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WEIGHTED APPROXIMATION BY q-SZÁSZ-KING TYPE OPERATORS

Octavian Agratini and Ogün Doǧru

Abstract. By using q-calculus, in the present paper we construct Szász type
operators in King sense, this meaning the operators preserve the first and the
third test function of Bohman-Korovkin theorem. Rate of local and global
convergence is obtained in the frame of weighted spaces. The statistical ap-
proximation property of our operators is also revealed.

1. INTRODUCTION

During the last decade, q-calculus was intensively used in the construction for
different generalizations of many classical sequences of linear positive operators.
The pioneer work has been made by A. Lupaş [18] and G. M. Phillips [21] who
proposed generalizations of Bernstein polynomials based on the q-integers. Nu-
merous properties of these remarkable polynomials have been extended to their
q-analogues. We refer, for instance, to the results of S. Ostrovska [19], [20], M.
M. Derriennic [7], V.S. Videnskii [23], H. Wang [24]. Other important classes
of discrete operators have been investigated by using q-calculus. For example: q-
Meyer-König and Zeller operators appear in the papers of T. Trif [22], O. Doǧru
and O. Duman [8]; q-Bleimann, Butzer and Hahn operators have been studied
by A. Aral and O. Doǧru [4]; q-Szász Mirakjan operators are investigated by A.
Aral and V. Gupta [5].

It is also known that J.P. King [15] has presented an unexpected example of
operators of Bernstein type which preserve the test functions e0 and e2 of Bohman-
Korovkin theorem. We recall that the three test functions of this criterion, usually
denoted by ek , are the monomials ek(x) = xk , k = 0, 1, 2. A general technique
to construct sequences of operators of discrete type with the same property as in
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King’s example was presented by the first author [2]. In the same paper particular
classes such as Szász-Mirakjan, Baskakov, Bernstein-Chlodovsky operators, have
been modified in King’s sense.

The goal of this article is to construct and investigate a variant of Szász operators
based on q-calculus and King’s model. The paper is organized as follows. Section 2
contains some basic facts regarding both q-calculus and statistical convergence. The
construction of the announced class of operators is also presented. Section 3 deals
with statistical approximation property of our operators in a weighted certain space.
Section 4 centers around the rate of local and global convergence of our sequence
for functions with polynomial growth. The main tool is a weighted modulus of
smoothness.

2. NOTATION AND PRELIMINARIES

For the reader’s convenience and to make the exposition self-contained, we
collect information regarding two concepts: q-calculus and statistical approximation.

Set N0 = {0} ∪ N and R+ = [0,∞). Throughout the paper we shall assume
that q ∈ (0, 1). Following the definitions and notations of [14, pp. 7-13], for any
real number a and x we set

[a]q =
1 − qa

1 − q
, (1 − x)a

q =
∞∏

j=0

1 − qjx

1 − qj+ax
.

As special case we consider [a]1 = a. For the integer n ≥ 1, the q-integer is

[n]q = 1 + q + · · · + qn−1. One also takes place (1 − x)n
q =

n−1∏
j=0

(1 − qjx). The

q-factorial [n]q! of the element n ∈ N means [n]q! = [1]q[2]q . . . [n]q. Set [0]q! = 1.
Also, the q-binomial or the Gaussian coefficients are denoted by

[n
k

]
q

and are

defined by [n
k

]
q

=
[n]q!

[k]q![n− k]q!
, k = 0, 1, . . . , n.

Clearly, [n]1! = n! and
[n
k

]
1

represents
(
n

k

)
, the ordinary binomial coefficients.

Two different q-expansions named Eq and εq of the exponential function x �→ ex

are given as follows (see [13, p. 9] or [14, pp. 30-31])

Eq(x) =
∞∑

k=0

qk(k−1)/2 xk

[k]q!
, x ∈ R,(2.1)

εq(x) =
∞∑

k=0

xk

[k]q!
, |x| < 1

1 − q
.(2.2)
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With the help of the notation (1 − a)∞q =
∞∏

j=0

(1 − qja), it is proved that

Eq(x) = (1 + (1− q)x)∞q , εq(x) =
1

(1 − (1 − q)x)∞q

and, consequently, the following relation between q-exponential functions

Eq(x)εq(−x) = 1, |x| < 1
1− q

,

holds. We mention that these q-analogues of the classical exponential functions are
valid for each q ∈ (−1, 1). Moreover, lim

q→1−
Eq(x) = lim

q→1−
εq(x) = ex.

Further on, let recall the concept of statistical convergence. The density of a set
K ⊂ N is defined by

δ(K) = lim
n→∞

1
n

n∑
k=1

χK(k),

provided the limit exists, where χK is the characteristic function of K. Clearly, the
sum of the right hand side represents the cardinality of the set {k ≤ n : k ∈ K}.
Following [10], a sequence x = (xk)k≥1 is statistically convergent to a real number
L if, for every ε > 0,

δ({k ∈ N : |xk − L| ≥ ε}) = 0.

In this case we write st− lim
n
xn = L. It is known that any convergent sequence

is statistically convergent, but not conversely. Closely related to this notion is A-
statistical convergence, where A = (an,k) is an infinite summability matrix. For a
given sequence x = (xk)k≥1, the A-transform of x denoted by (Ax)n, n ∈ N, is
defined by

(Ax)n =
∞∑

k=1

an,kxk, n ∈ N,

provided the series converges for each n. Suppose that A is non-negative regular
summability matrix. Then x is A-statistically convergent to the real number L if,
for every ε > 0, one has

lim
n→∞

∑
k∈I(ε)

an,k = 0,

where I(ε) = {k ∈ N : |xk − L| ≥ ε}. We write stA − lim
n
x = L, see e.g. [11],

[16].
In approximation theory by linear positive operators, the statistical convergence

has been examined for the first time by A.D. Gadjiev and C. Orhan [12].
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In order to introduce a q-variant for Szász-Mirakjan operators, right to the start
we present a construction due to A. Aral [3] and studied in deepness by A. Aral and
V. Gupta [5]. Let (bn)n≥1 be a sequence of positive numbers such that lim

n
bn = ∞.

For each n ∈ N, q ∈ (0, 1) and f ∈ C(R+) the authors defined

(2.3) (Sq
nf)(x) = Eq

(
−[n]q

x

bn

) ∞∑
k=0

f

(
[k]qbn
[n]q

)
([n]qx)k

[k]q!bkn
,

where 0 ≤ x <
bn

1 − qn
. The following explicit expressions for Sq

nek, k = 0, 1, 2,

have been established [3, Eqs. (3.5)-(3.7)]

Sq
ne0 = e0, Sq

ne1 = e1, Sq
ne2 = qe2 +

bn
[n]q

e1.

In [2] the classical Szász-Mirakjan operators have been modified in King’s
sense. Following a similar route, we transform the operators defined at (2.3) in
order to preserve the quadratic function e2. Defining the functions

(2.4) vn,q(x) =
1

2q[n]q

(
−bn +

√
b2n + 4q[n]2qx2

)
, x ≥ 0,

we consider the linear and positive operators

(2.5) (S∗
n,qf)(x) = Eq

(
−[n]q

vn,q(x)
bn

) ∞∑
k=0

f

(
[k]qbn
[n]q

)
([n]qvn,q(x))k

[k]q!bkn
,

where x ∈ Jn(q) :=
[
0,

bn
1 − qn

)
.

Lemma 2.1. The operators defined at (2.5) verify for each x ∈ Jn(q) the
following identities

(2.6) (S∗
n,qe0)(x) = 1, (S∗

n,qe1)(x) = vn,q(x), (S∗
n,qe2)(x) = x2,

(2.7) (S∗
n,qψ

2
x)(x) = 2x(x− vn,q(x)),

where ψx(t) = t− x, t ≥ 0.

Since the identities are easily obtained by direct computation, we omit the proof.
Examining relations (2.4), (2.6) and based on Bohman-Korovkin theorem, it is

clear that (S∗
n,q)n≥1 does not form an approximation process. The next step is to
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transform it for enjoying of this property. For each n ∈ N, the constant q will be
replaced by a number qn ∈ (0, 1) such that lim

n
qn = 1. At this stage we also need

a connection between the involved sequences (bn)n≥1, (qn)n≥1.

Theorem 2.2. Let (qn)n≥1, 0 < qn < 1, be a sequence and let the operators
S∗

n,qn
, n ∈ N, be defined as in (2.5). If

(2.8) lim
n
qn = 1, lim

n

bn
1 − qn

n

= ∞ and lim
n

bn
[n]qn

= 0,

then for any compact K ⊂ R+ and for each f ∈ C(R+) one has

lim
n

(S∗
n,qn

f)(x) = f(x), uniformly in x ∈ K.

Proof. The second limit in (2.8) guarantees that
∞⋃

n=1

Jn(qn) = R+. Conse-

quently, the sequence of operators is proper defined, this meaning that it is suit-
able to approximate functions defined on R+. The third limit in (2.8) implies
lim
n
vn,qn(x) = x2 uniformly in x ∈ K . The result follows from Bohman-Korovkin

criterion via Lemma 2.1.

Remark 2.3. For removing any doubt, we indicate pairs of sequences (qn)n≥1,
(bn)n≥1 which verify the plurality of requirements imposed in Theorem 2.2.

1◦ q1 =
1√
2

and qn =
1

n
√
n

(n ≥ 2); bn = nλ for any fixed λ ∈
(

0,
1
2

)
.

2◦ q1 =
1
2

and qn = 1 − 1
n

(n ≥ 2); bn = ([n]qn)λ for any fixed λ ∈ (0, 1).

3. WEIGHTED STATISTICAL APPROXIMATION PROPERTY

A real valued function ρ defined on R is usually called a weight function if it
is continuous on the domain satisfying the conditions ρ ≥ e0 and lim

|x|→∞
ρ(x) = ∞.

For example, the mapping x �→ 1+x2+λ, λ a non-negative parameter, is often used
as weight function. Let consider the spaces

Bρ(R) = {f : R → R | a constant Mf depending on f exists

such that |f | ≤Mfρ},
Cρ(R) = {f ∈ Bρ(R) | f continuous on R},
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endowed with the usual norm ‖ · ‖ρ, this meaning

‖f‖ρ = sup
x∈R

|f(x)|
ρ(x)

.

O. Duman and C. Orhan proved [9, Theorem 3] the following weighted Korovkin
type theorem via A-statistical convergence.

Theorem A. Let A = (an,k) be a non-negative regular summability matrix
and let ρ1, ρ2 weight functions such that

(3.1) lim
|x|→∞

ρ1(x)
ρ2(x)

= 0.

Assume that (Tn)n≥1 is a sequence of positive linear operators from Cρ 1
(R)

into Bρ2
(R). One has

stA − lim
n

‖Tnf − f‖ρ2
= 0, f ∈ Cρ1

(R),

if and only if
stA − lim

n
‖TnFk − Fk‖ρ1

= 0, k = 0, 1, 2,

where Fk(x) = xkρ1(x)/(1 + x2).

Clearly, all the above notations and results are still valid if we replace the domain
R by R+. The main result of this section is based on Theorem A. We choose the
pair of weight functions (ρ0, ρλ), where

(3.2) ρ0(x) = 1 + x2, ρλ(x) = 1 + x2+λ, x ∈ R+,

λ > 0 being a fixed parameter. Relation (3.1) is fulfilled and Bρ0(R+) ⊂ Bρλ
(R+).

Moreover, taking A the Cesàro matrix of first order, Theorem A implies

Corollary 3.1. For any sequence (Tn)n≥1 of linear positive operators acting
from Cρ0(R+) into Cρλ

(R+), λ > 0, one has

(3.3) st− lim
n

‖Tnf − f‖ρλ
= 0, f ∈ Cρ0(R+),

if and only if

(3.4) st− lim
n

‖Tnek − ek‖ρ0 = 0, k = 0, 1, 2.

Next, we collect some elementary properties of the functions defined by (2.4).
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Lemma 3.2. Let vn,q , n ∈ N, be defined by (2.4), where q ∈ (0, 1) and bn > 0,
n ∈ N. The following statements are true.

(i) vn,q(0) = 0, vn,q

(
bn

1− qn

)
=

bn
1 − qn

;

(3.5) (ii) 0 ≤ vn,q(x) ≤ x, x ∈
[
0,

bn
1 − qn

]
;

(3.6) (iii) x − vn,q(x) ≤ x0 − vn,q(x0) ≤ bn
2q[n]q

, x ≥ 0,

where x0 =
bn

2[n]q
√

1 − q
.

Proof. Both (i) and (ii) are obtained by a straightforward calculation. Because
S∗

n,q is a positive operators, actually, the inequality vn,q(x) ≤ x springs from (2.7).

For proving (iii) we can consider the function h : [0,∞) → R, h(x) = x −
vn,q(x). The unique solution of the equation

d

dx
h(x) = 0 being x0, the monotonicity

of h implies h(x) ≤ h(x0) =
bn(1−√

1− q)
2q[n]q

and (3.6) follows.

The main result of this section will be read as follows.

Theorem 3.3. Let the sequence (qn)n≥1, 0 < qn < 1, be given such that
st− lim

n
qn = 1. Let the operators S ∗

n,qn
, n ∈ N, be defined as in (2.5). If

(3.7) st− lim
n

bn
[n]qn

= 0,

then, for each function f ∈ Cρ0(R+), one has

st− lim
n

‖S∗
n,qn

f − f‖ρλ
= 0,

where λ > 0.

Proof. Each function S∗
n,qn

f , f ∈ Cρ0(R+), is defined on Jn(qn) (see (2.5)).
We extend it on R+ in the classical manner. Let S̃∗

n,qn
be defined as follows

(S̃∗
n,qn

f)(x) =


(S∗

n,qn
f)(x), x ∈ Jn(qn),

f(x), x ≥ bn
1 − qn

n

.
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For each n ∈ N, the norm ‖S̃∗
n,qn

f − f‖ρλ
coincides with the norm of the

element (S∗
n,qn

f −f) in the space Bρλ
(Jn(qn)), for any λ ≥ 0. Applying Corollary

3.1 to the operators Tn ≡ S̃∗
n,qn

, the proof of Theorem 3.3 will be finished. In this
respect, it is sufficient to prove that, under our hypothesis, the operators verify the
conditions given at (3.4).

By the first and the third identity of relation (2.6) it is clear that

st− lim
n

‖S̃∗
n,qn

ek − ek‖ρ0 = 0

for k = 0 and k = 2. The second identity of (2.6) and Lemma 3.2 allow us to write

sup
x∈Jn(qn)

1
ρ0(x)

|(S∗
n,qn

e1)(x)− x| = sup
x∈Jn(qn)

x− vn,qn(x)
1 + x2

≤ sup
x≥0

x− vn,qn(x)
1 + x2

≤ bn
2qn[n]qn

.

Since st − lim
n
qn = 1, based on (3.7) we get st − lim

n
‖S̃∗

n,qn
e1 − e1‖ρ0 = 0 and

the proof is completed.

4. RATE OF WEIGHTED APPROXIMATION

The q-Stirling numbers of the second kind denoted by Sq(m, k) (m, k ∈ N0,
m ≥ k) are described by the recurrence formula

Sq(m, k) = Sq(m− 1, k− 1) + [k]qSq(m− 1, k), m ≥ k ≥ 1,

with Sq(0, 0) = 1 and Sq(m, 0) = 0 for m ∈ N. We agree Sq(m, k) = 0 for
k > m. The closed form is the following

(4.1) Sq(m, k) =
1

[k]q!q
k(k−1)

2

k∑
j=0

(−1)jq
j(j−1)

2

[
k

j

]m

q

[k − j]mq , 1 ≤ k ≤ m.

For q → 1−, S1(m, k) represents the number of ways of partitioning a set of m
elements into k non-empty subsets [1, p. 824].

Lemma 4.1. Let the sequence (qn)n≥1, 0 < qn < 1, be given and let the
operators S ∗

n,qn
, n ∈ N, be defined as in (2.5). One has

(S∗
n,qn

em)(x) = q
m(m−1)

2
n vm

n,qn
(x) +

m−1∑
k=1

(
bn

[n]qn

)m−k

Sqn(m, k)q
k(k−1)

2
n vk

n,qn
(x),
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x ∈ Jn(qn), where Sqn(m, k) are qn-Stirling numbers given by (4.1). Here em

stands for the monomial of m degree.

Proof. Taking in view both (2.5) and (2.1) and using the Cauchy rule (or
Mertens formula) for multiplication of two series, we can write

(S∗
n,qn

em)(x) =
∞∑

k=0

k∑
i=0

(−1)iq
i(i−1)

2
n em

(
[k − i]qnbn

[n]qn

)
([n]qnvn,qn(x))k

[i]qn![k− i]qn!bkn

=
∞∑

k=0

Sqn(m, k)[k]qn!q
k(k−1)

2
n

(
bn

[n]qn

)m−k

· 1
[k]qn !

vk
n,qn

(x)

=
m∑

k=0

(
bn

[n]qn

)m−k

Sqn(m, k)q
k(k−1)

2
n vk

n,qn
(x)

= Sqn(m,m)q
m(m−1)

2
n vm

n,qn
(x)

+
m−1∑
k=0

(
bn

[n]qn

)m−k

Sqn(m, k)q
k(k−1)

2
n vk

n,qn
(x).

Knowing that Sqn(m,m) = 1 and Sqn(m, 0) = 0 (m ≥ 1), one obtains (4.1).

We mention that A. Aral proved a similar result [3, Lemma 1] for the operators
given at (2.3). His proof is based on the forward q-differences up to order m.

Set Am(n; qn, bn) :=
∑m−1

k=1 Sqn(m, k)
(

bn
[n]qn

)m−k

.

Under the hypothesis lim
n
qn = 1 and lim

n

bn
[n]qn

= 0 we get lim
n

Sqn(m, k) =

S1(m, k), 1 ≤ k ≤ m−1, and a real constant Bm depending only on m exists such
that

(4.2) sup
n∈N

Am(n; qn, bn) = Bm.

Lemma 4.2. Let the sequence (qn)n≥1, 0 < qn < 1, be given and let S∗
n,qn

,
n ∈ N, be operators defined as in (2.5).

If the conditions (2.8) are fulfilled, then one has

(4.3) (i) (S∗
n,qn

em)(x) ≤ (1 +Bm)(1 + xm), x ∈ Jn(qn),

where Bm is given at (4.2).
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(ii) For each n ∈ N, the operator S ∗
n,qn

maps the space Bρ�λ� into Bρ�λ� , λ > 0.
Here �λ
 represents the ceiling of number λ.
Setting µx(t) = 1 + (x+ |t−x|)2+�λ�, t ≥ 0, the following inequalities hold

(4.4) (iii) S∗
n,qn

µx ≤ cλ(1 + e2+�λ�),

(4.5) (iv)
√
S∗

n,qn
µ2

x ≤ c̃λ(1 + e2+�λ�),

where cλ, c̃λ are constants independent on x and n.

Proof.

(i) Based on Lemma 4.1, relation (3.5) and knowing that qn ∈ (0, 1), for each
x ∈ Jn(qn) we can write

(S∗
n,qn

em)(x) ≤ xm +
m−1∑
k=1

Sqn(m, k)
(

bn
[n]qn

)m−k

xk

≤ xm +mAm(n; qn, bn)(1 + xm)

≤ xm +mBm(1 + xm),

and (4.3) follows.
(ii) If f ∈ Bρ�λ� , then |f | ≤ Mf(1 + x2+�λ�). S∗

n,qn
being linear and positive is

monotone. Relation (4.3) implies our statement.
(iii) For each t ≥ 0 and x ∈ Jn(qn) we get

µx(t) ≤ 1 + (2x+ t)2+�λ� ≤ 1 + 21+�λ�((2x)2+�λ� + t2+�λ�).

By using (4.3) and (2.6) we obtain (4.4).
(iv) Since µ2

x(t) ≤ 2(1+(2x+ t)4+2�λ�), the same relations (4.3) and (2.6) imply
(4.5).

We proceed with estimated of the errors |S∗
n,qn

f − f |, n ∈ N, involving un-
bounded functions by using a weighted modulus of smoothness associated to the
space Bρλ

. In this respect we use

(4.6) Ωρλ
(f ; δ) = sup

x≥0
0<h≤δ

|f(x+ h) − f(x)|
1 + (x+ h)2+λ

, δ > 0.
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This modulus was recently considered by López-Moreno [17].
Clearly, Ωρλ

(f ; ·) ≤ 2‖f‖ρλ
for each f ∈ Bρλ

. Among some basic properties
of this modulus, in [17] the following is mentioned: Ωρλ

(f ;mδ) ≤ mΩρλ
(f ; δ) for

any positive integer m.
Since Ωρλ

(f ; δ) is monotonically increasing with respect to δ (δ > 0) and
α < [α]+1 ≤ α+1 holds ([α] gives the integer part of α), the following inequality

(4.7) Ωρλ
(f ;αδ) ≤ (α+ 1)Ωρλ

(f ; δ), δ > 0,

is valid for any α > 0.

Theorem 4.3. Let the sequence (qn)n≥1, 0 < qn < 1, be given and let S∗
n,qn

,
n ∈ N, be operators defined as in (2.5) such that the conditions (2.8) are fulfilled.
For each f ∈ Bρ�λ� the following inequality

|(S∗
n,qn

f)(x)− f(x)| ≤ kλ(1 + x3+�λ�)Ωρ�λ�

(
f ;

√
bn

[n]qn

)
, x ∈ Jn(qn),

holds, where kλ is a constant independent of f and n.

Proof. Let n ∈ N and f ∈ Bρ�λ� be fixed. For each t ≥ 0 and δ > 0, based
both on definition (4.6) and on property (4.7) with α := |t− x|δ−1, we get

|f(t) − f(x)| ≤ (1 + (x+ |t− x|)2+�λ�)
( |t− x|

δ
+ 1
)

Ωρ�λ�(f ; δ)

=
(
µx(t) +

1
δ
µx(t)|t− x|

)
Ωρ�λ�(f ; δ),

where µx was introduced at Lemma 4.2.

Taking into account that S∗
n,qn

is linear positive operator preserving the constants,
we can write

|(S∗
n,qn

f)(x) − f(x)| = |S∗
n,qn

(f − f(x); x)| ≤ S∗
n,qn

(|f − f(x)|; x)
≤ S∗

n,qn
(µx + δ−1µx|ψx|; x)Ωρ�λ�(f ; δ)

=
{

(S∗
n,qn

µx)(x) +
1
δ
(S∗

n,qn
µx|ψx|)(x)

}
Ωρ�λ�(f ; δ)

≤
{

(S∗
n,qn

µx)(x) +
1
δ

√
(S∗

n,qn
µ2

x)(x)
√

(S∗
n,qn

ψ2
x)(x)

}
Ωρ�λ�(f ; δ),

where ψx was introduced at Lemma 2.1.
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The last increase is based on Cauchy-Schwarz inequality frequent used for posi-
tive operators of discrete type. It was proved by Yuan-Chuan Li and Sen-Yen Shaw
[6] that this classical inequality has great and unexpected force.

Relations (2.7) and (3.6) allow us to write (S∗
n,qn

ψ2
x)(x) ≤

bnx

[n]qn

. Further on,

by using inequalities (4.4), (4.5) we get

|(S∗
n,qn

f)(x)− f(x)|

≤
{
cλ(1 + x2+�λ�) +

c̃λ
δ

(
1 + x2+�λ�

)√
x

√
bn

[n]qn

}
Ωρ�λ�(f ; δ)

≤ 2

(
cλ +

c̃λ
δ

√
bn

[n]qn

)(
1 + x3+�λ�

)
Ωρ�λ�(f ; δ).

Choosing δ =

√
bn

[n]qn

and setting kλ := 2(cλ + c̃λ), the conclusion follows.

Corollary 4.4. Under the assumptions of Theorem 4.3 the following global
estimate takes place

‖S∗
n,qn

f − f‖ρ�λ+1� ≤ kλΩρ�λ�

(
f ;

√
bn

[n]qn

)
, f ∈ Bρ�λ� .
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