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GROWTH ORDERS OF CESÀRO AND ABEL MEANS
OF FUNCTIONS IN BANACH SPACES

Jeng-Chung Chen, Ryotaro Sato and Sen-Yen Shaw*

Abstract. For continuous vector-valued functions, we discuss relations among
exponential and polynomial growth orders of the γ-Cesàro mean (γ ≥ 0) and
of the Abel mean. In general, the Abel mean has growth order not larger
than those of Cesàro means, and a higher-order Cesàro mean has a smaller
growth order than a lower-order Cesàro mean. But, for a positive function in
a Banach lattice, the Abel mean and all γ-Cesàro means with γ ≥ 1 (but not
with 0 ≤ γ < 1) have the same polynomial growth order. The possibility of
non-equal growth orders for these means is illustrated by some examples of
C0-semigroups and cosine operator functions.

1. INTRODUCTION

Let u ∈ C([0,∞), X) be a continuous function with values in a Banach space
X . For γ ≥ 0, t ≥ 0, the γ-th order Cesàro mean (or (C, γ)-mean) c

γ
t of u over

[0, t] is defined as c
γ
0 := u(0) and, for t > 0,

(1) c
γ
t = c

γ
t (u) :=

{
u(t) if γ = 0,

γt−γ
∫ t
0 (t − s)γ−1u(s) ds if γ > 0

= (kγ+1(t))−1(kγ ∗ u)(t),

where k0 := δ0, the Dirac measure at 0, and kγ(t) := tγ−1/Γ(γ) for γ > 0. For
λ ∈ C with Reλ > 0 the Abel mean aλ of u is defined as

(2) aλ = aλ(u) := λ

∫ ∞

0
e−λsu(s) ds = λ lim

t→∞

∫ t

0
e−λsu(s) ds
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if the limit exists. The abscissa of convergence σ(u) of the Laplace integral û(λ) =∫∞
0 e−λsu(s) ds := limt→∞

∫ t
0 e−λsu(s) ds is defined as

σ(u) := inf
{

Reλ : lim
t→∞

∫ t

0
e−λsu(s) ds exists

}
.

Note that if
∫ ∞
0 e−λsu(s) ds exists as a Bochner integral, then it agrees with the

definition of Laplace integral by the dominated convergence theorem. u is said to
be Laplace transformable if σ(u) < ∞. The mapping û : λ �→ û(λ) is called the
Laplace transform of u. It is known that if λ ∈ C satisfies Reλ > σ(u), then the
Laplace integral û(λ) = limt→∞

∫ t
0 e−λsu(s) ds exists, and the Laplace transform

û : λ �→ û(λ) is analytic on the domain {λ ∈ C : Reλ > σ(u)} (cf. [1, Theorems
1.4.1 and 1.5.1]). We mainly consider aλ with λ ∈ R such that λ > max{σ(u), 0}.

For fixed u we use c
γ
· and a· to denote the continuous functions t �→ c

γ
t (u) and

λ �→ aλ(u), respectively. When we consider a strongly continuous operator-valued
function t �→ T (t) (∈ B(X)) on [0,∞), such as a C0-semigroup (T (t))t≥0 of
bounded linear operators on X , we set u(t) := T (t)x, where x ∈ X , and use the
notations Cγ

t x and Aλx instead of c
γ
t (T (·)x) and aλ(T (·)x), respectively. Clearly,

the mapping Cγ
t : x �→ Cγ

t x becomes a bounded linear operator on X . If Aλx

exists for all x ∈ X , then the mapping Aλ : x �→ Aλx is also a bounded linear
operator on X by the uniform boundedness principle.

One of the important issues of ergodic theory is concerned with convergence
of the Cesàro mean and the Abel mean of operator-valued functions. It is well-
known that convergence of a function implies convergence of its Cesàro mean, and
the latter implies convergence of the Abel mean (cf. [6, Theorem 18.2.1]), but not
conversely (cf. [7, pp. 115-116]). This result seems natural if one notices the fact
that the Abel mean is dominated by the Cesàro mean, and the latter is dominated
by the function itself (cf. [8, Proposition 2.1]). Recently, some papers appeared
discussing characterizations of bounded and polynomially bounded C0-semigroups
in terms of boundedness conditions on their Abel means (cf. [3, 4, 5, 9]). In [8] we
have compared the growth orders of C1

t and Aλ for a C0-semigroup. In this paper
we continue the investigation of c

γ
t (u) for all γ ≥ 0 and for a general vector-valued

function u.
We need to introduce some more definitions. The function u is said to be

exponentially bounded if ‖u(t)‖ ≤ Mewt for some M ≥ 1, w ∈ R and all t ≥ 0.
In this case, we can define the exponential growth order (or bound):

w0(u) := inf{w ∈ R : ‖u(t)‖ = O(ewt) (t → ∞)} < ∞.

Clearly,
∫∞
0 e−λtu(t) dt exists as a Bochner integral for all λ with Reλ > w0(u).

It follows that σ(u) ≤ w0(u). If w0(u) ≤ 0, then u is said to be sub-exponential.
If σ(u) ≤ 0, then one can define the growth order α0(a·) of a· at 0 as

(3) α0(a·) := inf{α ∈ R : ‖aλ‖ = O(λ−α) (λ ↓ 0)}.
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One can also define the polynomial growth order of u as

(4) α0(u) := inf{α ∈ R : ‖u(t)‖ = O(tα) (t → ∞)}.
If α0(u) < ∞, then u is said to be polynomially bounded.

It would be interesting to find the relations among w0(u) and w0(c
γ
· ) (0 < γ <

∞), and the relations among α0(u), α0(c
γ
· ) (0 < γ < ∞), and α0(a·). The aim of

this paper is to investigate various growth phenomena of functions.
Section 2 is concerned with general relations among growth orders and the

abscissa of convergence. In particular, both max{w0(c
γ· ), 0} and max{σ(cγ· ), 0} are

non-increasing functions of γ on [0,∞), and max{w0(c
γ
· ), 0} = max{σ(cγ−1

· ), 0}
for all γ ≥ 1 (Theorems 2.2 and 2.3). Moreover, if u 
= 0 is a positive function in
a Banach lattice, then we have (Remark under Theorem 2.6)

w0(cβ
· ) ≥ w0(c1· ) = w0(cγ

· ) = σ(cγ−1
· ) = max{σ(u), 0}

for all 0 < β < 1 and γ > 1, where the first inequality may be strict, and it may
happen that w0(c1· ) = 0 > w0(c0· ) = w0(u) > σ(u). Regarding the polynomial
growth orders, we see that if σ(u) ≤ 0 then the inequalities

(5) α0(a·) ≤ max{α0(cγ ′
· ),−1− γ ′} ≤ max{α0(cγ

· ),−1− γ}
hold for all 0 ≤ γ < γ ′ < ∞ (Corollary 2.8). In addition, if u is a positive function
in a Banach lattice then the equivalence

(6) sup
λ>0

‖λαaλ‖ < ∞ ⇔ sup
t>0

‖t−αc
γ
t ‖ < ∞

holds for all γ ≥ 1 whenever α > −2 (Corollary 2.10).
Two questions come up naturally: (A) When do the inequalities in (5) become

equalities and for what examples will some of the inequalities become strict? (B)
Does the equivalence in (6) hold for 0 ≤ γ < 1? To answer these questions, we turn
to consider in Sections 3 and 4 growth orders of means of a C0-semigroup (T (t))t≥0

of bounded linear operators on a Banach space X . In Section 3 we see that for
each integer k ≥ 1 there exists a C0-semigroup (T (t))t≥0 such that ‖Cn

t ‖ ∼ tk−n

(t → ∞) for n = 0, 1, . . . , k , ‖Cγ
t ‖ ∼ t−1 (t → ∞) for all γ ≥ k + 1 ,

‖Aλ‖ ∼ λ (λ ↓ 0) , supt>0 ‖Cγ
t ‖ < ∞ for all γ ≥ k, and supt>0 ‖Cγ

t ‖ = ∞ for
all γ with 0 ≤ γ < k (Theorems 3.4 and 3.5). Here, a(t) ∼ b(t) (t → ∞) [resp.
(t ↓ 0)] means that both the ratios a(t)/b(t) and b(t)/a(t) are bounded in some
interval (δ,∞) [resp. (0, δ)]. In Section 4 we see that for any 0 ≤ γ < 1 there
exists a C0-semigroup (T (t))t≥0 of positive linear operators on an L1-space such
that supt>0 ‖Cγ

t ‖ = ∞, but supt>0 ‖Cβ
t ‖ < ∞ for all β > γ and, in particular, the

Abel means of (T (t))t≥0 are uniformly bounded (Theorem 4.2).
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2. ESTIMATES OF GROWTH ORDERS

In this section we compare growth orders of the Cesàro means c
γ
t , with γ ≥ 0,

and the Abel means aλ (λ > max{σ(u), 0}) of a function u ∈ C([0,∞), X). To
do this we start with the following

Lemma 2.1. For all γ ≥ 0, the Laplace transform of k γ satisfies k̂γ(λ) =
λ−γ , λ > 0, and therefore k̂r+s = k̂rk̂s so that kr ∗ ks = kr+s for all r, s ≥ 0,
where kr ∗ ks denotes the convolution of k r and ks.

Proof. If γ = 0, then k̂0(λ) :=
∫∞
0 e−λt dδ0(t) = 1 = λ0 for all λ > 0. Next,

if γ > 0, then

k̂γ(λ) =
∫ ∞

0
e−λtkγ(t) dt =

1
Γ(γ)

∫ ∞

0
e−λttγ−1dt = λ−γ

for all λ > 0. Hence, for all λ > 0 and r, s ≥ 0, we have

k̂r+s(λ) = λ−r−s = λ−r · λ−s = k̂r(λ)k̂s(λ) = ̂(kr ∗ ks)(λ),

so that, by the uniqueness of the Laplace transform, kr ∗ ks = kr+s.

We first state results on exponential growth orders and their relations to the
abscissa of convergence.

Theorem 2.2. Let u ∈ C([0,∞), X) and γ ≥ 0. Then the following hold.

(i) ‖cγ+β
t ‖ ≤ sup

0≤s≤t
‖cγ

s‖ for all β > 0 and t > 0.

(ii) If ‖cγ
t ‖ ≤ Mewt for some M > 0 and w ≥ 0 and all t > 0, then ‖cγ+β

t ‖ ≤
Mewt for all β > 0 and t > 0. Thus max{w0(c

γ+β
· ), 0} ≤ max{w0(c

γ
· ), 0},

that is, the function γ �→ max{w0(c
γ
· ), 0} is non-increasing on [0,∞).

Proof. (i) Using Lemma 2.1 and (1), we can write

‖cγ+β
t ‖ = (kγ+β+1(t))−1‖(kγ+β ∗ u)(t)‖

= (kγ+β+1(t))−1‖(kβ ∗ kγ ∗ u)(t)‖
= (kγ+β+1(t))−1‖(kβ ∗ (kγ+1c

γ
· ))(t)‖

≤ (kγ+β+1(t))−1(kβ ∗ kγ+1)(t) sup
0≤s≤t

‖cγ
s‖

= sup
0≤s≤t

‖cγ
s‖.
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(ii) Note that ‖cγ
t ‖ = O(ewt) (t → ∞) is equivalent to ‖cγ

t ‖ ≤ Mewt for some
M > 0 and all t > 0 because u is assumed to be continuous on [0,∞).
Hence the assertion follows immediately from (i).

Theorem 2.3. Let u ∈ C([0,∞), X). Then the following hold.

(i) For all γ ≥ 0 we have

(2.1)
max{σ(cγ

· ), 0} = max{σ(kγ ∗ u), 0}
= max{w0(kγ+1 ∗ u), 0} = max{w0(cγ+1

· ), 0}.
Thus the function γ �→ max{σ(cγ

· ), 0} is non-increasing on [0,∞).

(ii) The identities

(2.2) aλ = λγ+1

∫ ∞

0
e−λt(kγ ∗ u)(t) dt = λγ+1

∫ ∞

0
e−λtkγ+1(t)c

γ
t dt

hold for all γ ≥ 0 and λ ∈ C with Reλ > max{σ(u), 0}.

Proof. (i) We first see that if p is a measurable function on (0,∞) such that
w0(p) = w0(1/p) = 0 then

(2.3) w0(pu) = w0(u)

for all u ∈ C([0,∞), X). In fact, it follows from w0(p) = 0 that w0(pu) ≤
w0(p) + w0(u) = w0(u). Similarly, w0(u) ≤ w0(pu) follows from w0(1/p) = 0.

Next, we see that if p is a differentiable function such that w0(p) = w0(p′) = 0
and if

∫ 1
0 ‖p(s)u(s)‖ ds < ∞, then

(2.4) σ(pu) ≤ σ(u).

In fact, the assumption implies that
∫ 1
0 e−λsp(s)u(s) ds exists for any λ. Take

any λ > σ(u). Then û(λ0) exists at some λ0 ∈ (σ(u), λ), so that the function
v(t) :=

∫ t
0 e−λ0su(s) ds is bounded on [0,∞). Using integration by parts, we have∫ t

1
e−λsp(s)u(s) ds =

∫ t

1
e−(λ−λ0)sp(s)e−λ0su(s) ds

= e−(λ−λ0)tp(t)v(t)− e−(λ−λ0)p(1)v(1)

+(λ − λ0)
∫ t

1
e−(λ−λ0)sp(s)v(s) ds

−
∫ t

1
e−(λ−λ0)sp′(s)v(s) ds
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for all t ≥ 1. Since v is bounded and w0(p) = w0(p′) = 0, it follows that∫∞
1 e−λsp(s)u(s) ds exists and∫ ∞

1
e−λsp(s)u(s) ds = −e−(λ−λ0)p(1)v(1) + (λ − λ0)

∫ ∞

1
e−(λ−λ0)sp(s)v(s) ds

−
∫ ∞

1
e−(λ−λ0)sp′(s)v(s) ds.

Hence (̂pu) (λ) exists. This shows σ(pu) ≤ σ(u).
Since w0(kβ) = w0(1/kβ) = w0(k

′
β) = w0((1/kβ)

′
) = 0,

∫ 1
0 ‖kβ(s)u(s)‖ ds <

∞ and
∫ 1
0 ‖(kβ−1 ∗ u)(s)/kβ(s)‖ ds =

∫ 1
0 ‖cβ−1

s ‖ ds < ∞ for all β ≥ 1 and
u ∈ C([0,∞), X), applications of (2.3) (with p = kγ+1) and (2.4) (with p = kγ+1

and p = 1/kγ+1) yield that

w0(cγ
· ) = w0(kγ+1c

γ
· ) = w0(kγ ∗ u),(2.5)

σ(cγ
· ) = σ((kγ ∗ u)/kγ+1) ≤ σ(kγ ∗ u) = σ(kγ+1c

γ
· ) ≤ σ(cγ

· )(2.6)

for all γ ≥ 0.
It is known (cf. [1, Theorem 1.4.3]) that u is Laplace transformable if and only

if 1∗u is exponentially bounded (i.e. σ(u) < ∞ if and only if w0(1∗u) < ∞), and
σ(u) ≤ λ ⇔ w0(1∗u) ≤ λ (if λ ≥ 0), that is, max{σ(u), 0} = max{w0(1∗u), 0}.
By this, together with (2.5) and (2.6), we deduce (2.1). Since max{w0(c

γ+1
· ), 0} is

known to be non-increasing on [0,∞) (by Theorem 2.2(ii)), max{σ(cγ· ), 0} is also
non-increasing on [0,∞).

(ii) Since the case γ = 0 is trivial, we consider the case γ > 0. Let λ ∈ C be
such that Reλ > max{σ(u), 0}. Then Reλ > σ(kγ ∗ u), and so∫ ∞

0
e−λt(kγ ∗ u)(t) dt = λ

∫ ∞

0
e−λt(1 ∗ (kγ ∗ u))(t) dt

= λ

∫ ∞

0
e−λt(kγ+1 ∗ u)(t) dt

(cf. the proof of Theorem 1.4.3 of [1]). Since Reλ > max{σ(u), 0} ≥ w0(1 ∗ u)
implies ∫ ∞

0
|e−λt| · ‖(1 ∗ u)(t)‖ dt < ∞,

we then apply Fubini’s theorem to obtain that
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λ

∫ ∞

0
e−λt(kγ+1 ∗ u)(t) dt = λ

∫ ∞

0
e−λt(kγ ∗ (1 ∗ u))(t) dt

= λ

∫ ∞

0

∫ t

0
e−λ(t−s)kγ(t − s)e−λs(1 ∗ u)(s) dsdt

= λ

∫ ∞

0
e−λtkγ(t) dt ·

∫ ∞

0
e−λs(1 ∗ u)(s) ds

= λ · λ−γ · λ−2aλ = λ−(γ+1)aλ.

Hence ∫ ∞

0
e−λt(kγ ∗ u)(t) dt = λ−(γ+1)aλ,

and this completes the proof.

Remark. There exists a u such that the function max{σ(cγ
· ), 0} is strictly

decreasing in the sense that max{σ0(c
γ
· ), 0} > max{σ0(c

γ′
· ), 0} for some γ′ > γ ≥

0. For example, if u(t) = et sin et + e2t cos et, then

(1 ∗ u)(t) = et sin et − sin 1, (k2 ∗ u)(t) = − cos et − t sin 1 + cos 1.

Thus w0(u) = 2, w0(c1· ) = w0(1 ∗ u) = 1 = σ(u) = σ(c0· ), and

w0(c2· ) = w0(k2 ∗ u) = 0 = σ(1 ∗ u) = σ(c1· ), sup
t>0

|c2t | < ∞, sup
t>0

t|c2t | < ∞.

It follows that σ(c0· ) = 1 > σ(c1· ) = 0.

Theorem 2.4. Let u ∈ C([0,∞), X). Then the following hold.

(i) If 0 ≤ σ(u) < w < ∞, then supλ>w ‖aλ‖ < ∞.
(ii) If σ(u) < 0, then supλ>0 ‖λ−1aλ‖ < ∞ and supλ>0 ‖aλ‖ < ∞.

Proof. (i) Choose δ ∈ R such that σ(u) < δ < w. Then δ > σ(u) =
max{σ(u), 0} = max{w0(k1 ∗ u), 0}, and so there exists Mδ > 0 such that ‖(k1 ∗
u)(t)‖ ≤ Mδe

δt for all t ≥ 0. Put u1(t) = χ[1,∞)(t)u(t), F1 =
∫ 1
0 u(s) ds, and

M(1) = max0≤t≤1 ‖u(t)‖. Then

(k1 ∗ u1)(t) =

{
0 if 0 ≤ t ≤ 1,

(k1 ∗ u)(t) − F1 if t > 1.

Thus, for all λ > w,

aλ = λ

∫ ∞

0
e−λtu(t) dt = λ

(∫ 1

0
+

∫ ∞

1

)
e−λtu(t) dt = I + II,
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where

‖I‖ ≤ λ

∫ 1

0

e−λtM(1) dt ≤ M(1),

and by Theorem 2.3(ii)

II = λ

∫ ∞

0
e−λtu1(t) dt = λ2

∫ ∞

0
e−λt(k1 ∗ u1)(t) dt

= λ2

∫ ∞

1

e−λt((k1 ∗ u)(t)− F1) dt,

whence

‖II‖ ≤ λ2

∫ ∞

1

e−(λ−δ)tMδ dt + ‖F1‖ λ2 · e−λ

λ

≤ Mδ
λ2

λ − δ
e−(λ−δ) + ‖F1‖λe−λ → 0 as λ → ∞.

Therefore, lim supλ→∞ ‖aλ‖ < ∞. On the other hand, since

‖aλ‖ = λ2

∥∥∥∥∫ ∞

0
e−λt(k1 ∗ u)(t)dt

∥∥∥∥
≤ Mδλ

2

∫ ∞

0

e−(λ−δ)tdt = Mδλ
2(λ − δ)−1,

it follows that lim supλ↓w ‖aλ‖ ≤ Mδw
2(w − δ)−1. Hence, supλ>w ‖aλ‖ < ∞.

(ii) If σ(u) < 0, then, by Theorem 2.3(ii),

aλ = λ

∫ ∞

0
e−λtu(t) dt = λ2

∫ ∞

0
e−λt(1 ∗ u)(t) dt

for all λ > 0. Since the hypothesis σ(u) < 0 implies that limt→∞(1 ∗ u)(t) =∫∞
0 u(s) ds exists, it follows that M := supt>0 ‖(1 ∗ u)(t)‖ < ∞. Hence

‖aλ‖ ≤ λ2

∫ ∞

0

e−λtM dt = Mλ

for all λ > 0. By this and the proof of (i) we also have supλ>0 ‖aλ‖ < ∞.
The proof is complete.

Remarks. (1) The hypothesis 0 ≤ σ(u) < w < ∞ cannot be sharpened as
0 ≤ σ(u) = w < ∞ in Theorem 2.4(i). To see this, let λ0 ≥ 0 and define
u(s) := eλ0ss for s ≥ 0. Then σ(u) = λ0 and, for all λ > λ0, we have

aλ = λ

∫ ∞

0
e−λsu(s) ds = λ

∫ ∞

0
e−(λ−λ0)ss ds =

λ

(λ − λ0)2
.
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Since limλ↓λ0 λ(λ − λ0)−2 = ∞, it follows that supλ>λ0
‖aλ‖ = ∞.

(2) As for Theorem 2.4(ii) we note that α0(a·) < −1 cannot be expected in
general. To see this, let u(t) := max{2 − t, 0} for t ≥ 0. Then u ∈ C([0,∞), R)
and w0(u) = α0(u) = −∞. Since u(t) ≥ 1 on [0, 1], it follows that aλ ≥
λ
∫ 1
0 e−λt dt for all λ > 0. Since limλ↓0

∫ 1
0 e−λt dt = 1, it follows from Theorem

2.4(ii) that α0(a·) = −1. (See also Corollary 2.10(ii).)

We will see that if u ∈ C([0,∞), X) is a positive function in a Banach lattice
X , then the function γ �→ max{σ(cγ· ), 0} is constant on [0,∞) (Theorem 2.6). To
prove this we use the following lemma, which is stated in more general form than
needed here.

Lemma 2.5. Let X be a Banach lattice, and u : (0, ∞) → X be a positive
X-valued strongly measurable function on (0, ∞) such that

∫ b
a ‖u(t)‖ dt < ∞ for

all 0 < a < b < ∞ and
∫ 1
0 u(t) dt := limε↓0

∫ 1
ε u(t) dt exists. Let λ > 0, γ > 0

and x ∈ X . Then∫ ∞

0
e−λtu(t) dt

(
:= lim

b→∞

∫ b

0
e−λtu(t) dt

)
= x

if and only if

λγ

∫ ∞

0
e−λt(kγ ∗ u)(t) dt = x.

Hence max{σ(u), 0} = max{σ(kγ ∗ u), 0}.

Proof. It is immediate that (kγ ∗ u)(t) exists for almost all t > 0 and the
mapping t �→ (kγ ∗u)(t) becomes a positive X-valued strongly measurable function
on (0,∞). In order to prove the lemma it is necessary to show that

∫ 1
0 (kγ∗u)(t) dt =

limε↓0
∫ 1
ε (kγ ∗ u)(t) dt exists. To do this, let 0 < δ < ε. Then we have∫ ε

δ
(kγ ∗ u)(t) dt

=
∫ ε

δ

{∫ t

0
kγ(t − s)u(s)ds

}
dt

= lim
η↓0

∫ ε

δ

{∫ t

η
kγ(t − s)u(s)ds

}
dt

= lim
η↓0

∫ δ

η

{∫ ε

δ
kγ(t − s)dt

}
u(s) ds +

∫ ε

δ

{∫ ε

s
kγ(t − s)dt

}
u(s) ds

(by Fubini′s theorem)

=
∫ δ

0

{∫ ε

δ
kγ(t − s)dt

}
u(s) ds +

∫ ε

δ

{∫ ε

s
kγ(t − s) dt

}
u(s) ds.
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For any η > 0 we can choose ε∼ > 0 so that∫ ε∼

0
kγ(s) ds < η and

∥∥∥∥∫ ε∼

0
u(s) ds

∥∥∥∥ < η.

Then, for 0 < δ < ε < ε∼ we have∥∥∥∥∫ ε

δ
(kγ ∗ u) (t)dt

∥∥∥∥ ≤
∥∥∥∥∫ δ

0

{∫ ε

δ
kγ(t − s) dt

}
u(s) ds

∥∥∥∥
+

∥∥∥∥∫ ε

δ

{∫ ε

s
kγ(t − s)dt

}
u(s) ds

∥∥∥∥
< η

∥∥∥∥∫ δ

0
u(s) ds

∥∥∥∥+ η

∥∥∥∥∫ ε

δ
u(s) ds

∥∥∥∥ < 2η2.

This implies that ‖ ∫ ε
δ (kγ ∗ u)(t) dt‖ → 0 as ε ↓ 0 with 0 < δ < ε. Hence∫ 1

0 (kγ ∗ u)(t) dt = limε↓0
∫ 1
ε (kγ ∗ u)(s) ds exists.

Suppose
∫∞
0 e−λtu(t) dt = x. We first prove that

weak- lim
b→∞

λγ

∫ b

0
e−λt(kγ ∗ u)(t) dt = x.

Let x∗ be any element of X∗, where X∗ denotes the dual space of X . It suffices
to show that

λγ

∫ ∞

0

e−λt〈(kγ ∗ u)(t), x∗〉 dt = lim
b→∞

λγ

∫ b

0

e−λt〈(kγ ∗ u)(t), x∗〉 dt = 〈x, x∗〉.

Here, if necessary, we may consider the real part of x∗ without loss of generality.
Thus we may assume that x∗ is a real-linear functional on X . Then x∗ can be
written as x∗ = x∗

1−x∗
2, where x∗

1 and x∗
2 are positive real-linear functionals on X .

Therefore, from the first, we may assume that x∗ is a positive real-linear functional
on X . Then, since 〈u(t), x∗〉 ≥ 0 for all t ≥ 0 and

∫ ∞
0 e−λt〈u(t), x∗〉 dt = 〈x, x∗〉,

Fubini’s theorem implies that

λγ

∫ ∞

0
e−λt〈(kγ ∗ u)(t), x∗〉 dt

= λγ

∫ ∞

0

∫ t

0
e−λ(t−s)kγ(t − s)e−λs〈u(s), x∗〉 dsdt

= λγ

∫ ∞

0
e−λtkγ(t) dt ·

∫ ∞

0
e−λs〈u(s), x∗〉 ds

= λγ λ−γ ·
∫ ∞

0
e−λs〈u(s), x∗〉 ds = 〈x, x∗〉.
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Hence λγ
∫ b
0 e−λt(kγ ∗ u)(t) dt ≤ x for all b > 0, and

weak- lim
b→∞

λγ

∫ b

0

e−λt(kγ ∗ u)(t) dt = x.

By this together with the fact that the weak closure and the strong closure of a
convex subset of X are identical, given ε > 0 and G > 0, we can choose bj > G

and cj > 0 (j = 1, 2, . . . , n) such that
∑n

j=1 cj = 1 and∥∥∥∥∥∥x − λγ
n∑

j=1

cj

∫ bj

0

e−λt(kγ ∗ u)(t) dt

∥∥∥∥∥∥ < ε.

Then, for all b > max{b1, b2, . . . , bn}, we have

λγ
n∑

j=1

cj

∫ bj

0

e−λt(kγ ∗ u)(t) dt ≤ λγ

∫ b

0

e−λt(kγ ∗ u)(t) dt ≤ x,

and thus

∥∥∥∥x − λγ

∫ b

0
e−λt(kγ ∗ u)(t) dt

∥∥∥∥ ≤
∥∥∥∥∥∥x − λγ

n∑
j=1

cj

∫ bj

0
e−λt(kγ ∗ u)(t) dt

∥∥∥∥∥∥ < ε,

which proves that λγ
∫∞
0 e−λt(kγ ∗ u)(t) dt = x.

The converse implication is also proved by the same argument, and hence we
omit the details.

Theorem 2.6. Let X be a Banach lattice and 0 
= u ∈ C([0, ∞), X) be a
positive X-valued function. Then σ(cγ· ) = σ(u) for all γ > 0 if σ(u) > 0, and
σ(cγ

· ) = 0 for all γ > 0 if σ(u) ≤ 0.

Proof. Suppose σ(u) > 0. Then it follows from (2.6) and Lemma 2.5
that σ(cγ

· ) = σ(kγ ∗ u) = σ(u) > 0 for all γ > 0. Next, suppose σ(u) ≤ 0
and γ > 0. Then, since u 
= 0 by hypothesis, it follows that

∫∞
0 e−λtu(t) dt ≥∫ ∞

0 e−βtu(t) dt > 0 for all β > λ > 0. Therefore Lemma 2.5 yields

lim
λ↓0

∥∥∥∥∫ ∞

0
e−λt(kγ ∗ u)(t) dt

∥∥∥∥ = lim
λ↓0

λ−γ

∥∥∥∥∫ ∞

0
e−λtu(t) dt

∥∥∥∥ = ∞,

which proves that σ(cγ
· ) = σ(kγ ∗ u) = 0.
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Remark. Let u 
= 0 be a positive function. Then, by Theorems 2.6 and 2.3,
max{w0(c1· ), 0} = max{σ(u), 0} = σ(cγ−1

· ) = max{w0(c
γ
· ), 0} for all γ > 1.

Further, there exists K > 0 such that
∫ K
0 u(s) ds > 0. Thus, if 0 < γ ≤ 1, then

c
γ
t =

γ

tγ

∫ t

0
(t − s)γ−1u(s) ds ≥ γ

tγ
· tγ−1

∫ t

0
u(s) ds ≥ γ

t

∫ K

0
u(s) ds 
= 0

for all t > K, which implies w0(c
γ
· ) ≥ 0. By a similar calculation, if γ > 1 then

w0(c
γ· ) ≥ 0. Thus, by Theorem 2.2, the function γ �→ w0(c

γ· ) is non-increasing on
(0,∞), and w0(c

γ
· ) = max{σ(u), 0} for all γ ≥ 1. (It may happen that w0(c1· ) =

0 > w0(c0· ) = w0(u) > σ(u) for some positive u 
= 0.) Here we note that, for any
given 0 < γ ≤ 1, there exists a positive u 
= 0 such that σ(u) = 1 − 1/γ ≤ 0, and

(2.7) w0(cβ
· ) =

{
1− β/γ if 0 ≤ β ≤ γ,

0 if β ≥ γ.

We give an example showing this.

Example 1. Let N : N → N be a strictly increasing function such that

(2.8) lim
n→∞

n

N (n)
= 0, and lim

n→∞
N (n + 1)

N (n)
= 1

(e.g. N (n) = n2 satisfies (2.8)). For n ∈ N, define δn with 0 < δn < 1 by

(2.9)
∫ N(n)

N(n)−δn

(N (n)− s)γ−1esds = 1/2n.

A simple calculation yields that

(2.10) δn ∼ exp{−(N (n) + n ln 2)/γ} (n ≥ 1),

where a(n) ∼ b(n) (n ≥ 1) means again that both the ratios a(n)/b(n) and
b(n)/a(n) are bounded on N.

Define

A :=
∞⋃

n=1

[N (n)− δn, N (n)), and u(s) := χA(s)es (s ≥ 0).

Thus u is a nonnegative function on [0,∞). Although u is not a continuous function,
c
β
t = c

β
t (u) can be defined as in (1) for all β ≥ 0 and t ≥ 0. First we prove that u

satisfies (2.7). The following is a sketch of the proof.
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Since sγ−1 is a non-increasing function on [0,∞), it follows from (2.9) that for
N (n) < t < N (n + 1) we have

c
γ
t ≤ γ

tγ

n+1∑
k=1

∫ N(k)

N(k)−δk

(N (k)− s)γ−1esds =
γ

tγ

n+1∑
k=1

1
2k

≤ γ

tγ
,

which tends to 0 as t → ∞. Hence w0(c
γ
· ) = 0, and so w0(c

β
· ) = 0 for all β ≥ γ .

On the other hand, w0(c0· ) = w0(u) = 1 is obvious from the definition of u.
Suppose 0 < β < γ . For N (n) < t < N (n + 1) we have

(2.11) c
β
t ≤ β

N (n)β

n+1∑
k=1

∫ N(k)

N(k)−δk

(N (k)− s)β−1es ds,

where by (2.10) ∫ N(k)

N(k)−δk

(N (k)− s)β−1es ds ∼ eN(k)δβ
k

∼ exp
{
N (k)

((
1 − β

γ

)
− β

γ
· k

N (k)
ln 2

)}
(k ≥ 1),

and by (2.8)

lim
k→∞

((
1 − β

γ

)
− β

γ
· k

N (k)
ln 2

)
= 1 − β

γ
> 0.

Thus, if D > 1 − β/γ is fixed, then for all sufficiently large k

eN(k)δβ
k ≤ exp(N (k)D).

Therefore
β

N (n)β

n+1∑
k=1

∫ N(k)

N(k)−δk

(N (k)− s)β−1es ds

= O(1) · β

N (n)β

N(n+1)∑
k=1

ekD

≤ O(1) · β

N (n)β
· 1
D

exp{(N (n + 1) + 1)D}

= o(1) · exp
{

tD · N (n + 1) + 1
t

}
.

Since
lim
t→∞

N (n + 1) + 1
t

= lim
n→∞

N (n + 1) + 1
N (n)

= 1 (by (2.8)),
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it follows from (2.11) that w0(c
β
· ) ≤ D for all D > 1 − β/γ so that

w0(cβ
· ) ≤ 1 − β/γ.

Similarly the reverse inequality follows, and hence (2.7) follows for u. By (2.10) we
also have

∫∞
0 e−ηsu(s) ds =

∑∞
n=1

∫ N(n)
N(n)−δn

e(1−η)s ds < ∞ if (1−η)−1/γ < 0,
and

∫ ∞
0 e−ηsu(s) ds = ∞ if (1 − η)− 1/γ > 0. Thus σ(u) = 1 − 1/γ . By using

this, it is now easy to find a continous u on [0,∞) satisfying σ(u) = 1 − 1/γ and
(2.7). We may omit the details.

Next we turn to polynomial growth orders.

Theorem 2.7. Let u ∈ C([0,∞), X) and γ ≥ 0. Then the following hold.

(i) If there exist M > 0 and α > −1 − γ such that ‖cγ
t ‖ ≤ Mtα for all t > 0,

then

(2.12) ‖cγ+β
t ‖ ≤ M

Γ(γ + α + 1)
Γ(γ + 1)

Γ(γ + β + 1)
Γ(γ + β + α + 1)

tα

for all β > 0 and t > 0; for the case α ≥ 0, the right hand side of (2.12) is
less than or equal to Mtα.

(ii) If, in addition to the assumption of (i), σ(u) ≤ 0, then, for all λ > 0,

(2.13) ‖aλ‖ ≤ M
Γ(γ + α + 1)

Γ(γ + 1)
λ−α.

Proof. (i) Since the assumption implies

kγ+1(t)‖cγ
t ‖ ≤ tγ

Γ(γ + 1)
Mtα = M

Γ(γ + α + 1)
Γ(γ + 1)

kγ+α+1(t)

for all t > 0, it follows that

‖cγ+β
t ‖ = ‖(kγ+β+1(t))−1(kβ ∗ (kγ+1c

γ
· ))(t)‖ (cf. the proof of Theorem 2.2(i))

≤ M
Γ(γ + α + 1)

Γ(γ + 1)
Γ(γ + β + 1)

tγ+β
(kβ ∗ kγ+α+1)(t)

= M
Γ(γ + α + 1)

Γ(γ + 1)
Γ(γ + β + 1)

tγ+β
kγ+β+α+1(t)

= M
Γ(γ + α + 1)

Γ(γ + 1)
Γ(γ + β + 1)

Γ(γ + β + α + 1)
tα
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for all t > 0.
Since f(·) := ln Γ(·) is a convex function on the interval (0, ∞) (cf. e.g. [2],

[13, p. 251]), for α, β, γ ≥ 0, we obtain

ln
(

Γ(γ + α + 1)
Γ(γ + 1)

)
≤ ln

(
Γ(γ + β + α + 1)

Γ(γ + β + 1)

)
.

Since ln(·) is an increasing function, it follows that

Γ(γ + α + 1)
Γ(γ + 1)

Γ(γ + β + 1)
Γ(γ + β + α + 1)

≤ 1 (α, β, γ ≥ 0),

which implies that the right hand side of (2.12) is less than or equal to Mtα when
α ≥ 0.

(ii) Since σ(u) ≤ 0, we can apply Theorem 2.3(ii) and then use ‖cγ
t ‖ ≤ Mtα

for all t > 0 to obtain the following estimation for all λ > 0:

‖aλ‖ = λγ+1

∥∥∥∥∫ ∞

0
e−λtkγ+1(t)c

γ
t dt

∥∥∥∥ ≤ λγ+1

∫ ∞

0
e−λtkγ+1(t)‖cγ

t ‖ dt

= λγ+1M
Γ(γ + α + 1)

Γ(γ + 1)

∫ ∞

0
e−λtkγ+α+1(t) dt

= λγ+1M
Γ(γ + α + 1)

Γ(γ + 1)
λ−(γ+α+1) = M

Γ(γ + α + 1)
Γ(γ + 1)

λ−α.

Corollary 2.8. Let γ ≥ 0 and u ∈ C([0, ∞), X). Then the following hold.

(i) If α > −1− γ and ‖cγ
t ‖ = O(tα) as t → ∞, then ‖cγ′

t ‖ = O(tα) as t → ∞
for all γ ′ > γ; in addition, if σ(u) ≤ 0, then ‖aλ‖ = O(λ−α) as λ ↓ 0.

(ii) If γ ′ > γ , then

(2.14) α0(cγ′
· ) ≤ max{α0(cγ

· ), −1 − γ}.

In addition, if σ(u) ≤ 0, then

(2.15) α0(a·) ≤ max{α0(cγ
· ), −1 − γ}.

Proof. (i) Let γ ′ > γ . By the assumption we can choose two constants M > 0
and A > 0 so that ‖cγ

t ‖ ≤ Mtα for all t ≥ A. Then, putting B = ‖cγ
t χ[0, A](t)‖∞

(< ∞ because u is assumed to be continuous on [0,∞)), we have

(2.16) ‖cγ
t ‖ ≤ Mtα + Bχ[0, A](t) (t > 0).
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Noting the identity c
γ′
t = (kγ′+1(t))−1[kγ′−γ ∗ (kγ+1c

γ
· )](t), and using (2.16) to-

gether with the proof of Theorem 2.7(i), we have

‖cγ′
t ‖ ≤ (kγ′+1(t)−1[kγ′−γ ∗ (kγ+1‖cγ

· ‖)](t)

≤ M
Γ(γ + α + 1)

Γ(γ + 1)
Γ(γ ′ + 1)

Γ(γ ′ + α + 1)
tα

+
Γ(γ ′ + 1)

tγ
′

∫ t

0

(t − s)γ′−γ−1sγ

Γ(γ ′ − γ)Γ(γ + 1)
Bχ[0, A](s)ds

≤ M1t
α +

Γ(γ ′ + 1)
tγ′

BAγ+1

Γ(γ ′ − γ)Γ(γ + 2)
tγ

′−γ(t − A)−1

≤ M1t
α +

2Γ(γ ′ + 1)BAγ+1

Γ(γ ′ − γ)Γ(γ + 2)
t−γ−1 (for all t > 2A).

Since α > −1 − γ , this shows that ‖cγ′
t ‖ = O(tα) as t → ∞.

Next, suppose σ(u) ≤ 0. Using (2.16) together with the proof of Theorem
2.7(ii), we obtain

‖aλ‖ ≤ M
Γ(γ + α + 1)

Γ(γ + 1)
λ−α + λγ+1B

∫ A

0

kγ+1(t) dt

for all λ > 0, where

B

∫ A

0

(kγ+1)(t) dt = Bkγ+2(A).

Since α + γ + 1 > 0 implies λ−α > λγ+1 for 0 < λ < 1, it follows that

‖aλ‖ ≤
(

M
Γ(γ + α + 1)

Γ(γ + 1)
+ Bkγ+2(A)

)
λ−α (0 < λ < 1).

(ii) This is an immediate consequence of (i).

Remarks. (1) The existence of M > 0 and α > −1−γ such that ‖cγ
t ‖ ≤ Mtα

for all t > 0 does not imply σ(u) ≤ 0, when γ > 1. For example, the function u

as considered in the Remark under Theorem 2.3 satisfies ‖c2
t‖ ≤ M for all t > 0,

but σ(u) = 1. On the other hand, it follows from Theorems 2.2 and 2.3 that if
0 ≤ γ ≤ 1 and ‖cγ

t ‖ = O(tα) as t → ∞, then σ(u) ≤ 0.
(2) When u 
= 0 is a positive function in a Banach lattice X , the condition

‖cγ
t ‖ = O(tα) as t → ∞, where α ∈ R, does imply σ(u) ≤ 0, and thus the

assumption σ(u) ≤ 0 can be omitted from Theorem 2.7 and Corollary 2.8. For, the
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condition ‖cγ
t ‖ = O(tα) as t → ∞ implies w0(c

γ
· ) ≤ 0, and thus, by the Remark

under Theorem 2.6,

σ(u) ≤ max{σ(u), 0} = w0(cγ+1
· ) ≤ w0(cγ

· ) ≤ 0.

(3) Inequalities (2.14) and (2.15) are sharp. Here is an example:

Example 2. Define a positive function u ∈ C([0, ∞), R) by u(t) := max{1−
t, 0} for t ≥ 0. Then w0(u) = α0(u) = −∞; and by an easy calculation together
with the binomial expansion (1+t)γ+1 = 1+

∑∞
n=1(γ+1)γ . . . (γ+1−n+1)tn/n!

for t ∈ C with |t| < 1, we obtain that, for all γ > 0 and t > 1,

c
γ
t =

γ

tγ

∫ 1

0
(t − s)γ−1(1 − s) ds = 1 +

t

γ + 1

{
(1 − 1/t)γ+1 − 1

}
,

=
γ

2
1
t

(1 + o(1)) as t → ∞,

and

aλ = λ

∫ 1

0
e−λs(1− s) ds = 1− (1− e−λ)/λ for all λ > 0.

It follows that w0(c
γ
· ) = 0 and α0(c

γ
· ) = −1 for all γ > 0. Since limλ↓0 λ−1aλ =

limλ↓0 λ−1 − (1 − e−λ)λ−2 = 2−1, it also follows that aλ = 2−1λ(1 + o(1)) as
λ ↓ 0, and hence α0(a·) = −1. Thus, both (2.14) and (2.15) become α0(c

γ′
· ) =

α0(a·) = −1 = max{α0(c
γ
· ),−1− γ} for all γ ′ > γ ≥ 0.

(4) Let λ0 > 0. Then the function u1(t) := tλ0−1 for t ≥ 0 satisfies

c
γ
t (u1) =

γ

tγ

∫ t

0

(t − s)γ−1sλ0−1 ds

= γ tλ0−1

∫ 1

0
(1− s)γ−1sλ0−1 ds = γ tλ0−1B(γ, λ0)

for all γ > 0 and t > 0. Further we have

aλ(u1) = λ

∫ ∞

0
e−λttλ0−1 dt = λ−(λ0−1)

∫ ∞

0
e−ttλ0−1 dt = λ−(λ0−1)Γ(λ0)

for all λ > 0. Thus we have α0(c
γ
· (u1)) = α0(u1) = λ0 − 1 = α0(a·(u1)) for all

γ > 0. Of course this is a special case. In general the function γ �→ α0(c
γ· ) is not

constant on [0,∞). To understand this situation, we give the following example.

Example 3. Define u2(t) := χ[0,2π](t) sin t for t ≥ 0. Then α0(a·(u2)) =
−2 = α0(c

γ
· (u2)) for all γ ∈ [0,∞) \ {0, 1} and α0(c0· (u2)) = α0(c1· (u2)) = −∞.



1218 Jeng-Chung Chen, Ryotaro Sato and Sen-Yen Shaw

To see this we first notice from the definition of u2 that α0(c0· (u2)) = α0(c1· (u2)) =
−∞. Next by an elementary calculation we obtain

aλ(u2) =
λ(1− e−2πλ)

1 + λ2

for all λ > 0. It follows that limλ↓0 λ−2aλ = 2π and α0(a·(u2)) = −2. Since
α0(c1· (u2)) = −∞, it then follows from Corollary 2.8 that α0(c

γ
· (u2)) = −2 for all

γ > 1. Finally, suppose 0 < γ < 1. Then, for all t > 2π, we have

−c
γ
t (u2) =

−γ

tγ

∫ 2π

0
(t − s)γ−1 sin s ds

=
−γ

tγ

∫ π

0

(
(t − s)γ−1 − (t − π − s)γ−1

)
sin s ds

≤ γ

tγ

∫ π

0

{
(t − π − s)γ−1 − (t − s)γ−1

}
ds

=
1
tγ

{
2(t − π)γ − (t − 2π)γ − tγ

}
= 2(1− π/t)γ − (1− 2π/t)γ − 1

= −γ(γ − 1)π2 1
t2

(1 + o(1)) as t → ∞.

Similarly, if 0 < δ < π/2, then

−c
γ
t (u2) ≥ γ

tγ
sin δ

∫ π−δ

δ

{
(t − π − s)γ−1 − (t − s)γ−1

}
ds

=
sin δ

tγ

{(
(t − π − δ)γ − (t − 2π + δ)γ

)
−

(
(t − δ)γ − (t − π + δ)γ

)}
= −γ(γ − 1)π(π − 2δ) sinδ

1
t2

(1 + o(1)) as t → ∞.

Hence it follows that α0(c
γ· (u2)) = −2 for all 0 < γ < 1.

It is interesting to note that if u3(t) := sin t for t ≥ 0, then α0(a·(u3)) = −1 =
α0(c

γ
· (u3)) for all γ ≥ 1 and α0(c

γ
· (u3)) = −γ for all 0 ≤ γ ≤ 1. This can be

proved by a similar calculation.

Theorem 2.9. Let X be a Banach lattice and u ∈ C([0, ∞), X) be a positive
X-valued function. Let γ ≥ 1 and α > −1 − γ . Then

(i) supt>0 ‖t−αc
γ
t ‖ < ∞ if and only if σ(u) ≤ 0 and supλ>0 ‖λαaλ‖ < ∞;

(ii) ‖cγ
t ‖ = O(tα) as t → ∞ if and only if σ(u) ≤ 0 and ‖aλ‖ = O(λ−α) as

λ ↓ 0.
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Proof. Each of the first conditions of (i) and (ii) implies σ(u) ≤ 0, as was
observed in the above Remark (2), so that the necessity parts of (i) and (ii) follow
from Theorem 2.7(ii) and Corollary 2.8(i), respectively.

To show the sufficiency part of (i), suppose λα‖aλ‖ ≤ M for all λ > 0. By
Theorem 2.3(ii) for all λ > 0 we have

λαaλ = λα+γ

∫ ∞

0
e−λs(kγ−1 ∗ u)(s) ds.

Since u is positive, it follows that

λαaλ ≥ λα+γ

∫ t

0
e−λs(kγ−1 ∗ u)(s) ds

≥ λα+γe−λt(kγ ∗ u)(t) = λα+γe−λtkγ+1(t)c
γ
t ≥ 0.

Here, fix any t > 0 and let λ = 1/t. Then we obtain that t−α‖cγ
t ‖ ≤ MeΓ(γ + 1)

for all t > 0, i.e., that supt>0 ‖t−αc
γ
t ‖ < ∞. This proof also shows the sufficiency

part of (ii), since λ = 1/t ↓ 0 is equivalent to t → ∞.

Corollary 2.10. Let X be a Banach lattice and u ∈ C([0, ∞), X) be a positive
X-valued function. Then the following hold.

(i) If γ ≥ 1 and α > −2, then

sup
t>0

‖t−αc
γ
t ‖ < ∞ ⇔ sup

t>0
‖t−αc1t ‖ < ∞ ⇔ σ(u) ≤ 0 and sup

λ>0
‖λαaλ‖ < ∞.

(ii) If u 
= 0 and σ(u) ≤ 0, then α0(c
γ
· ) = α0(a·) ≥ −1 for all γ ≥ 1.

Proof. (i)This is direct from Theorem 2.9(i).

(ii) For all λ > 0 we have

aλ = λ

∫ ∞

0
e−λtu(t) dt ≥ λ

∫ K

0
e−λtu(t) dt ≥ λe−λK

∫ K

0
u(t) dt ≥ 0,

and the hypothesis u 
= 0 implies

lim
λ↓0

e−λK

∫ K

0
u(t) dt =

∫ K

0
u(t) dt > 0

for some K > 0. Thus it follows that α0(a·) ≥ −1. By this and Theorem
2.9(ii), we see that α0(c

γ
· ) = α0(a·) ≥ −1 for all γ ≥ 1 .
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Remark. If the positivity of u ∈ C([0, ∞), X) is not assumed, then Theorem
2.9 and Corollary 2.10 do not hold. This can be seen in Section 3. Further, we note
that the hypothesis γ ≥ 1 is essential in Theorem 2.9 and Corollary 2.10. This can
be seen in Section 4.

3. GROWTH ORDERS OF MEANS OF C0-SEMIGROUPS

In this section we consider the case u(t) = T (t)x, where (T (t))t≥0 is a C0-
semigroup of bounded linear operators on a Banach space X and x ∈ X . We
recall that in this case the notations C γ

t x and Aλx are used instead of c
γ
t (T (·)x)

and aλ(T (·)x), respectively. Further we use the notations Cγ
t and Aλ to denote

bounded linear operators on X defined as C0
t := T (t) (t ≥ 0), Cγ

0 := T (0), and
for γ, t > 0, x ∈ X ,

Cγ
t x = γt−γ

(∫ t

0
(t − s)γ−1T (s) ds

)
x := γt−γ

∫ t

0
(t − s)γ−1T (s)x ds,

and for λ ∈ C with Reλ > 0,

Aλx = λ

(∫ ∞

0

e−λsT (s) ds

)
x := λ lim

t→∞

∫ t

0

e−λsT (s)x ds (x ∈ X)

if the limit exists for all x ∈ X . The abscissa of convergence σ(T (·)) of the Laplace
integral

(∫ ∞
0 e−λsT (s) ds

)
x := limt→∞

∫ t
0 e−λsT (s)x ds of (T (t))t≥0 is defined

as

σ(T (·)) := inf
{

Reλ : lim
t→∞

∫ t

0
e−λsT (s)x ds exists for all x ∈ X

}
(3.1)

= sup {σ(T (·)x) : x ∈ X}.
It follows from the uniform boundedness principle that ‖T (t)‖ = O(ewt) as t → ∞
if and only if ‖T (t)x‖ = O(ewt) as t → ∞ for all x ∈ X , whence

(3.2) w0(T (·)) = sup {w0(T (·)x) : x ∈ X}.
Similarly, ‖T (t)‖ = O(tα) as t → ∞ if and only if ‖T (t)x‖ = O(tα) as t → ∞
for all x ∈ X ; and

(3.3) α0(T (·)) = sup {α0(T (·)x) : x ∈ X}.
If σ(T (·)) ≤ 0, then ‖Aλ‖ = O(λ−α) as λ ↓ 0 if and only if ‖Aλx‖ = O(λ−α) as
λ ↓ 0 for all x ∈ X ; and

(3.4) α0(A·) = sup {α0(A·x) : x ∈ X}.
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It is clear that σ(T (·)) ≤ w0(T (·)). We also note (see e.g. [1, Section 5.1]) that if
λ ∈ C satisfies Reλ > σ(T (·)), then λ−A is invertible and (λ−A)−1 is a bounded
operator on X (i.e. λ ∈ ρ(A)), and (λ − A)−1 =

∫∞
0 e−λsT (s) ds, where A and

ρ(A) denote the generator of (T (t))t≥0 and the resolvent set of A, respectively.
Thus if Reλ > max{σ(T (·)), 0}, then λ(λ−A)−1 = Aλ. We mainly consider Aλ

with λ ∈ R such that λ > max{σ(T (·)), 0}.
We are interested in the question when one of the inequalities in (5) becomes

an equality and for what examples it is a strict inequality. First, a consequence of
Theorem 2.2(ii) and Corollary 2.8(ii) is stated as follows.

Theorem 3.1. The following hold for all 0 ≤ γ < γ ′ < ∞.

(i) max{w0(C
γ′
· ), 0} ≤ max{w0(C

γ
· ), 0}.

(ii) α0(C
γ′
· ) ≤ max{α0(C

γ
· ), −1−γ}; in addition, if σ(T (·)) ≤ 0, then α0(A·) ≤

max{α0(C
γ
· ), −1 − γ}.

Remark. By Theorem 2.4, together with the uniform boundedness principle, (i)
if σ(T (·)) = 0, then supλ>w ‖Aλ‖ = supλ>w ‖λ(λ − A)−1‖ < ∞ for all w > 0;
(ii) if σ(T (·)) < 0, then supλ>0 ‖(1 + λ)(λ−A)−1‖ < ∞. As for (i) we note that
the inequality supλ>w ‖Aλ‖ < ∞ may fail to hold when w > 0 is repalced with
w = 0. A counterexample can be found in the proof of Proposition 2.5 of [8].

Theorem 3.2. Suppose dim X = 2. Then for a C0-semigroup (T (t))t≥0 on X
such that σ(T (·)) ≤ 0, the following hold.

(i) ‖T (t)‖ = O(t) as t → ∞, ‖C1
t ‖ = O(t) as t → ∞, and ‖Aλ‖ = O(λ−1)

as λ ↓ 0.
(ii) If 0 ≤ α < 1, then ‖C1

t ‖ = O(tα) as t → ∞ is equivalent to ‖Aλ‖ =
O(λ−α) as λ ↓ 0, which is also equivalent to ‖C γ

t ‖ = O(tα) as t → ∞
for any γ > 1. Hence, in particular, (T (t))t≥0 is Abel-mean-bounded if and
only if it is γ-Cesàro-mean-bounded for any γ ≥ 1.

Proof. Since dim X = 2 implies w0(T (·)) = σ(T (·)) ≤ 0, (i) and the
first part of (ii) have been proved in Proposition 2.5 of [8]. Also it follows from
Corollary 2.8(i) that, for all γ > 1,

‖C1
t ‖ = O(tα) (t → ∞) ⇒ ‖Cγ

t ‖ = O(tα) (t → ∞),

and
‖Cγ

t ‖ = O(tα) (t → ∞) ⇒ ‖Aλ‖ = O(λ−α) (λ ↓ 0).

Hence the proof is complete.

Remark. It is interesting to note that if dim X = 1, or (T (t))t≥0 is an eventually
norm-continuous C0-semigroup of normal operators on a Hilbert space, or (T (t))t≥0
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is an eventually norm-continuous C0-semigroup of hermitian operators on a Banach
space, then σ(T (·)) ≤ 0 is equivalent to ‖T (t)‖ ≤ 1 for all t ≥ 0. This follows
from the fact that, in each of the above cases, w0(T (·)) = σ(T (·)) ≤ 0 and
‖T (t)‖ = r(T (t)) = etw0(T (·)) for all t ≥ 0. (See Corollary 2.2 of [8].)

Theorem 3.3. Let (T (t))t≥0 be a C0-semigroup on X with generator A and
let γ ≥ 0. Then the following hold.

(i) If A is bounded, then max{w0(C
γ+1
· ), 0} = max{w0(C

γ
· ), 0}, α0(C

γ
· ) ≤

max{α0(C
γ+1
· ) + 1, 0}, and α0(C

γ+1
· ) ≥ max{α0(C

γ
· ), 0} − 1.

(ii) If 0 ∈ ρ(A), then α0(C
γ+1
· ) ≤ max{α0(C

γ
· ), 0} − 1.

(iii) If A is bounded and 0 ∈ ρ(A), then

(γ+1)‖A‖−1‖Cγ
t −I‖t−1 ≤ ‖Cγ+1

t ‖ ≤ (γ+1)‖A−1‖‖Cγ
t −I‖t−1 (t > 0),

and
α0(Cγ+1

· ) = max{α0(Cγ
· ), 0} − 1.

Proof. We first show the following identity for all γ ≥ 0:

(3.5) ACγ+1
t = (γ + 1)t−1(Cγ

t − I), t > 0.

The case γ = 0 is trivial. Now suppose γ > 0. Then, since A is a closed operator,
we have, for all x ∈ X ,

ACγ+1
t x = (γ + 1)t−γ−1A

∫ t

0
(t − s)γT (s)x ds

= (γ + 1)t−γ−1A

∫ t

0
(t − s)γd

(∫ s

0
T (u)x du

)
ds

= (γ + 1)t−γ−1A

∫ t

0
γ(t − s)γ−1

(∫ s

0
T (u)x du

)
ds

= (γ + 1)t−γ−1

∫ t

0
γ(t− s)γ−1(T (s)− I)x ds

= (γ + 1)t−1γt−γ

∫ t

0
(t − s)γ−1T (s)x ds− (γ + 1)t−1x

= (γ + 1)t−1C
γ
t x − (γ + 1)t−1x.
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(i) If A = 0, then T (t) = I = Cβ
t for all t, β ≥ 0, so that w0(C

β
· ) = 0 and

α0(C
β
· ) = 0 for all β ≥ 0. Next, suppose A 
= 0 is bounded. Then for all

t > 0 we have

(γ + 1)‖Cγ
t ‖ ≤ t‖A‖‖Cγ+1

t ‖+ (γ + 1)

so that max{w0(C
γ
· ), 0} ≤ max{w0(C

γ+1
· ), 0} ≤ max{w0(C

γ
· ), 0} (Theo-

rem 3.1(i)), and α0(C
γ
· ) ≤ max{α0(C

γ+1
· ) + 1, 0}. Also from the inequality

‖A‖‖Cγ+1
t ‖ ≥ (γ + 1)t−1‖Cγ

t − I‖, t > 0,

it follows that α0(C
γ+1
· ) + 1 ≥ α0(C

γ
· − I) = max{α0(C

γ
· ), 0}.

(ii) If 0 ∈ ρ(A), then

‖Cγ+1
t ‖ ≤ (γ + 1)‖A−1‖‖Cγ

t − I‖t−1, t > 0,

and so α0(C
γ+1· ) ≤ max{α0(C

γ· ), 0} − 1.

(iii) This follows immediately from the above proofs of (i) and (ii).

Theorem 3.4. Let k ≥ 1 be an integer, and let (T (t))t≥0 be a C0-semigroup
on X with generator A = aiI + N , where N is a bounded nilpotent operator on
X of order k + 1 (i.e., Nk 
= 0 and N k+1 = 0) and a ∈ R. If a 
= 0, then the
following hold.

(i) ‖Cn
t ‖ ∼ tk−n (t → ∞) for n = 0, 1, . . . , k, and ‖Cn

t ‖ ∼ t−1 (t → ∞) for
all integers n ≥ k + 1. Therefore

(3.6) α0(Cn
· ) =

k − n for n = 0, 1, . . . , k;

−1 for all integers n ≥ k + 1.

(ii) ‖Aλ‖ ∼ λ (λ ↓ 0), and supλ>0 ‖Aλ‖ < ∞. In particular, α0(A·) = −1.

Proof. (i) Since C0
t = T (t) = etA = eaitetN = eait(

∑k
n=0(t

n/n!)Nn), we
have

k∑
n=0

tn

n!
‖Nn‖ ≥ ‖C0

t ‖ ≥ tk

k!
‖Nk‖ −

k−1∑
n=0

tn

n!
‖Nn‖.

Therefore

(3.7) lim
t→∞

‖C0
t ‖

tk
=

1
k!
‖Nk‖ > 0.
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Hence ‖C0
t ‖ ∼ tk (t → ∞), and α0(C0· ) = k. Since A is bounded and 0 ∈ ρ(A)

(because 0 
= a ∈ R), it follows from Theorem 3.3(iii) together with an induction
argument that ‖Cn

t ‖ ∼ tk−n (t → ∞) and α0(Cn· ) = k− n for all n = 0, 1, . . . , k.
To see that ‖Ck+1

t ‖ ∼ t−1 (t → ∞), take x ∈ X such that ‖x‖ = 1 and
N kx 
= 0. Then the set {x, Nx, . . . , N kx} is lenearly independent. To show
this, suppose that

∑k
j=0 bjN

jx = 0. Then, since N k+1 = 0, it follows that

b0N
kx = Nk

(∑k
j=0 bjN

jx
)

= 0, and hence b0 = 0. Next we have b1N
kx =

Nk−1
(∑k

j=1 bjN
jx

)
= 0, and hence b1 = 0. By continuing this process, it

follows that b0 = b1 = . . . = bk = 0, whence the set {x, Nx, . . . , N kx} is
linearly independent. Now, for all γ > 0 and t > 0, we have

Cγ
t x = γt−γ

∫ t

0

(t − s)γ−1T (s)x ds = γt−γ

(∫ t

0

(t − s)γ−1eaisx ds

)

+ γt−γ
k∑

n=1

(∫ t

0
(t − s)γ−1 eaissn

n!
Nnx ds

)
.

Since 0 
= a ∈ R, it follows that limt→∞ γt−γ(
∫ t
0 (t − s)γ−1eaisx ds) = 0. Thus

lim inf
t→∞ ‖Cγ

t − I‖ ≥ lim inf
t→∞ ‖Cγ

t x − x‖ > 0.

Using this for γ = k, together with the fact that ‖Ck
t ‖ ∼ t0 (t → ∞) (so that

lim supt→∞ ‖Ck
t − I‖ < ∞) and Theorem 3.3(iii), we obtain

‖Ck+1
t ‖ ∼ t−1 (t → ∞), and α0(Ck+1

· ) = −1.

It is now obvious from Theorem 3.3(iii) and an induction argument that ‖Cn
t ‖ ∼

t−1 (t → ∞) and α0(Cn· ) = −1 for all integers n > k + 1.
(ii) We have

(3.8)
limλ↓0 ‖Aλ‖/λ = lim

λ↓0

∥∥∥ ∫ ∞

0

e−λteait
( k∑

n=0

tn

n!
Nn

)
dt
∥∥∥

= lim
λ↓0

∥∥∥ k∑
n=0

1
(λ − ai)n+1

Nn
∥∥∥ =

1
|a|

∥∥∥ k∑
n=0

( N

−ai

)n∥∥∥,

which is positive because

k∑
n=0

( N

−ai

)n(
I +

N

ai

)
= I −

( N

−ai

)k+1
= I.
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Hence ‖Aλ‖ ∼ λ (λ ↓ 0), and thus α0(Aλ) = −1. It is direct from the above
calculation that supλ>0 ‖Aλ‖ < ∞. (This also follows from Theorem 2.7(ii) since
supt>0 ‖Ck

t ‖ < ∞.)

When k ≥ 1, it follows from Theorem 3.4 and Corollary 2.8 that, for the
C0-semigroup (T (t))t≥0 in Theorem 3.4, α0(C

γ
· ) is a non-increasing function of

γ ∈ [0,∞) and satisfies

(3.9)
α0(C0· ) = k > α0(C1

· ) = k − 1 > · · · > α0(Ck
· ) = 0

> −1 = α0(Cγ
· ) = α0(A·)

for all γ ≥ k + 1.
It also follows (cf. Theorem 3.4(i), Theorem 2.2(i)) that

(3.10) lim
t→∞ ‖Cγ

t ‖=∞ for all γ∈ [0, k− 1], sup
t>0

‖Cγ
t ‖<∞ for all γ ∈ [k, k+1),

and ‖Cγ
t ‖ ∼ t−1 (t → ∞) for all γ ≥ k + 1.

So far the situation on the interval (k − 1, k) is not clear. We will see from the
proof of the following theorem that supt>0 ‖Cγ

t ‖ = ∞ for all γ ∈ (k − 1, k).

Theorem 3.5. Let k ∈ N. Then there exists a C0-semigroup (T (t))t≥0 [resp.
a strongly continuous cosine operator function (C(t)) t≥0] of bounded linear oper-
ators on X such that sup t>0 ‖Ck

t ‖ < ∞, but supt>0 ‖Cγ
t ‖ = ∞ for all γ with

0 ≤ γ < k.

We need first to prove the following key lemma.

Lemma 3.6. Let 0 < γ < 1. Then for every integer k ≥ 0 we have

(3.11) lim
n→∞ n

∫ 1

0
(1− s)γ−1sk cos(2πns) ds = ∞,

and

(3.12) lim
n→∞ n

∫ 1

0
(1 − s)γ−1sk sin(2πns) ds = −∞.

Proof. For simplicity we set, for n ≥ 0,

(3.13) an :=
∫ 1

0
(1−s)γ−1sk cos(2πns) ds, bn :=

∫ 1

0
(1−s)γ−1sk sin(2πns) ds;
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and

(3.14) f(s) := sγ−1(1 − s)k (s ∈ [0, 1]).

We first prove that an > 0 > bn for all n ≥ 1. By a change of variable we have

an =
∫ 1

0
sγ−1(1− s)k cos(2πns) ds, and − bn =

∫ 1

0
sγ−1(1− s)k sin(2πns) ds,

whence

an =
n∑

j=1

∫ j/n

(j−1)/n
f(s) cos(2πns) ds (by (3.14)),

and furthermore∫ 1/n

0

f(s) cos(2πns) ds =
∫ 1/4n

0

{f(s) − f((1/2n) + s)} cos(2πns) ds

−
∫ 1/4n

0
{f((1/2n)− s) − f(1/n) − s)} cos(2πns) ds

=
∫ 1/4n

0

{
{f(s)− f((1/2n) + s)} − {f((1/2n)− s)

−f((1/2n) + (1/2n)− s)}
}

cos(2πns) ds.

Since f is positive, strictly decreasing and convex on the interval (0, 1), if 0 < s <
1/4n then we have{

{f(s)− f((1/2n) + s)} − {f((1/2n)− s) − f((1/2n) + (1/2n)− s)}
}

> 0.

Since cos(2πns) > 0 on the interval (0, 1/4n), we conclude that∫ 1/n

0
f(s) cos(2πns) ds > 0.

By the same argument we see that
∫ i/n
(i−1)/n f(s) cos(2πns) ds > 0 for each 1 ≤

i ≤ n. Consequently, an > 0 for all n ≥ 1. It is similar and easier to prove that
−bn =

∫ 1
0 f(s) sin(2πns) ds > 0 for all n ≥ 1; hence we may omit the proof.

We next prove that

(3.15)
∫ 1−(7/8n)

1/8n
f(s) sin(2πns) ds > 0 (n ≥ 1).

To do this, write
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∫ 1−(7/8n)

1/8n
f(s) sin(2πns) ds =

n−1∑
j=1

∫ j/n+1/8n

(j−1)/n+1/8n
f(s) sin(2πns) ds.

By an elementary calculation∫ 1/n+1/8n

1/8n
f(s) sin(2πns) ds

=
∫ 3/8n

0
{f((1/2n)− s) − f((1/2n) + s)} sin(2πns) ds

−
∫ 1/8n

0
{f((1/n)− s) − f((1/n) + s)} sin(2πns) ds

=
∫ 1/8n

0

{
{f((1/2n)− s) − f((1/2n) + s)} − {f((1/n)− s)

−f((1/n) + s)}
}

sin(2πns) ds

+
∫ 3/8n

1/8n
{f((1/2n)− s) − f((1/2n) + s)} sin(2πns) ds.

As before, if 0 < s < 1/8n, then{
{f((1/2n)−s)−f((1/2n)+s)}−{f((1/n)−s)−f((1/n)+s)}

}
sin(2πns) > 0.

On the other hand, it is immediate that if 1/8n < s < 3/8n, then

{f((1/2n)− s) − f((1/2n) + s)} sin(2πns) > 0.

Therefore it follows that∫ 1/n+1/8n

1/8n

f(s) sin(2πns) ds > 0.

By the same argument we have∫ j/n+1/8n

(j−1)/n+1/8n
f(s) sin(2πns) ds > 0 (1 ≤ j ≤ n − 1).

This proves (3.15). We then note that

(3.16)

∫ 1/8n
0 f(s) sin(2πns) ds =

∫ 1/8n

0
sγ−1(1− s)k sin(2πns) ds

≥
(

8n − 1
8n

)k 2
π

∫ 1/8n

0
sγ−1(2πns) ds

=
(

8n − 1
8n

)k

4n

∫ 1/8n

0
sγ ds

= (1− (1/8n))k 4
(γ + 1)8γ+1

n−γ .
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Here, since lims↑1 f(s) = 1 (when k = 0) or 0 (when k ≥ 1), it follows that∣∣∣∣∣
∫ 1

1−(7/8n)

f(s) sin(2πns) ds

∣∣∣∣∣ ≤
∫ 1

1−(7/8n)

f(s) ds = n−1 · O(1) = n−γ · o(1),

so that, combining (3.15) and (3.16), we obtain

(−n)bn = n

∫ 1

0
f(s) sin(2πns) ds

= n

(∫ 1/8n

0
+

∫ 1−(7/8n)

1/8n
+

∫ 1

1−(7/8n)

)
f(s) sin(2πns) ds

> n

(∫ 1/8n

0
+

∫ 1

1−(7/8n)

)
f(s) sin(2πns) ds −→ ∞ as n → ∞.

This proves (3.12).
To prove (3.11), we note that

(3.17) an =
∫ 1

0
f(s) cos(2πns) ds >

∫ 1/n

0
f(s) cos(2πns) ds > 0,

and that there exists a unique constant cn, with 0 < cn < 1/4n, such that

(3.18)
∫ 1/n

cn

f(s) cos(2πns) ds = 0.

Write

(3.19) I(n) :=
∫ 1/n

1/2n
f(s) cos(2πns) ds.

Since f is positive and strictly decreasing on the interval [0, 1], it follows that

I(n) =
1
n

∫ 1

1/2
f(s/n) cos(2πs) ds = n−γ

∫ 1

1/2
sγ−1(1 − s/n)k cos(2πs) ds < 0,

and by (3.18)

0 < −I(n) =
∫ 1/2n

cn

f(s) cos(2πns) ds = n−γ

∫ 1/2

ncn

sγ−1(1 − s/n)k cos(2πs) ds.

Using these facts we obtain

0 < −
∫ 1

1/2
sγ−1(1 − s/n)k cos(2πs) ds =

∫ 1/2

ncn

sγ−1(1− s/n)k cos(2πs) ds
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for all n ≥ 1. Now, by Lebesgue’s convergence theorem,

lim
n→∞

∫ 1

1/2
sγ−1(1− s/n)k cos(2πs) ds =

∫ 1

1/2
sγ−1 cos(2πs) ds < 0.

Thus

lim
n→∞

∫ 1/2

ncn

sγ−1(1 − s/n)k cos(2πs) ds = −
∫ 1

1/2
sγ−1 cos(2πs) ds > 0;

and since
∫ 1
0 sγ−1 cos(2πs) ds > 0 and cos(2πs) > 0 on the interval (0, 1/4), there

exists a unique constant c, with 0 < c < 1/4, such that∫ 1/2

c
sγ−1 cos(2πs) ds = −

∫ 1

1/2
sγ−1 cos(2πs) ds.

Therefore we have

lim
n→∞

∫ 1/2

ncn

sγ−1(1− s/n)k cos(2πs) ds =
∫ 1/2

c
sγ−1 cos(2πs) ds > 0.

This shows that c = limn→∞ ncn, and thus

lim
n→∞

∫ ncn

0
sγ−1(1− s/n)k cos(2πs) ds =

∫ c

0
sγ−1 cos(2πs) ds > 0.

Consequently, from (3.17) and (3.18), we see that

nan > n

∫ cn

0
f(s) cos(2πns) ds

= n1−γ

∫ ncn

0
sγ−1(1− s/n)k cos(2πs) ds −→ ∞

as n → ∞. This proves (3.11), and the proof is complete.

Proof of Theorem 3.5. Case 1. First we consider the semigroup case. As in
Theorem 3.4, we take (T (t))t≥0 to be the C0-semigroup

(3.20) T (t) := et(iaI+N) = eiat
k∑

n=0

tnNn

n!
(t ≥ 0),

where N is a bounded nilpotent operator on X of order k + 1 and a ∈ R \ {0}.
Since we have already observed that supt>0 ‖Ck

t ‖ < ∞ (cf. (3.10)), it only remains
to prove that supt>0 ‖Cγ

t ‖ = ∞ for all γ ∈ [0, k).
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Suppose k − 1 < γ < k. Applying (3.5) we have

ACγ
t =

γ

t
[Cγ−1

t − I ] =
γ

t
Cγ−1

t + D1
t ,

where ‖D1
t ‖ = ‖t−1γI‖ = O(t−1) as t → ∞; and

A2Cγ
t =

γ(γ − 1)
t2

Cγ−2
t + D2

t ,

where ‖D2
t ‖ = O(t−1) as t → ∞. Continuing this process we find

(3.21) Ak−1Cγ
t =

γ(γ − 1) . . . (γ − k + 2)
tk−1

Cγ−k+1
t + Dγ

t ,

where ‖Dγ
t ‖ = O(t−1) as t → ∞; and

(3.22)

Cγ−k+1
t =

γ − k + 1
tγ−k+1

∫ t

0
(t − s)γ−kT (s) ds

=
k∑

n=0

γ − k + 1
tγ−k+1n!

(∫ t

0
(t − s)γ−ksneaisds

)
Nn

=
k∑

n=0

(γ − k + 1)tn

n!

(∫ 1

0
(1− s)γ−ksneatis ds

)
Nn.

Hence

Cγ−k+1
t

(γ − k + 1)tk−1
=

k∑
n=0

tn−k+1

n!

(∫ 1

0
(1 − s)γ−ksneatis ds

)
Nn

=
t

k!

(∫ 1

0
(1 − s)γ−kskeatis ds

)
Nk

+
k−1∑
n=0

tn−k+1

n!

(∫ 1

0
(1 − s)γ−ksneatis ds

)
Nn

= B1(t) + B2(t),

where ‖B2(t)‖ = o(1) as t → ∞, because

lim
t→∞

∫ 1

0
(1 − s)γ−ksneatis ds = 0

for every n ≥ 0 by the Riemann-Lebesgue theorem. On the other hand, since
−1 < γ−k < 0, we can apply Lemma 3.6 to infer that lim supt→∞ ‖B1(t)‖ = ∞.
Therefore we have lim supt→∞ ‖t−(k−1)Cγ−k+1

t ‖ = ∞, and so

lim sup
t→∞

‖Ak−1Cγ
t ‖ = ∞
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by (3.21). This implies supt>0 ‖Cγ
t ‖ = ∞. Hence, by Theorem 2.2(i), supt>0 ‖Cγ

t ‖
= ∞ for all γ with 0 ≤ γ < k.

Case 2. Next we consider the cosine operator function case. Let N : X → X

and a ∈ R \ {0} be the same as in Case 1. Then define C(t) : X → X by

(3.23)

C(t): =
1
2

{
et(iaI+N) + e−t(iaI+N)

}
=

k∑
n=0

1
n!

(eiattn + e−iat(−t)n)
2

Nn (t ≥ 0).

Then, as is easily seen, (C(t))t≥0 is a strongly continuous cosine operator function
on X with generator B = (iaI + N )2 (cf. Sova [12]). The Cesàro mean Cγ

t of
(C(t))t≥0 of order γ > 0 can be written as

(3.24)

Cγ
t =

γ

tγ

∫ t

0
(t − s)γ−1C(s) ds

=
∑′

0≤n≤k

γtn

n!

(∫ 1

0
(1− s)γ−1sn cos(ats) ds

)
Nn

+
∑′′

0≤n≤k

γtn

n!

(
i

∫ 1

0

(1− s)γ−1sn sin(ats) ds

)
Nn,

where
∑′

0≤n≤k [resp.
∑′′

0≤n≤k ] means that the summation is taken for all n such
that 0 ≤ n ≤ k, and n is even [resp. odd].

It is known (see e.g. [10], [12]) that

(3.25) Cα+2
t B ⊂ BCα+2

t =
(α + 2)(α + 1)

t2
[Cα

t − I ] (t > 0, α ≥ 0);

and, since w0(C(·)) = 0,

(3.26) λ2(λ2 − B)−1 = λ

∫ ∞

0
e−λsC(s) ds (Reλ > 0).

For a moment we assume that k = 2l for some integer l ≥ 1. Using the above
considerations we see as in Case 1 that

(3.27) BlCk
t =

k!
t2l

C(t) + Ek
t ,

where ‖Ek
t ‖ = O(t−2) as t → ∞. Thus, by (3.23), supt>0 ‖BlCk

t ‖ < ∞ and
hence

(3.28) sup
t>0

‖Ck
t ‖ ≤ sup

t>0
‖B−l‖‖BlCk

t ‖ < ∞.
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Next suppose 2l − 1 < γ < 2l = k. Then we see that

(3.29) Bl−1Cγ
t =

γ(γ − 1) . . . (γ − 2l + 3)
t2l−2

Cγ−2l+2
t + Eγ

t ,

where ‖Eγ
t ‖ = O(t−2) as t → ∞. Write δ = γ − 2l + 1. Thus 0 < δ < 1, and

Cγ−2l+2
t =

∑′

0≤n≤k

γ − 2l + 2
n!

tn
(∫ 1

0
(1− s)δsn cos(ats) ds

)
Nn

+
∑′′

0≤n≤k

γ − 2l + 2
n!

tn
(

i

∫ 1

0
(1− s)δsn sin(ats) ds

)
Nn.

Now we apply integration by parts to get that
(i) if n is an even integer such that 0 ≤ n ≤ 2l = k, then

(3.30)

∫ 1

0
(1− s)δsn cos(ats) ds

=
δ

at

∫ 1

0
(1− s)δ−1sn sin(ats) ds +

1
t2

· o(1) (t → ∞);

(ii) if n is an odd integer such that 0 < n < 2l = k, then

(3.31)

∫ 1

0
(1− s)δsn sin(ats) ds

= − δ

at

∫ 1

0
(1− s)δ−1sn cos(ats) ds +

1
t2

· o(1) (t → ∞).

Since

1
t2l−2

Cγ−2l+2
t =

1
t2l−2

 ∑′

0≤n≤k

γ − 2l + 2
n!

tn
(∫ 1

0
(1 − s)δsn cos(ats) ds

)
Nn

+
∑′′

0≤n≤k

γ − 2l + 2
n!

tn
(

i

∫ 1

0
(1− s)δsn sin(ats) ds

)
Nn


= I1(t) + I2(t),

where

I1(t) :=
γ − 2l + 2

(2l)!
t2

(∫ 1

0
(1 − s)δs2l cos(ats) ds

)
N 2l,

and
I2(t) :=

1
t2l−2

C
γ−2l+2
t − I1(t),
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we obtain, by applying (3.30), (3.31) and Lemma 3.6, that lim supt→∞ ‖I1(t)‖ =
∞, and that limt→∞ ‖I2(t)‖ = 0. Hence it follows from (3.29) that supt>0 ‖Cγ

t ‖
= ∞. Since this holds for any γ with 2l − 1 < γ < 2l = k, it follows from
Theorem 2.2(i) that supt>0 ‖Cγ

t ‖ = ∞ for all γ with 0 ≤ γ < k.
Assume next that k = 2l + 1 for some integer l ≥ 0. Then as before we have

(3.32) BlCk
t =

k!
t2l

C1
t + F k

t ,

where ‖F k
t ‖ = O(t−2) as t → ∞, and

C1
t =

∑′

0≤n≤k

tn

n!

(∫ 1

0
sn cos(ats) ds

)
Nn +

∑′′

0≤n≤k

tn

n!

(
i

∫ 1

0
sn sin(ats) ds

)
Nn.

We have:
(i) if n is an even integer such that 0 ≤ n < 2l + 1 = k, then∫ 1

0
sn cos(ats) ds =

sin at

at
+ o(t−1) (t → ∞);

(ii) if n is an odd integer such that 0 < n ≤ 2l + 1 = k, then∫ 1

0
sn sin(ats) ds =

cos at

−at
+ o(t−1) (t → ∞).

Thus ‖BlCk
t ‖ = O(1) as t → ∞, and hence as before

sup
t>0

‖Ck
t ‖ ≤ sup

t>0
‖B−l‖ · ‖BlCk

t ‖ < ∞.

Finally, let γ > 0 be such that 2l < γ < 2l + 1 = k. Then

(3.33) BlCγ
t =

γ(γ − 1) . . . (γ − 2l + 1)
t2l

Cγ−2l
t + F γ

t ,

where ‖F γ
t ‖ = O(t−2) as t → ∞. Write δ = γ − 2l. Thus 0 < δ < 1, and

Cγ−2l
t =

∑′

0≤n≤k

γ − 2l

n!
tn

(∫ 1

0

(1 − s)δ−1sn cos(ats) ds

)
Nn

+
∑′′

0≤n≤k

γ − 2l

n!
tn

(
i

∫ 1

0

(1 − s)δ−1sn sin(ats) ds

)
Nn.

From Lemma 3.6 and (3.33) we see that lim supt→∞ ‖BlCγ
t ‖ = ∞. Therefore,

supt>0 ‖Cγ
t ‖ = ∞. Since this holds for any γ with 2l < γ < 2l+1 = k, it follows

as before that supt>0 ‖Cγ
t ‖ = ∞ for all γ with 0 ≤ γ < 2l + 1 = k.
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This completes the proof of Theorem 3.5.

Remark. Let (C(t))t≥0 be a strongly continuous cosine operator function on
X with generator B. If X 
= {0}, then 0 ≤ σ(C(·)) ≤ w0(C(·)) < ∞, where
σ(C(·)) is defined analogously to σ(T (·)) (cf. (3.1)). To see this we first note
that w0(C(·)) < ∞ by [12], and σ(C(·)) ≤ w0(C(·)) is obvious. Thus it suffices
to prove that σ(C(·)) ≥ 0. Suppose K := σ(C(·)) < 0. Then an elementary
calculation (see e.g. [12, pp. 24–25]) shows that if λ 
= 0 satisfies Reλ > K , then
λ2 ∈ ρ(B) and

∫ ∞
0 e−λtC(t) dt = λ(λ2 − B)−1. On the other hand, since the

operator-valued function λ �→ ∫ ∞
0 e−λtC(t) dt (defined strongly) is analytic on the

domain Ω := {λ : Reλ > K} (cf. the proof of Theorem 1.5.1 of [1]), it follows
that

lim
|λ|→0

∥∥∥∥∫ ∞

0
e−λtC(t) dt

∥∥∥∥ =
∥∥∥∥∫ ∞

0
C(t) dt

∥∥∥∥ < ∞.

Hence
lim
|λ|→0

‖λ(λ− B)−1‖ = lim
|λ|→0

∥∥∥∥λ

∫ ∞

0
e−λtC(t) dt

∥∥∥∥ = 0,

and thus, 0 ∈ ρ(B) by Theorem 3.1 of [11]. Then, since lim|λ|→0 ‖λ(λ2−B)−1‖ =
0, we have∥∥∥∥∫ ∞

0

C(t) dt

∥∥∥∥ = lim
|λ|→0

∥∥∥∥∫ ∞

0

e−λtC(t) dt

∥∥∥∥ = lim
|λ|→0

‖λ(λ2 − B)−1‖ = 0,

which implies
∫∞
0 C(t)x dt = 0 for all x ∈ X , i.e., limt→∞

∫ t
0 C(s)x ds = 0 for

all x ∈ X . Thus, by Theorem 2.3 of [11], we must have X = {0}, a contradiction.

The above proof of Theorem 3.5 turns up the following result.

Theorem 3.7. There exists a C0-semigroup (T (t))t≥0 [resp. a strongly con-
tinuous cosine operator function (C(t)) t≥0] of bounded linear operators on X
such that supt>0 ‖Cγ

t ‖ = ∞ for all γ > 0, but supλ>0 ‖λ(λ − A)−1‖ < ∞
[resp. supλ>0 ‖λ(λ − B)−1‖ < ∞], where A [resp. B] denotes the generator of
(T (t))t≥0 [resp. (C(t))t≥0].

Proof. Fix a ∈ R with |a| > 2. It follows from the proof of Theorem 3.5 that,
for each k ≥ 1, letting Nk : Xk → Xk be a bounded linear operator on a Banach
space Xk such that N k

k 
= 0, Nk+1
k = 0, and ‖Nk‖Xk

< 1; and defining

(3.34) Tk(t) := et(iaI+Nk) = eiat
k∑

n=0

tn

n!
Nn

k (t ≥ 0),
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we have a C0-semigroup (Tk(t))t≥0 on Xk, with generator Ak = ia + Nk, such
that

(3.35) sup
t>0

‖Ck−1
t (Tk(·))‖Xk

= ∞, and sup
t>0

‖Ck
t (Tk(·))‖Xk

< ∞.

Furthermore, since ‖Nk‖Xk
< 1 and |a| > 2, and since

A−1
k = (iaI + Nk)−1 =

1
ia

(
I +

Nk

ia

)−1

=
1
ia

k∑
n=0

(−1
ia

)n

Nn
k ,

it follows that

(3.36) ‖A−1
k ‖Xk

≤ 1
|a|

k∑
n=0

(
1
|a|

)n

< 1.

On the other hand, as in (3.21), we have

(Ak)kCk
t (Tk(·)) =

k!
tk

C0
t (Tk(·)) + Dk

t = eiat
k∑

n=0

k!
n!

tn−kNn
k + Dk

t ,

where ‖Dk
t ‖Xk

= O(t−1) as t → ∞. Thus there exists Gk ∈ R, with Gk > (k+1)! ,
such that t > Gk implies ‖Dk

t ‖Xk
< 1. Then by (3.36)

(3.37) ‖Ck
t (Tk(·))‖Xk

≤ ‖
k∑

n=0

k!
n!

tn−kNn
k ‖Xk

+ 1 for all t > Gk.

If we choose Nk in such a way that ‖Nk‖Xk
is sufficiently small (in particular,

‖Nk‖Xk
< ln 2) and limn→∞ ‖Nk‖Xk

= 0, then we can assume that

(3.38) ‖Tk(t)‖Xk
= ‖eiat

k∑
n=0

tn

n!
Nn

k ‖Xk
< 2 (0 ≤ t ≤ Gk),

and

(3.39) ‖
k∑

n=0

k!
n!

tn−kNn
k ‖Xk

≤ 1 (t > Gk > (k + 1)! ).

Hence it follows from (3.37) that

(3.40) sup
t>0

‖Ck
t (Tk(·))‖Xk

≤ 2,
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so that by Theorem 2.7(ii)

(3.41) sup
λ>0

‖λ(λ− Ak)−1‖Xk
= sup

λ>0
‖λ

∫ ∞

0
eλsTk(s) ds‖ ≤ 2.

Now, define

X :=
{
x = (x1, x2, . . . ) : xk ∈ Xk,

∞∑
k=1

‖xk‖ < ∞
}

, and ‖x‖ :=
∞∑

k=1

‖xk‖

for x ∈ X . Then X becomes a Banach space. If t ≥ 0, define a bounded linear
operator T (t) on X by

(3.42) T (t)x := (T1(t)x1, T2(t)x2, . . . ) for x = (x1, x2, . . . ) ∈ X.

By (3.38) we see that ‖T (t)‖ < 2 for all 0 ≤ t ≤ 1, and hence limt↓0 ‖T (t)x−x‖ =
0 for all x ∈ X . Therefore, (T (t))t≥0 is a C0-semigroup of bounded linear operators
on X . Since ‖Nk‖Xk

< ln 2, it follows that

‖
k∑

n=0

tn

n!
Nn

k − I‖Xk
≤

k∑
n=1

tn

n!
‖Nk‖n

Xk
< et‖Nk‖Xk − 1 < 2t − 1

for all t > 0. Thus by (3.34)

‖Tk(t) − I‖Xk
≤ ‖

k∑
n=0

tn

n!
Nn

k − I‖Xk
+ |eiat − 1| < (2t − 1) + |eiat − 1|

for all t > 0. Hence

(3.43) lim
t↓0

‖T (t)− I‖ ≤ lim
t↓0

(
sup
k≥1

‖Tk(t) − I‖Xk

)
= 0.

It follows that (T (t))t≥0 has generator A on X , where A is defined by

Ax = A(x1, x2, . . . ) := (A1x1, A2x2, . . . ) for x = (x1, x2, . . . ) ∈ X.

Clearly, A is a bounded linear operator on X with ‖A‖ ≤ supk≥1 ‖Ak‖Xk
=

supk≥1 ‖ia + Nk‖Xk
≤ |a|+ 1.

Next, suppose λ > 0. Since σ(T (·)) = w0(T (·)) = 0 by the definition of
(T (t))t≥0, we see that λ ∈ ρ(A); and furthermore

(λ − A)−1x = (λ − A)−1(x1, x2, . . . ) = ((λ − A1)−1x1, (λ − A2)−1x2, . . . )
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for x = (x1, x2, . . . ) ∈ X . Consequently

(3.44)
supλ>0 ‖λ(λ − A)−1‖ = sup

λ>0
‖λ

∫ ∞

0
e−λsT (s) ds‖

≤ sup
λ>0

(
sup
n≥1

‖λ(λ− Ak)−1‖Xk

)
≤ 2.

On the other hand, if γ > 0, then for all integers k with k > γ + 1 we have, by
Theorem 2.2(i) and (3.35),

(3.45) sup
t>0

‖Cγ
t ‖ ≥ sup

t>0
‖Ck−1

t ‖ ≥ sup
t>0

‖Ck−1
t (Tk(·))‖Xk

= ∞.

This completes the proof for the semigroup case.
The proof for the cosine operator function case is an easy modification of the

above proof, since the cosine operator function (C(t))t≥0 in Theorem 3.5 was
defined by (3.23). Hence we may omit the details here.

4. THEOREM 2.9 CANNOT BE EXTENDED TO THE CASE 0 ≤ γ < 1

We first state a consequence of Theorem 2.9 and Corollary 2.10 as follows.

Theorem 4.1. (Cf. [8, Corollary 3.2].) Let (T (t))t≥0 [resp. (C(t))t≥0] be a
C0-semigroup [resp. a strongly continuous cosine operator function] of positive
linear operators on a Banach lattice X with generator A [resp. B]. Then the
following hold.

(i) If γ ≥ 1 and α > −1 − γ , then the boundedness of {t−αC
γ
t : t > 0} is

equivalent to σ(T (·)) ≤ 0 [resp. σ(C(·)) = 0] together with the boundedness
of {λα+1(λ − A)−1 : λ > 0} [resp. {λα+2(λ2 − B)−1 : λ > 0}]. In
particular, (T (t))t≥0 [resp. (C(t))t≥0] is Abel-mean-bounded if and only if
it is γ-Cesàro-mean-bounded for any γ ≥ 1.

(ii) For all γ ≥ 1 and α > −2, ‖C γ
t ‖ = O(tα) as t → ∞ is equivalent to

σ(T (·)) ≤ 0 [resp. σ(C(·)) = 0] together with ‖λ(λ − A)−1‖ = O(λ−α)
[resp. ‖λ2(λ2 − B)−1‖ = O(λ−α)] as λ ↓ 0.

(iii) If X 
= {0} and σ(T (·)) ≤ 0 [resp. σ(C(·)) = 0], then α 0(C
γ
· ) = α0(A·) ≥

−1 for all γ ≥ 1, where the Abel mean Aλ = λ
∫∞
0 e−λtT (t) dt [resp.

Aλ = λ
∫∞
0 e−λtC(t) dt] is defined strongly for all λ > 0.

In the next two theorems, we present examples to show that the equivalence of
the Abel-mean-boundedness and the γ-Cesàro-mean-boundedness is not true for the
case 0 ≤ γ < 1.
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Theorem 4.2. Let 0 < γ < 1. Then there exists a C0-semigroup (T (t))t≥0

[resp. a strongly continuous cosine operator function (C(t)) t≥0] of positive linear
operators on an L1-space such that supt>0 ‖Cγ

t ‖1 = ∞, but supt>0 ‖Cβ
t ‖1 < ∞

for all β > γ and, in particular, the Abel means of (T (t)) t≥0 [resp. (C(t))t≥0] are
uniformly bounded.

Lemma 4.3. (a) Let ξj, ηj > 0,
∑n

j=1 ξj = 1 =
∑n

j=1 ηj, and ξj/ξj+1 ≥
ηj/ηj+1 (1 ≤ j ≤ n − 1). Then λ1 ≥ λ2 ≥ . . . ≥ λn implies

n∑
j=1

λjξj ≥
n∑

j=1

λjηj.

(b) Let a1 ≥ a2 ≥ . . . ≥ an, and b1 ≥ b2 ≥ . . . ≥ bn. Then
n∑

j=1

ajbj ≥
n∑

j=1

ajbk(j),

where {k(j) ; 1 ≤ j ≤ n} = {1, 2, . . . , n}.

Proof. We prove (a) by induction. The case n = 2 is obvious. Next,
suppose that the case k = n is true, and we consider the case k = n + 1. Let
ξj, ηj > 0 (j = 1, 2, . . . , n + 1) be such that

∑n+1
j=1 ξj = 1 =

∑n+1
j=1 ηj and

ξj/ξj+1 ≥ ηj/ηj+1 (1 ≤ j ≤ n). Clearly, ξn−1/ξn+1 ≥ ηn−1/ηn+1, and hence
ξn−1ηn+1 ≥ ηn−1ξn+1; similarly ξn−1ηn ≥ ηn−1ξn. Thus

ξn−1(ηn + ηn+1)− ηn−1(ξn + ξn+1) = ξn−1ηn + ξn−1ηn+1 − ηn−1ξn − ηn−1ξn+1

= (ξn−1ηn+1 − ηn−1ξn+1) + (ξn−1ηn − ηn−1ξn) ≥ 0,

which implies ξn−1/(ξn + ξn+1) ≥ ηn−1/(ηn + ηn+1). Hence we can apply the
induction hypothesis: If λ1 ≥ λ2 ≥ . . . ≥ λn ≥ λn+1, then

n−1∑
j=1

λjξj + λn(ξn + ξn+1) ≥
n−1∑
j=1

λjηj + λn(ηn + ηn+1).

On the other hand, by the assumptions on ξj, ηj (j = 1, 2, . . . , n+1), it follows
at once that ξn+1 ≤ ηn+1. Since λn+1−λn ≤ 0, it follows that (λn+1−λn)ξn+1 ≥
(λn+1 − λn)ηn+1. Therefore

n+1∑
j=1

λjξj =
n−1∑
j=1

λjξj + λn(ξn + ξn+1) + (λn+1 − λn)ξn+1

≥
n−1∑
j=1

λjηj + λn(ηn + ηn+1) + (λn+1 − λn)ηn+1 =
n+1∑
j=1

λjηj ,
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completing the proof of (a).
(b) is a part of the well-known rearrangement inequality and follows from an

easy induction argument. We may omit the proof.

Proof of Theorem 4.2. This is an adaptation of the argument of [8, Proposition
4.3]. Let a > 2 be the unique solution of the equation 2 = aγ . For j ≥ 1, let
(4.1)

Xj := [0, aj) and wj(s) :=

{
2j (0 ≤ s < a0 = 1),

2j−1−k (ak ≤ s < ak+1, 0 ≤ k ≤ j − 1).

For t ≥ 0, let ϑj,t : Xj → Xj be the point transformation defined by ϑj,t(s) := s+t
(mod aj), and then put Tj(t)f(s) := f(ϑj,t(s)) for f on Xj , and define a measure
µj on Xj by µj := wj(s)ds.

Let

(4.2) X :=
∞⋃

j=1

Xj (regarded as a disjoint union),

and let µ be the measure on X defined by µ|Xj := µj for each j ≥ 1. For t ≥ 0,
define an operator T (t) : L1(X, µ) → L1(X, µ) by (T (t)f)|Xj := Tj(t)(f |Xj)
for j ≥ 1. It follows that (T (t))t≥0 becomes a C0-semigroup of positive linear
operators on L1(X, µ).

We will prove that supt>0 ‖Cγ
t ‖1 = ∞, and that supt>0 ‖Cβ

t ‖1 < ∞ for all
β > γ . To do this, let 0 < α < 1 be any real number. We consider the Cesàro
means Cα

t of (T (t))t≥0 of order α, and define

(4.3) α(Xj) := sup{‖Cα
t f‖1/‖f‖1 : 0 
= f ∈ L1(Xj, µj); t > 0}.

Then it suffices to show that supj≥1 α(Xj) < ∞ for α = β > γ , and limj→∞ α(Xj) =
∞ for 0 < α ≤ γ .

(i) To estimate α(Xj), let fδ := δ−1χ[aj−δ, aj) for 0 < δ < 1. We have
‖fδ‖1 = 1, and

‖Cα
ajfδ‖1 ≤ α

ajα

∫ aj

0
tα−1‖T (aj − t)fδ‖1 dt.

Denoting

(4.4) Dj :=
∫ aj

aj−1

tα−120 dt +
∫ aj−1

aj−2

tα−121dt + . . . +
∫ 1

0
tα−12j dt,

and noting that wj is non-increasing on [0, aj), we easily see that

(4.5) Dj −
∫ 1

0
tα−12j dt <

∫ aj

0
tα−1‖T (aj − t)fδ‖1 dt < 2Dj.
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Since

Dj =
1
α

[
20(ajα − a(j−1)α) + 2(a(j−1)α − a(j−2)α) + . . .

+2j−1(aα − a0) + 2ja0
]

=
1 − a−α

α

[
20ajα + 21a(j−1)α + . . . + 2j−1aα + 2ja0

]
+

1
α

2ja−α

=
(1 − a−α)ajα

α

j∑
k=0

(
2
aα

)k

+
ajα

α

(
2
aα

)j 1
aα

,

and

Dj −
∫ 1

0

tα−12j dt =
(1− a−α)ajα

α

j−1∑
k=0

(
2
aα

)k

,

it follows that

(4.6) ‖Cα
ajfδ‖1 > (1 − a−α)

j−1∑
k=0

(
2
aα

)k

and

(4.7)

‖Cα
ajfδ‖1 < α

ajα 2Dj = 2

{
(1− a−α)

j∑
k=0

(
2
aα

)k

+
(

2
aα

)j 1
aα

}

< 2
j∑

k=0

(
2
aα

)k

.

(ii) Next, let gd := δ−1χ[d−δ, d), where 0 < δ < 1 and aj−1 ≤ d − δ < d ≤ aj .
Then ‖gd‖1 = 1, and

‖Cα
d gd‖1 =

α

dα

∫ d

0
tα−1‖T (d− t)gd‖1dt

=
α

dα

(∫ d

aj−1

+
∫ aj−1

0

)
tα−1‖T (d− t)gd‖1 dt

= I + II.

It follows immediately that

I <
α

dα

∫ d

aj−1
tα−1 · 2 dt < 2.
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Letting hd := T (d − aj−1)gd, we see that hd = δ−1χ[aj−1−δ, aj−1) and hence
‖hd‖1 = 2. Then, since T (d − t)gd = T ((d − aj−1) + aj−1 − t)gd = T (aj−1 −
t)T (d − aj−1)gd = T (aj−1 − t)hd, we obtain, as in (i), that

II =
α

dα

∫ aj−1

0
tα−1‖T (aj−1 − t)hd‖1 dt < ‖Cα

aj−1hd‖1

≤ α

a(j−1)α

(∫ aj−1

1
tα−1‖T (aj−1 − t)hd‖1 dt +

∫ 1

0
tα−12 · 2j−1 dt

)

<
α

a(j−1)α
4Dj−1 < 4

j−1∑
k=0

(
2
aα

)k

(cf. (4.7)).

Consequently

(4.8) ‖Cα
d gd‖1 = I + II < 2 + 4

j−1∑
k=0

(
2
aα

)k

.

(iii) Assume that 0 < r < d. Since ‖T (t)gd‖1 ≤ 2 for all 0 ≤ t ≤ 1, it follows
that if 0 < r ≤ 1, then

(4.9) ‖Cα
r gd‖1 =

α

rα

∫ r

0

tα−1‖T (r − t)gd‖1 dt ≤ 2.

Next, if 1 < r < d, then choose an integer j′, with 1 ≤ j ′ ≤ j, such that
aj′−1 < r ≤ aj′ . Let 0 < δ′ < 1 be such that aj′−1 ≤ r − δ′ < r ≤ aj′ , and define

(4.10) g′r :=
1

2(j−j′)δ′
χ[r−δ′, r).

It follows that ‖g′r‖1 = 1, and that

‖T (r − t)gd‖1 ≤
{

2‖T (r − t)g′r‖1 (1 ≤ t ≤ r),

2j′ (0 ≤ t ≤ 1).

Hence as in (ii)

(4.11)

‖Cα
r gd‖1

<
α

rα

(
2
∫ r

1

tα−1‖T (r − t)g′r‖1 dt + 2
∫ 1

0

tα−12j′ dt

)
< 2

(
2+

α

a(j′−1)α

(∫ aj′−1

1

tα−1‖T (r−t)g′r‖1 dt+
∫ 1

0

tα−12 · 2j′−1 dt

))

< 2
(
2 +

α

a(j′−1)α
4Dj′−1

)
< 2

2 + 4
j′−1∑
k=0

(
2
aα

)k
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≤ 2

(
2 + 4

j−1∑
k=0

(
2
aα

)k
)

.

This holds in particular for the case 0 < r < d = aj and gaj = fδ .
(iv) Now we estimate ‖Cα

r fδ‖1 for r > aj . To do this, choose an integer n ≥ 1
such that naj < r ≤ (n + 1)aj . Then we have

‖Cα
r fδ‖1 =

α

rα

(∫ r

r−naj

+
∫ r−naj

0

)
tα−1‖T (r − t)fδ‖1 dt = III + IV,

and ∫ r

r−naj

tα−1‖T (r − t)fδ‖1 dt

=
n∑

k=1


∫ r−(k−1)aj

r−kaj

tα−1 dt ·

∫ r−(k−1)aj

r−kaj

tα−1‖T (r − t)fδ‖1 dt∫ r−(k−1)aj

r−kaj

tα−1 dt

 .

We now estimate III and IV . For the estimation of III we first note:

if 0 ≤ p < q < w < ∞, then for every A > 0

(4.12)

∫ q

p
tα−1 dt∫ w

q
sα−1 ds

>

∫ q+A

p+A
tα−1 dt∫ w+A

q+A
sα−1 ds

.

(In fact, if 0 < α < 1 and if 0 ≤ p < t < q < s < w < ∞, then for any A > 0 we
have

(1 + A/t)α−1 < (1 + A/q)α−1 < (1 + A/s)α−1,

and thus ∫ q

p
tα−1 dt∫ w

q
sα−1 ds

=

∫ q

p
tα−1(1 + A/q)α−1 dt∫ w

q
sα−1(1 + A/q)α−1 ds

>

∫ q

p
tα−1(1 + A/t)α−1 dt∫ w

q
sα−1(1 + A/s)α−1 ds

=

∫ q+A

p+A
tα−1 dt∫ w+A

q+A
sα−1 ds

,
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which completes the proof of (4.12).)
Letting s = t− (r−kaj) for r−kaj ≤ t < r− (k−1)aj, we have 0 ≤ s < aj ,

and

(4.13)

‖T (r−t)fδ‖1 =‖T (kaj−s)fδ‖1 =‖T (aj−s)fδ‖1

≤
{

2j+1 (0 ≤ s < a0 =1 or r−kaj ≤ t<r − kaj +1),

2j−l (al≤s<al+1 or r−kaj +al ≤ t<r−kaj +al+1 , 0≤ l ≤ j−1).

Therefore

∫ r−(k−1)aj

r−kaj
tα−1‖T (r − t)fδ‖1 dt∫ r−(k−1)aj

r−kaj

tα−1 dt

≤
j−1∑
l=0


∫ r−kaj+al+1

r−kaj+al

tα−1 dt∫ r−(k−1)aj

r−kaj
tα−1 dt

 2j−l +


∫ r−kaj+1

r−kaj

tα−1 dt∫ r−(k−1)aj

r−kaj
tα−1 dt

 2j+1.

Define

ξ1 :=
(∫ 1

0
tα−1 dt

)/(∫ aj

0
tα−1 dt

)
,

η1 :=

(∫ r−kaj+1

r−kaj

tα−1 dt

)/(∫ r−(k−1)aj

r−kaj

tα−1 dt

)
,

ξl+2 :=

(∫ al+1

al

tα−1 dt

)/(∫ aj

0

tα−1 dt

)
,

and

ηl+2 :=

(∫ r−kaj+al+1

r−kaj+al

tα−1 dt

)/(∫ r−(k−1)aj

r−kaj

tα−1 dt

)

for 0 ≤ l ≤ j − 1. Then it follows from (4.12) that ξl/ξl+1 ≥ ηl/ηl+1. Hence we
can apply part (a) of Lemma 4.3 to infer that
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j−1∑
l=0


∫ r−kaj+al+1

r−kaj+al
tα−1 dt∫ r−(k−1)aj

r−kaj

tα−1 dt

 2j−l +


∫ r−kaj+1

r−kaj
tα−1 dt∫ r−(k−1)aj

r−kaj

tα−1 dt

 2j+1

≤
j−1∑
l=0


∫ al+1

al

tα−1 dt∫ aj

0
tα−1 dt

 2j−l +


∫ 1

0
tα−1 dt∫ aj

0
tα−1 dt

 2j+1 =
2Dj∫ aj

0
tα−1 dt

=
α

ajα
2Dj < 2

j∑
l=0

(
2
aα

)l

(by (4.4), (4.7))

for each 1 ≤ k ≤ n. Hence

III <
α

rα

(
n∑

k=1

∫ r−(k−1)aj

r−kaj

tα−1 dt

)
2

j∑
l=0

(
2
aα

)l

=
α

rα

(∫ r

r−naj

tα−1 dt

)
2

j∑
l=0

(
2
aα

)l

.

On the other hand we have

IV =
α

rα

∫ r−naj

0
tα−1‖T (r − naj − t)fδ‖1 dt

=
α

rα

(∫ r−naj

0
tα−1 dt

)
· ‖Cα

r−naj fδ‖1

<
α

rα

(∫ r−naj

0
tα−1 dt

)
·
(

4 + 8
j−1∑
k=0

(
2
aα

)k
)

(by (iii)).

Since
rα

α
=

∫ r

0
tα−1 dt, we deduce from these observations that

(4.14) ‖Cα
r fδ‖1 = III + IV < 4 + 8

j−1∑
k=0

(
2
aα

)k

+ 2
j∑

k=0

(
2
aα

)k

(r > aj).

(v) Finally we estimate ‖Cα
t g′r‖1 (t > 0), where g′r is the function defined in

(4.10) for the case that aj′−1 ≤ r − δ′ < r < aj′ , with 1 ≤ j ′ ≤ j and 0 < δ′ < 1.
If 0 < t ≤ r, then, as in (ii) and (iii), we have



Growth Orders of Means of Functions in Banach Spaces 1245

(4.15) ‖Cα
t g′r‖1 <

4 + 8
j′−1∑
k=0

(
2
aα

)k
 ≤

(
4 + 8

j−1∑
k=0

(
2
aα

)k
)

.

And, if t > r, then we write

‖Cα
t g′r‖1 =

α

tα

(∫ t

t−r
+

∫ t−r

0

)
sα−1‖T (t − s)g′r‖1 ds = V + V I,

where

V <
α

tα

∫ r

0

sα−1‖T (r − s)g′r‖1 ds < ‖Cα
r g′r‖1

< 2 + 4
j′−1∑
k=0

(
2
aα

)k

≤ 2 + 4
j−1∑
k=0

(
2
aα

)k

(cf. (4.8)).

On the other hand, since T (r)g ′
r = (2(j−j′)δ′)−1χ[aj−δ′, aj) = 2−(j−j′)fδ′ , it follows

that

V I =
α

tα

∫ t−r

0

sα−1‖T (t − r − s)(fδ′/2j−j′)‖1 ds

<
1

2j−j′ ‖Cα
t−rfδ′‖1 ≤ ‖Cα

t−rfδ′‖1

< 4 + 8
j−1∑
k=0

(
2
aα

)k

+ 2
j∑

k=0

(
2
aα

)k

,

where the last inequality comes from (i), (iii) and (iv); in particular (iii) is applied
to the function gaj = fδ′ .

Hence, if t > r, then

(4.16) ‖Cα
t g′r‖1 = V + V I < 6 + 12

j−1∑
k=0

(
2
aα

)k

+ 2
j∑

k=0

(
2
aα

)k

.

By this and (4.15),

(4.17) sup
0<δ<1

‖Cα
ajfδ‖1 ≤ α(Xj) < 6 + 14

j∑
k=0

(
2
aα

)k

for each j ≥ 1, so that we have:
(vii) γ < α < 1 implies supj≥1 α(Xj) ≤ 6 + 14aα(aα − 2)−1 (since aα > 2);
(viii) 0 < α ≤ γ implies limj→∞ α(Xj) = ∞ (by (4.6)).
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Therefore, we conclude that

(4.18) sup
t>0

‖Cγ
t ‖1 = ∞, and sup

t>0
‖Cβ

t ‖1 < ∞ for all β > γ.

We are now in a position to consider the cosine operator function case. For
j ≥ 1, let

Yj := [−aj, aj), and vj(s) := wj(|s|) for s ∈ Yj .

For t ∈ R, define a point transformation τj,t : Yj → Yj by τj,t(s) := s + t (mod
2aj), and put Sj(t)f(s) := f(τj,t(s)) for f on Yj . Define a measure νj on Yj by
νj := vj(s)ds.

Write

Y :=
∞⋃

j=1

Yj (regarded as a disjoint union),

and let ν be the measure on Y defined by ν|Yj := νj for each j ≥ 1. For t ∈ R,
define an operator S(t) : L1(Y, ν) → L1(Y, ν) by (S(t)f)|Yj := Sj(t)(f |Yj) for
j ≥ 1. It is clear that S(·) becomes a strongly continuous one-parameter group of
positive linear operators on L1(Y, ν). Thus, if we set C(t) := 2−1(S(t) + S(−t))
for t ≥ 0, then (C(t))t≥0 becomes a strongly continuous cosine operator function
of positive linear operators on L1(Y, ν). Then, by using part (b) of Lemma 4.3 and
the above calculations, it is now routine to check that the Cesàro means Cγ

t and Cβ
t

of (C(t))t≥0 satisfy (4.18).
This completes the proof of Theorem 4.2.

The above proof of Theorem 4.2 turns up the following result.

Theorem 4.4. There exists a C0-semigroup (T (t))t≥0 [resp. a strongly continu-
ous cosine operator function (C(t)) t≥0] of positive linear operators on an L 1-space
such that supt>0 ‖T (t)‖ = ∞ [resp. supt>0 ‖C(t)‖ = ∞], but supt>0 ‖Cγ

t ‖ < ∞
for all γ > 0 and, in particular, the Abel means of (T (t)) t≥0 [resp. (C(t))t≥0] are
uniformly bounded.

Proof. We first note that if a(γ) (> 2) denotes the unique solution of
the equation 2 = aγ for 0 < γ < 1, then we have a(γ) ↑ ∞ as γ ↓ 0, and
{a(γ) : 0 < γ < 1} = (2, ∞). Thus, for each k ≥ 1, there exists a unique
γk, with 0 < γk < 1, such that a(γk) = 4k . Since a(1/k) = 2k < 4k = a(γk),
it follows that γk < 1/k. By this, together with the proof of Theorem 4.2 (see
especially (4.3), (4.17), and (vii), (viii) below (4.17)), we see that for each k ≥ 1
there exists a C0-semigroup (Tk(t))t≥0 of positive linear operators on L1(Ωk, µk)
such that



Growth Orders of Means of Functions in Banach Spaces 1247

(4.19) k < sup
t>0

‖Tk(t)‖1 < ∞, and sup
t>0

‖C1/k
t (Tk(·))‖1 ≤ 34,

where the constant 34 comes from (vii) by putting a = a(γk) = 4k , with γ = γk

and α = 1/k. Let

(4.20) Ω :=
∞⋃

k=1

Ωk (regarded as a disjoint union),

and let µ be the measure on Ω defined by µ|Ωk
:= µk for each k ≥ 1. For t ≥ 0,

define a positive linear operator T (t) : L1(Ω, µ) → L1(Ω, µ) by

(T (t)f)|Ωk
:= Tk(t)(f |Ωk

) (k ≥ 1).

It follows that if 0 ≤ f ∈ L1(Ω, µ) then 0 ≤ T (t)f ∈ L1(Ω, µ), and limt↓0 ‖T (t)f−
f‖1 = 0. Thus (T (t))t≥0 is a C0-semigrou p on L1(Ω, µ), and we have
supt>0 ‖T (t)‖1 = ∞, because supt>0 ‖T (t)‖1 ≥ supt>0 ‖Tk(t)‖1 > k for k ≥ 1
by (4.19). On the other hand, if γ > 0, then, choose n ≥ 1 so that 1/n < γ . Then
we have by Theorem 2.2(i)

sup
t>0

‖Cγ
t ‖1 ≤ sup

t>0
‖C1/n

t ‖1

≤ max
1≤k<n

(sup
t>0

‖Tk(t)‖1) + sup
k≥n

(sup
t>0

‖C1/n
t (Tk(·))‖1)

≤ max
1≤k<n

(sup
t>0

‖Tk(t)‖1) + sup
k≥n

(sup
t>0

‖C1/k
t (Tk(·))‖1)

≤ max
1≤k<n

(sup
t>0

‖Tk(t)‖1) + 34 < ∞ (by (4.19)).

This completes the proof for the semigroup case.
The proof for the cosine operator function case is similar, and hence we may

omit the details.
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