ψp(x0) + M + L1)1/p + 1. Then
K is weakly compact in Y := spanK . By Proposition 2.2, there exist a reflexive
Banach space R and a one-to-one continuous linear mapping T : R→ Y such that
T (BR) ⊇ K. Define a function fZ : R → (−∞,+∞) by

(3.55) fZ(u) = ψ(x0 + Tu) for each u ∈ R.

Then fZ is locally Lipschitz continuous on R by Lemma 3.2. Thus Proposition 2.1
is applicable to concluding that fZ is Fréchet differentiable on a dense subset of R.
Let 1/3 > ε > 0. It follows that there exists a point of differentiability v ∈ R with
y = Tv ∈ U(0, ε). Let v∗ = DfZ(v). Then

(3.56) lim
h→0

ψ(x0 + T (v + h)) − ψ(x0 + Tv)− 〈v∗, h〉
‖h‖ = 0,
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and hence

(3.57) lim
h→0

ψ(x0 + y + Th) − ψ(x0 + y) − 〈v∗, h〉
‖h‖ = 0.

For each u ∈ R, substituting tu for h in the above expression as t → 0 and using
Lemma 3.2, we have there exists L > 0 such that

(3.58) 〈v∗, u〉 ≤ L‖Tu‖ for each u ∈ R.

Define a linear functional y∗ on TR by

〈y∗, Tu〉 = 〈v∗, u〉 for each u ∈ R.

Then, y∗ ∈ (TR)∗ by (3.58) and so y∗ ∈ Y ∗ because T has dense range. Clearly,
v∗ = T ∗y∗ by definition. Set x = y+x0. Then ‖x−x0‖ < ε and x ∈ K+Tv ⊂ TR.
Moreover, by (3.57), we have that

(3.59) lim
TR�h→0

ψ(x+ h) − ψ(x)− 〈y∗, h〉
‖h‖ = 0.

To complete the proof, it suffices to show that x ∈ Λψ(Z), that is, there exists
x∗ ∈ X∗ with ‖x∗‖ = a(x) such that, for each ε > 0, there is 1 > δ > 0 such that

(3.60) 〈x∗, x− z〉+ ψ1−p(x)J(z) > (1 − ε)ψ(x) for each z ∈ ZJ (x, δ).

To do this, note by the Hahn-Banach theorem that, y∗ can be extended to an element
x∗ ∈ X∗ such that ‖x∗‖ = ‖y∗‖. Below we shall show that x∗ is as desired. Since
TR ⊇ K, it follows (3.59) that (3.19) holds for each h ∈ Y and holds uniformly
for all h ∈ Z − x. Thus, Lemma 3.3 is applicable and hence ‖x∗‖ = ‖y∗‖ = a(x).
Suppose on the contrary that there exist ε0 > 0 and a sequence {zn} in Z such that

(3.61) lim
n→∞(‖x− zn‖p + J(zn))

1
p = ψ(x)

but

(3.62) 〈x∗, x− zn〉 + ψ1−p(x)J(zn) ≤ (1 − ε0)ψ(x) for each n ∈ N.

Then, by (3.21) and (3.61), one concludes that

lim
n→∞ ‖x− zn‖ = b(x) and lim

n→∞ J(zn) = ψp(x) − bp(x).

Hence

lim
n→∞(〈x∗, x−zn〉+ψ1−p(x)J(zn))=ψ1−p(x)bp(x)+ψ1−p(x)(ψp(x)−bp(x)) = ψ(x),

which contradicts (3.62) and the proof is complete.

For the main theorem of the present paper we introduce the notion of generalized
well-posedness, see for example [15, 16, 20, 27].
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Definition 3.2. Let x ∈ X . The problem maxJ (x, Z) is said to be generalized
well-posed if any maximizing sequence {zn} of the problem maxJ (x, Z) has a
convergent subsequence.

It is clear that the well-posedness implies the generalized well-posedness for the
problem maxJ(x, Z) and the converse is true if FZ,J (x) is a singleton.

Now we are ready to prove the main theorem.

Theorem 3.1. Let Z be a relatively weakly compact subset of X . Suppose that
X is Kadec w.r.t. Z. Then the following assertions hold.

(i) The set of all x ∈ X such that the problem maxJ (x, Z) is generalized well-
posed is a dense Gδ-subset of X .

(ii) If X is J-strictly convex w.r.t. Z and p > 1, then the set of all x ∈ X such
that the problem maxJ(x, Z) is well-posed is a dense Gδ-subset of X .

Proof. (i). By Lemma 3.4, it suffices to verify that, for each x ∈ Hψ(Z), any
maximizing sequence of the problem maxJ (x, Z) has a convergent subsequence.
For this purpose, let x ∈ Hψ(Z). In view of definition, there exist a positive
sequence {δn} and a sequence {x∗n} ⊆ X∗ with |‖x∗n‖ − a(x)| < 2−n such that

(3.63)
inf{〈 x∗n, x− z〉 + ψ1−p(x)J(z) : z ∈ ZJ(x, δn)}

> (1− 2−n)ψ(x) for each n ∈ N.

Without loss of generality, assume that δn ≤ δm if m < n. Let {zn} be any
maximizing sequence of the problem maxJ(x, Z), i.e.,

(3.64) lim
n→∞(‖x− zn‖p + J(zn))

1
p = ψ(x).

Note that {zn} is bounded and Z is relatively weakly compact. Without loss of
generality, we may assume that {‖x − zn‖} and {J(zn)} are convergent, and that
{zn} converges to z0 weakly for some z0 ∈ X . Then we have that

(3.65) ‖x− z0‖ ≤ lim
n→∞ ‖x− zn‖ and b(x) ≤ lim

n→∞ ‖x− zn‖.

Furthermore, we assume that zn ∈ ZJ (x, δm) for all n > m. Thus,

(3.66) 〈 x∗m, x− zn〉 + ψ1−p(x)J(zn) > (1 − 2−m)ψ(x) for all n > m

and so, for each m,

(3.67)
‖x∗m‖‖x− z0‖+ ψ1−p(x) lim

n→∞J(zn)

≥ 〈 x∗m, x− z0〉 + ψ1−p(x) lim
n→∞J(zn) ≥ (1 − 2−m)ψ(x).
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Because limm→∞ ‖x∗m‖ = ψ1−p(x)bp−1(x), letting m → ∞, we get that

ψ1−p(x)bp−1(x)‖x− z0‖ + ψ1−p(x) lim
n→∞ J(zn) ≥ ψ(x),

that is
bp−1(x)‖x− z0‖ + lim

n→∞ J(zn) ≥ ψp(x).

This together with (3.64) implies that

bp−1(x)‖x− z0‖ ≥ lim
n→∞ ‖x− zn‖p

Combining this and (3.65), one has that

(3.68) lim
n→∞ ‖x− zn‖ = ‖x− z0‖.

Since X is Kadec w.r.t. Z and zn → z0 weakly, it follows that limn→∞ ‖z0−zn‖ =
0 and hence z0 ∈ Z, which completes the proof of (i).

(ii). By the proof for assertion (i), one sees that the problem maxJ (x, Z)
is generalized well-posed for each x ∈ Hψ(Z). Thus we only need to prove
that FZ,J (x) is a singleton for each x ∈ Hψ(Z). Let x ∈ Hψ(Z) and suppose
z1, z2 ∈ FZ,J (x). Then, by the definition of Hψ(Z), for each n ∈ N, there exists
x∗n ∈ X∗ such that |‖x∗n‖ − a(x)| < 2−n and

〈 x∗n, x− zi〉 + ψ1−p(x)J(zi) > (1− 2−n)ψ(x) for each i = 1, 2.

Without loss of generality, we may assume that {x∗n} converges weakly∗ to some
x∗ ∈ X∗. Then ‖x∗‖ = a(x) and

(3.69) 〈 x∗, x− zi〉 + ψ1−p(x)J(zi) = ψ(x) for each i = 1, 2.

Since

‖x∗‖ = ψ1−p(x)bp−1(x) ≤ ψ1−p(x)‖x− zi‖p−1 for each i = 1, 2,

it follows that

2ψ(x) = 〈x∗, x− z1 + x − z2〉 + ψ1−p(x)J(z1) + ψ1−p(x)J(z2)

≤ ‖x∗‖‖x− z1 + x− z2‖ + ψ1−p(x)J(z1) + ψ1−p(x)J(z2)

≤ ‖x∗‖(‖x− z1‖ + ‖x− z2‖) + ψ1−p(x)J(z1) + ψ1−p(x)J(z2)

= ψ1−p(x)[bp−1(x)‖x− z1‖ + bp−1(x)‖x− z2‖ + J(z1) + J(z2)]

≤ ψ1−p(x)[‖x− z1‖p + ‖x− z2‖p + J(z1) + J(z2)]

= 2ψ(x).
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This means that

(3.70) ‖x− z1 + x− z2‖ = ‖x− z1‖ + ‖x− z2‖
and ‖x− z1‖ = ‖x− z2‖ = b(x). Consequently,

J(z1) = ψp(x)− ‖x− z1‖p = ψp(x) − ‖x− z2‖p = J(z2).

Thus the assumed J-strict convexity of X implies that x − z1 = x − z2 and so
z1 = z2. This completes the proof.

By (2.1) and (2.2), the following corollary is a direct consequence of Theorem
3.1.

Corollary 3.1. Let Z be a relatively weakly compact subset of X . Suppose that
X is Kadec. Then the following assertions hold.

(i) The set of all x ∈ X such that the problem maxJ (x, Z) is generalized well-
posed is a dense Gδ-subset of X .

(ii) If X is strictly convex and p > 1. Then the set of all x ∈ X such that the
problem maxJ (x, Z) is well-posed is a dense Gδ-subset of X .
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