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NUMERICAL ALGORITHMS FOR THE LARGEST
STRUCTURED SINGULAR VALUE OF A

µ–SYNTHESIS CONTROL SYSTEM

Kun-Chu Chen, Chern-Shuh Wang* and Ching-Chang Yen

Abstract. Numerical algorithms for the computation of an upper bound of the
largest structured singular value arising from the µ-synthesis control problem
are developed. Since the computation for the largest structured singular value
has been shown to be an NP-hard problem in literatures, we concentrate the
study on the computation for an upper bound of the largest structured singular
value. A Newton’s type method is proposed. Some theoretical results related
to the method are investigated. Numerical implementation shows the efficiency
of the method.

1. INTRODUCTION

In this paper, we study the numerical algorithms for the computation of an upper
bound of the largest structured singular value corresponding to a rational matrix,
say M(s). Consider an internally stable feedback system as given in Fig. 1, where
M(s) = C(sI − A)−1B ∈ Cm×m is a transfer function matrix and �(s) is an
m × m matrix function modelling uncertainty. An intuitive question is how large
�(s) may go before it causes instability of the closed feedback system in Fig. 1. It
means that we are interested in the margin ‖ � ‖∞ so that the closed loop system
has poles in the closed right complex plane.

Since the poles of the closed loop system are determined by the roots of det(I−
M(s) � (s)) = 0, for an internally stable M(s), the closed loop system is stable
provided that ‖�‖∞ is sufficiently small. The small gain theorem [30] shows that

the margin of stability can be determined by
1

‖M‖∞ whenever �(s) ∈ Cm×m is

unstructured. Here ‖M‖∞ is defined by

‖M‖∞ = sup
s∈C+

σ(M(s)) = sup
ω∈R

σ(M (̂i ω))
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Fig. 1. The block diagram.

which is usually named the H∞-norm of M(s), where î =
√−1. Note that for any

fixed s ∈ C+, the largest singular value of M(s), denoted by σ(M(s)), is equivalent
to

(1.1) σ(M(s)) =
1

min
�∈Cm×m

{σ(�) | det(I − M(s)�) = 0}.

In other words, σ(M(s)) gives a measure of the smallest unstructured uncertainty
� ∈ Cm×m that causes instability of the closed loop system.

The results of (1.1) can be adopted whenever the uncertainty � is structured.
It hence gives the definition of the largest structured singular value of M(s) with
respect to a structured �. Consider the set of the structured uncertainty ∆ as below.

(1.2) ∆ = {diag(δ1Ir1 , . . . , δSIrS
,�1, . . . ,�F ) | δi ∈ C,�j ∈ Cmj×mj},

where
S∑

i=1

ri +
F∑

j=1

mj = m.

The largest structured singular value for the matrix M ∈ Cm×m with respect to
the set of structured uncertainties, ∆, can be defined as the same as in [30],

(1.3) µ∆(M) =


1

min
�∈∆

{σ(�) | det(I − M�) = 0}

0, if det(I − M�) �= 0 for all � ∈ ∆.

Note that since the triangle inequality is not always true for µ∆(·), the function
µ∆ : Cm×m −→ R+∪{0} cannot be a norm. However, the computation of µ∆(M),
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usually plays a key role to the robust stability analysis for a control system having
structured uncertainties. Unfortunately, the computation of µ∆(M) has shown to
be an NP-hard problem [5, 28]. Therefore, the study of the computation of upper
and lower bounds of µ∆(M) are ubiquitously blooming in literatures. Some native
polynomial-time algorithms for computing upper and lower bounds of µ∆(M) are
assembled already in [2]. Some algorithms for the computation of upper bounds
which convert the problems to linear matrix inequalities (LMIs) are available in
[10, 16, 18, 26]. On the study of the lower bounds, some literatures are proposed
[9, 17, 24, 30]. Using the power iteration, [25, 29] focus on the estimation of the
lower bounds. Using these bounds, [18] shows how to estimate the µ-norm for a
µ-synthesis system, combining with an elegant algorithm given in [3].

The paper is organized as follows. In Section 2, we summary some preliminaries
related to the bounds of µ∆(M) which have already been proposed in literatures. We
also describe the problem to be investigated which is an optimization problem with
linear matrix inequality constraints. Section 3 lists a basic algorithm for solving the
problem prescribed in Section 2. Some theoretical results related to the development
of a Newton’s type method are included in Section 4. An appropriate Newton’s type
algorithm is hence developed in Section 5. The numerical implementation of the
developed algorithms is in Section 6, together with some numerical results. Finally,
we give some conclusions of this paper in Section 7.

2. PRELIMINARIES AND PROBLEM DESCRIPTION

When a particular set of uncertainties ∆ = {δIm | δ ∈ C}, a set with least
degree of freedom, µ∆(M) = ρ(M) ≡ max

λ∈λ(M )
|λ|, where λ(M) denotes the set of

eigenvalues of M . From the definition in (1.1), we have µ∆(M) satisfying

ρ(M) ≤ µ∆(M) ≤ σ(M) .

To derive more general bounds for µ∆(M), some sets of uncertainties with higher
degree of freedom shall be investigated. Let

U = {U ∈ ∆ | UU∗ = Im},
D = {diag(D1, . . . , DS, d1Im1, . . . , dFImF

) | Di∈Cri×ri , Di=D∗
i >0, dj ∈R+}.

Then, some associated bounds are listed in [30]:

ρ(M) ≤ max
U∈U

ρ(UM) ≤ µ∆(M) ≤ inf
D∈D

σ(DMD−1) ≤ σ(M).

In this paper, we are interested in the computation of the bound inf
D∈D

σ(DMD−1),

instead of µ∆(M) which leads to an NP-hard problem [10]. However, in general,
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inf
D∈D

σ(DMD−1) is hard to compute unless a restricted subset of D, denoted by Dd,
is adopted, where

Dd = {diag(D1, . . . , DS, d1Im1 , . . . , dFImF
) |

Di ∈ Cri×ri , Di = D∗
i is diagonal and positive definite, dj ∈ R+}

Clearly,

(2.1) µ∆(M) ≤ inf
D∈D

σ̄(DMD−1) ≤ inf
D∈Dd

σ̄(DMD−1).

Straightforward calculations lead to

inf
D∈Dd

σ̄(DMD−1) = inf
D∈Dd

{γ|(DMD−1)∗(DMD−1) ≤ γ2I}
= inf

D∈Dd

{γ|M∗D∗DM ≤ γ2D∗D}
= inf

P∈R+(Dd)
{γ|M∗PM ≤ γ2P}

where R+(Dd) is a subset of Dd with all diagonal elements being positive real
numbers [18].

Define the following matrix functions of vector variable x = [x1, · · ·, xm]T ∈
Rm

+ ,

(2.2) A(x) ≡
m∑

i=1

xiAi, where Ai = M∗eie
T
i M,

(2.3) B(x) ≡
m∑

i=1

xiBi, where Bi = eie
T
i

and

ei is the i-th column of the m-th indentity Im,

Rm
+ = {x = [x1, · · ·, xm]T ∈ Rm, xi > 0}.

Therefore, finding inf
D∈Dd

σ(DMD−1) is equivalent to solving a linear matrix

inequality (LMI, in short), referred to as the generalized eigenvalue problem (GEVP)
in [4] as below.
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Problem 1.{
min

x
λmax(A(x), B(x)), where λmax(A(x), B(x)) is the maximal

eigenvalue of A(x) − λB(x), subject to x = (x1, . . . , xm) ∈ Rm
+ .

Consequently, the upper bound for the largest structured singular value µ∆(M)
in (2.1) can be computed by the fact of

inf
D∈Dd

σ̄(DMD−1) = [ min
x∈Rm

+

λmax(A(x), B(x))]1/2,

whenever Problem 1 is solvable.

3. A BASIC ALGORITHM FOR PROBLEM 1

There have already been a lot of numerical methods for solving Problem 1; see
[4]. We now give a brief description of a basic method, known as the ellipsoid
algorithm, which can be considered a higher dimensional bisection method.

The key step of the ellipsoid algorithm is to find the ”cutting plane” of an
associated ellipsoid containing the feasible cone. The cutting plane of a feasible
ellipsoid centered at x is usually determined by the norm vector g such that an
optimal point of Problem 1 lies in the half-space {z | g∗(z − x) < 0}. The
following arguments are mainly from [4].

Without any ambiguity we denote λmax(x) = λmax(A(x), B(x)). Pick u �= 0
to be the eigenvector satisfying

(3.1) A(x)u = λmax(x)B(x)u.

Define g = [g1, · · ·, gm]T by

(3.2) gi = −u∗(λmax(x)Bi − Ai)u, i = 1, · · ·, m.

From the definitions in (2.2) and (2.3), we know that A(x), B(x) are both Hermitian
and B(x) is positive definite, so λmax(x) has to be a real number. Using (2.2),
(2.3) and (3.1), we conclude that

g∗x =
m∑

i=1

g∗i xi = −
[

m∑
i=1

u∗(λmax(x)Bi − Ai)uxi

]

= −
[

u∗(λmax

m∑
i=1

xiBi −
m∑

i=1

xiAi)u

]
= −u∗ [λmaxB(x)u − A(x)u] = 0.
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Similar, for any vector z,

g∗(z − x) = g∗z =
m∑

i=1

g∗i zi

= −
m∑

i=1

u∗(λmax(x)Bi − Ai)uzi

= −u∗(λmax(x)
m∑

i=1

ziBi −
m∑

i=1

ziAi)u

= −u∗[λmax(x)B(z) − A(z)]u.

Hence, if g∗(z − x) � 0, then

u∗(λmax(x)B(z) − A(z))u � 0.

This implies

λmax(x) = λmax(A(x), B(x)) � λmax(A(z), B(z)) = λmax(z),

whenever g∗(z − x) � 0. Therefore, the vector g in (3.2) gives a normal vec-
tor of the cutting plane, and indicates that the optimal point lies in the half-space
{z ∈ Cm | g∗(z − x) < 0}.

We now give a brief summary of the ellipsoid algorithm, which is also named
the bisection algorithm hereafter for solving Problem 1.

Ellipsoid Algorithm (A Higher Dimensional Bisection Algorithm) [4]

Input: M , x(1) = [x(1)
1 , · · ·, x(1)

m ]T ∈ Rm
+ , E(1) = diag(22L, · · ·, 22L),

L = a sufficient large number, ε = a small tolerance, k = 1.
Output: a minimizer x∗ for Problem 1.
Repeat until convergence.
step 1: Evaluate A(x(k)), B(x(k)) by using definitions in (2.2) and (2.3).
step 2: Compute the maximal eigenpair (λ(k)

max, u
(k)) such that

(λ(k)
maxB(x(k)) − A(x(k)))u(k) = 0.

step 3: Compute g(k) = [g(k)
1 , ..., g

(k)
m ]T by

g(k)
ı = −u(k)∗(λ(k)

maxBi − Aı)u(k), for i = 1, 2, ...,m.
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step 4: Set g̃ = g(k)/
√

g(k)∗E(k)g(k).
Update

x(k+1) = x(k) − 1
m + 1

E(k)g̃,

E(k+1) =
m2

m2 − 1

(
E(k) − 2

m + 1
E(k)g̃g̃∗E(k)

)
.

step 5: The stopping criteria:
If ‖x(k+1) − x(k)‖ < ε, accept x∗ = x(k+1), stop.
If e2mL− k

2m < ε, accept x∗ = x(k+1), stop.
step 6: k = k + 1, return to Repeat.

Note that the volume of k-th ellipsoid is always less than e2mL−k−1
2m .

Remark. The bisection algorithm is definitely reliable because the method is
always convergent. However, a more effective algorithm is still being sought for
solving Problem 1. A well-known class of algorithms, the interior point methods, has
been developed for solving nonlinear optimization problems [11, 18]. A suitable
interior point method for Problem 1 can be found in the MatLab LMI toolbox,
with an executable MatLab command “gevp” [21]. Since the theory of interior
point methods has been well studied, we omit the discussion of this method here.
Furthermore, in practice (see Section 6), the efficiency of gevp in MatLab is not
satisfactory, and other more efficient numerical methods have to be developed.

4. SOME THEORETICAL RESULTS RELATED TO NEWTON’S METHOD

Let u(x) be the eigenvector corresponding to λmax(x). The Rayleigh-quotient
formula shows that

(4.1) λmax(x) =
u∗(x)A(x)u(x)
u∗(x)B(x)u(x)

.

Problem 1 can be possibly solved by finding critical points of λmax(x) in the feasible
set. That is, it suffices to find a solution of

(4.2) �λmax(x) = 0

in the feasible set Rm
+ = {x = [x1, · · ·, xm]T ∈ Rm, xi > 0, i = 1, · · ·, m}.

Instead of Problem 1, we now investigate the Newton-type methods for solving the
nonlinear problem (4.2).
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Remark. Equation (4.2) yields the critical points of λmax(x), and we need
to calculate all the partial derivatives of λmax(x) and u(x) with respect to each
component x1, · · · , xm. Without loss of the generality, we assume that λmax(x) is
a simple eigenvalue. Then λmax(x) gives an analytic function in a neighborhood
of x [1]. This guarantees the existence of partial derivatives of λmax(x) and u(x).
When λmax is not a simple eigenvalue of A(x) − λB(x), the symmetry of A(x)
and B(x) implies that λmax has to be semi-simple. For that case, the existence of
those derivatives is an straightforward extension. For more details related to the
semi-simple eigenvalue, refer to [1].

The following lemma expresses �λmax(x) in terms of λmax, u and the coeffi-
cient matrices Ai, Bi, i = 1, · · · , m.

Lemma 1. If A(x)u(x) = λmaxB(x)u(x), and u∗(x)B(x)u(x) = 1, then for
i = 1, ..., m,

(4.3)
∂λmax(x)

∂xi
= u∗(x)Aiu(x) − λmaxu

∗(x)Biu(x).

Proof. If u∗(x)B(x)u(x) = 1, we have ∂
∂xi

(u∗(x)B(x)u(x)) = 0. This
implies

u∗
xi

Bu + u∗Biu + u∗Buxi = 0.

Since (u∗
xi

Bu)∗ = u∗Buxi , we have

(4.4) 2
e(u∗
xi

Bu) + u∗Bıu = 0,

Here 
e(u∗
xi

Bu) stands for the real part of u∗
xi

Bu. From (4.4) and A(x)u(x) =
λmaxB(x)u(x), we have


e(u∗
xi

Au) = −λmax

2
u∗Biu.

Therefore,

∂λmax(x)
∂xi

=
∂

∂xi
(u∗(x)A(x)u(x))

= u∗
xi

Au + u∗Aiu + u∗Auxi

= 2
e(u∗
xi

Au) + u∗Aiu

= u∗Aiu − λmaxu
∗Biu.
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Lemma 2. If A(x)u(x) = λmaxB(x)u(x), and u∗(x)B(x)u(x) = 1, then for
i = 1, · · · , m, j = 1, · · · , m,

(4.5)

∂2λmax(x)
∂xj∂xi

= 2
e(u∗(x)Aiuxj (x))

−∂λmax(x)
∂xj

u∗(x)Biu(x) − 2λmax
e(u∗(x)Biuxj (x)).

Proof. Lemma 1 gives ∂λmax(x)
∂xi

= u∗(x)Aiu(x) − λmaxu
∗(x)Biu(x). This

implies

∂2λmax(x)
∂xj∂xi

=
∂

∂xj

(
∂λmax(x)

∂xi

)
=

∂

∂xj
(u∗(x)Aiu(x) − λmax(x)u∗(x)Biu(x))

= u∗
xj

Aiu + u∗Aiuxj −
∂λmax(x)

∂xj
u∗Biu − λmaxu

∗
xj

Biu − λmaxu
∗Biuxj .

Since (u∗
xj

Aiu)∗ = u∗Aiuxj , (u
∗
xj

Biu)∗ = u∗Biuxj and λmax ∈ R, we have

∂2λmax(x)
∂xj∂xi

= 2
e(u∗Aiuxj)−
∂λmax(x)

∂xj
u∗Biu− 2λmax
e(u∗Biuxj)

Lemma 3. Let A(x)u(x) = λmaxB(x)u(x), and u∗(x)B(x)u(x) = 1. Then

(4.6)
m∑

i=1

uxi(x)xi = (−1
2

+ b̂i)u(x) for some b ∈ R

where î =
√−1.

Proof. Differentiating both sides of A(x)u(x) = λmaxB(x)u(x) yields

Aiu + Auxi =
∂λmax

∂xi
Bu + λmaxBiu + λmaxBuxi .

This implies

(A − λmaxB)uxi = Bu
∂λmax

∂xi
− Aiu + λmaxBiu.

Thus,

(4.7)

(A − λmaxB)
m∑

i=1

uxixi

= Bu

(
m∑

i=1

∂λmax

∂xi
xi

)
−
(

m∑
i=1

Aixi

)
u + λmax

(
m∑

i=1

Bixi

)
u.
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From Lemma 1, and definitions of A(x) =
m∑

i=1

Aixi, B(x) =
m∑

i=1

Bixi, we have

(4.8)
m∑

i=1

∂λmax

∂xi
xi = 0,

and hence (4.7) becomes

(4.9) (A − λmaxB)
m∑

i=1

uxixi = 0.

Since λmax is simple, (4.9) implies that
m∑

i=1

uxixi is parallel to u. We hence conclude

that

(4.10)
m∑

i=1

uxi(x)xi = cu(x), for some c ∈ C.

Differentiating both sides of u∗(x)B(x)u(x) = 1 and using the similar arguments
of the proof of Lemma 1, we derive


e[u∗(x)B(x)uxi(x)] = −1
2
u∗(x)Biu(x).

This implies

(4.11)


e

[
u∗(x)B(x)(

m∑
i=1

uxi(x)xi)

]

= −1
2
u∗(x)

(
m∑

i=1

xiBi

)
u(x) = −1

2
u∗(x)B(x)u(x) = −1

2
.

Hence 
e(c) = −1
2 and (4.10) concludes

m∑
i=1

uxi(x)xi = (−1
2

+ b̂i)u(x) for some b ∈ R.

Theorem 2. Let {x(k+1)}k=0 be a sequence of the Newton’s iteration by

x(k+1) = x(k) − [D2λmax(x(k))]−1�λmax(x(k)),

where D2λmax(x(k)) =
[

∂2λmax(x(k))
∂xj∂xi

]
m×m

. Then

x(k+1) = 2x(k), for k = 1, 2, · · · .



Algorithms for Largest Structured Singular Value 983

Proof. Using Lemma 2, the i-th component of D2λmax(x(k))x(k) becomes

∂2λmax

∂xi∂x1
x1 + · · ·+ ∂2λmax

∂xi∂xm
xm

=
m∑

j=1

[
2
e(u∗Aiuxj) −

∂λmax(x)
∂xj

u∗Biu − 2
e(λmaxu
∗Biuxj)

]
xj

= 2
e
(
u∗Ai

( m∑
j=1

uxj xj

))
−
( m∑

j=1

∂λmax(x)
∂xj

xj

)
u∗Biu

−2
e
(
u∗λmaxBi

( m∑
j=1

uxj xj

))
.

By (4.8), we have
m∑

j=1

∂λmax

∂xj
xj = 0, hence

(4.12)
m∑

j=1

∂2λmax

∂xj∂xi
xj = 2
e

[
u∗(Ai − λmaxBi)

m∑
j=1

uxj xj

]
.

By applying Lemma 3 to (4.12), we have

(4.13)

m∑
j=1

∂2λmax

∂xj∂xi
xj

= 2
e
(
u∗(Ai − λmaxBi)(−1

2
+ b̂i)u

)
= 2
e

(
u∗(Ai − λmaxBi)(−1

2
u)
)

+ 2
e
(
u∗(Ai − λmaxBi)ub̂i

)
.

Since λmax ∈ R and Ai, Bi are Hermitian, u∗(Ai−λmaxBi)u ∈ R. Thus (u∗(Ai−
λmaxBi)ub̂i) has to be a pure imaginary number. Using Lemma 1 again, (4.13)
becomes

m∑
j=1

∂2λmax

∂xj∂xi
xj = 2u∗(Ai − λmaxBi)(−1

2
u) = −∂λmax

∂xi
.

Thus we can conclude that

D2λmax(x(k))x(k) = −�λmax(x(k)),

or equivalently
[D2λmax(x(k))]−1�λmax(x(k)) = −x(k),
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provided that [D2λmax(x(k))]−1 exists. Therefore,

x(k+1) = x(k) − [D2λmax(x(k))]−1�λmax(x(k))

= 2x(k).

Remark. Since A(x) =
m∑

i=1

Aixi and B(x) =
m∑

i=1

Bixi are both linear of x,

A(αx) = αA(x) and B(αx) = αB(x) for any nonzero scalar α �= 0. This implies

det(A(αx)− λB(αx)) = αm det(A(x)− λB(x)).

Thus

λmax(αx) = λmax(A(αx), B(αx)) = λmax(A(x), B(x)) = λmax(x),

for α �= 0. This means that λmax(x) is a degree-1 homogeneous function of x.
Using the homogeneity of λmax(x), Theorem 2 shows that

λmax(x(k+1)) = λmax(2x(k)) = λmax(x(k)),

where {x(k)}∞k=1 is generated by the Newton’s iteration. Hence, the Newton’s
method cannot be applied to solve the problem �λmax(x) = 0 unless the constraint
of homogeneity of λmax(x) is considered. Therefore, from now on, we study on the
nonlinear problem having homogeneity constraint as below.

Problem 2.{
�λmax(x) = 0,

subject to x = (x1, · · · , xm)T ∈ Rm
+ and xm = 1.

5. NEWTON-TYPE ALGORITHM FOR PROBLEM 2

To develop a Newton-type method for solving Problem 2, we need to know the
second derivatives, ∂2λmax(x)

∂xj∂xi
, 1 ≤ i, j ≤ m, in terms of λmax(x), u(x), Ai, and Bi,

(1 ≤ i ≤ m). As a result of Lemma 2, we firstly express uxi(x) for i = 1, · · · , m.

For the case of M ∈ Cm×m we have A(x) and B(x) ∈ Cm×m. Without loss
of the generality, we assume that λmax(x) is a simple eigenvalue of A(x)− λB(x)
and u(x) is its associated eigenvector satisfying u∗(x)B(x)u(x) = 1.
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Differentiating both sides of A(x)u(x) = λmaxB(x)u(x) yields

Aiu + Auxi =
∂λmax

∂xi
Bu + λmaxBiu + λmaxBuxi .

This implies

(5.1) (A − λmaxB)uxi = Bu
∂λmax

∂xi
− Aiu + λmaxBiu.

Since u∗(x)B(x)u(x) = 1, we have ∂
∂xi

(u∗(x)B(x)u(x)) = 0. This derives

u∗
xi

Bu + u∗Biu + u∗Buxi = 0,

and thus

(5.2) 
e(u∗Buxi) = −1
2
u∗Biu.

Define Φ =
[
A − λmaxB u

]
, then (5.1) implies

(5.3) Φ
[
uxi

1

]
= Bu

∂λmax

∂xi
− Aiu + λmaxBiu + u.

Since λmax is assumed to be a simple eigenvalue of the Hermitian matrix pencil
A(x) − λB(x), Φ must have full row rank. This implies that system (5.3) is
solvable. A particular solution of (5.3) using the pseudo-inverse Φ+ = Φ∗(ΦΦ∗)−1

is as follows

(5.4)
[
ûxi

1

]
= Φ∗(ΦΦ∗)−1(Bu

∂λmax

∂xi
− Aiu + λmaxBiu + u).

So a general solution satisfying (5.3) can be given as

(5.5) uxi = ûxi + βu, for an arbitrary scalar β.

It is remarkable the way uxi appears in ∂2λmax
∂xj∂xi

= 2
e(u∗Ajuxi)−∂λmax
∂xi

u∗Bju−
2λmax
e(u∗Bjuxi) from (4.5) in Lemma 2. This implies that only the real part of
the scalar β in (5.5) has a contribution to ∂2λmax

∂xj∂xi
. We hence study the case with

β ∈ R only.
Since λmax is simple, it remains to compute β ∈ R for identifying uxi . Sub-

stituting (5.5) into (5.2) and using u∗(x)B(x)u(x) = 1, yields 
e(u∗Bûxi) + β =
−1

2u∗Biu. This implies

(5.6) β = −
e(u∗Bûxi) −
1
2
u∗Biu.
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Consequently, we briefly describe the Newton’s method for solving Problem 2.

Algorithm (Newton’s Method)

Input: M ∈ Cm×m, x(0)=[ x
(0)
1 , · · ·, x(0)

m ]T ∈Rm
+ , with x

(0)
m =1, ε = a small

tolerance, k = 1.

Output: x∗ gives the solution of Problem 2. Hence, x∗ ∈ Rm
+ is the minimizer for

Problem 1 or (GEVP).
Repeat until convergence.
step 1: Evaluate A(x(k)), B(x(k)) by using (2.2), (2.3).

step 2: Compute λ
(k)
max, u(k) such that

(λ(k)
maxB(x(k)) − A(x(k)))u(k) = 0.

step 3: Compute �̂λmax(x(k)) = �λmax(x(k))(1 : m − 1) by applying Lemma 1.
step 4: Computeuxi for i=1, · · · , m−1, by solving (5.3) and applying (5.5), (5.6).
step 5: Compute ∂2λmax

∂xj∂xi
(x(k)), 1 ≤ i, j ≤ m − 1, by applying Lemma 2.

step 6: Let x̂(k) = x(k)(1 : m − 1). Update

x̂(k+1) = x̂(k) − [D2
m−1λmax(x(k))]−1�̂λmax(x(k)),

x(k+1) =
[
x̂(k+1)

1

]
,

where D2
m−1λmax(x(k)) is the (m − 1)-st principal submatrix of D2λmax(x(k)).

step 7: Stopping criteria:
If ‖x̂(k+1) − x̂(k)‖ < ε or ‖�̂λmax(x(k))‖ < ε, accept x∗ = x(k+1), stop.

step 8: k = k + 1, go to Repeat.

Remark. Formula (5.4) gives a theoretical formula of a particular solution to
the equation (5.3). However, in view of the computation, there is no cheap way
to accomplish formula (5.4) accurately. Fortunately, there are several reliable and
efficient numerical methods for solving (5.3), for instance, the SVD method or QR
factorization method [15].

For the case of M ∈ Rm×m: we have A(x), B(x) ∈ Rm×m. Let (λmax, u(x))
be the eigenpair of the pencil A(x)−λB(x) corresponding to the maximal eigenvalue
λmax. Assume that λmax is simple and uT (x)B(x)u(x) = 1. Since M ∈ Rm×m,
clearly u(x) ∈ Rm×1.

We now express uxi(x) whenever (λmax, u(x)) is computed. From
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A(x)u(x) = λmaxB(x)u(x) and uT (x)B(x)u(x) = 1,

differentiating both equations with respect to xi, yields

(5.7) Aiu + Auxi =
∂λmax

∂xi
Bu + λmaxBiu + λmaxBuxi ,

and

(5.8) 2uTBuxi + uTBiu = 0.

Reordering (5.7) derives

(5.9) (A − λmaxB)uxi − Bu
∂λmax

∂xi
= −Aiu + λmaxBiu.

Grouping (5.8) and (5.9) in a matrix-vector form, we have

(5.10)
[
A − λmaxB −Bu

uTB 0

] uxi

∂λmax

∂xi

 =

[−Aiu + λmaxBiu

−1
2
uT Biu

]
.

To verify the system (5.10) is solvable so that uxi and ∂λmax
∂xi

are computable,

it suffices to show that the matrix
[
A − λmaxB −Bu

uTB 0

]
is nonsingular. Suppose

that there is a nonzero vector
[
zT γ

]T such that[
A − λmaxB −Bu

uT B 0

] [
z

γ

]
= 0.

Than
(A − λmaxB)z − γBu = 0, and uTBz = 0.

If γ �= 0, then
Az = λmaxBz + γBu.

This implies A(x) − λB(x) has a Jordan block corresponding to λmax. This is
a contradiction, because both A(x) and B(x) are symmetric and B(x) is positive
definite.

If γ = 0, then λmax(x) must be a multiple eigenvalue of A(x) − λB(x). This
contradicts to the assumption that λmax is a simple eigenvalue of A(x) − λB(x).
However, the assumption is always true in the generic sense. Therefore, for the case
of M ∈ Rm×m, system (5.10) is solvable and uxi ,

∂λmax
∂xi

are hence computable.

We now give the real-valued Newton’s method for solving Problem 2.
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Algorithm (Newton’s Method for Real-Valued Case)
Input: M ∈ Rm×m, x(0)=[ x

(0)
1 , · · ·, x(0)

m ]T ∈Rm
+ with x

(0)
m =1, ε = a small

tolerance, k = 1.

Output: x∗ gives the solution of Problem 2. Hence, x∗ ∈ Rm
+ solves Problem 1,

i.e., (GEVP).
Repeat until convergence.
step 1: Compute A(x(k)), B(x(k)), by using (2.2), (2.3).
step 2: Compute λ

(k)
max, u

(k) such that

(λ(k)
maxB(x(k)) − A(x(k)))u(k) = 0.

step 3: Compute �̂λmax(x(k)) = �λmax(x(k))(1 : m − 1) by applying Lemma 1.
step 4: For � = 1, · · · , m− 1,

Solve
[
A − λmaxB −Bu

uTB 0

][
ux�

∂λmax
∂x�

]
=
[−A�u + λmaxB�u

−1
2uT B�u

]
End for

step 5: Compute ∂2λmax
∂xj∂xi

(x(k)), 1 ≤ i, j ≤ m − 1, by applying Lemma 2.

step 6: Let x̂(k) = x(k)(1 : m − 1). Update

x̂(k+1) = x̂(k) − [D2
m−1λmax(x(k))]−1�̂λmax(x(k)),

x(k+1) =
[
x̂(k+1)

1

]
,

where D2
m−1λmax(x(k)) is the (m − 1)-st principal submatrix of D2λmax(x(k)).

step 7: Stopping criteria:
If ‖x̂(k+1) − x̂(k)‖ < ε or ‖�̂λmax(x(k))‖ < ε, accept x∗ = x(k+1), stop.

step 8: k = k + 1, go to Repeat.
Remark. Step 4 of the algorithm which solves an m+1 linear system constitutes

the main cost of computation for each iteration of Newton’s method (for real-valued
cases). To save the computation cost, we usually adopt the LU -decomposition

of
[
A − λmaxB −Bu

uTB 0

]
for solving the corresponding linear system. The cost is

hence about 3m3 operations [7].

6. NUMERICAL IMPLEMENTATION

The numerical implementation is accomplished by MatLab codes on a Intel(R)
Pentium 4, CPU 2.00GHz machine with 256 MB of RAM.



Algorithms for Largest Structured Singular Value 989

Example 1. Let

M =
[
0 1
c b

]
.

For this case, whenever a normalized condition is imposed by x2 = 1, the exact
solution of Problem 1 is

x∗ =
[
c
1

]
.

Let c = 2 and b = 3. Fig. 2, shows the curve of λmax versus x1. The perfect
convexity of the curve shows that λmax has the minimum at x1 = 2.

Fig. 2. λmax versus x1.

Figs. 3, 4 illustrate the numerical results for Example 1 by applying the bisection
and Newton’s methods, respectively, with the initial guess

[
1 1

]T . The quadratic
convergence of Newton’s method is realistic in Fig. 4. Fig. 5 gives the comparison
of efficiency of the bisection method, Newton’s method and the method associated
with “gevp” in MatLab LMI Toolbox [21]. Numerical results here indicate that the
Newton’s is the most efficient one among proposed three methods. The stopping
criteria in the numerical experiment for Example 1 are ‖x̂(k+1)− x̂(k)‖ < 10−8 and
‖�̂λmax(x(k))‖ < 10−8, respectively. Note that in all figures of this section, we
denote x∗ to be the exact solution and xk to be the k-th iterative vector generated
by the corresponding method.

Example 2. The example is from [19]. Consider

M =
[
4 + i 4i

−1 i

]
.

The exact solution is
x∗ =

[
0.25
1.00

]
.
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Figs. 6, 7 illustrate the numerical results for Example 2 by applying the bisection and
Newton’s method, respectively, with initial guess

[
1 1

]T
. The comparison of nu-

merical results of proposed algorithms are illustrated in Fig. 8. The stopping criteria
for test numerical methods are ‖ x̂(k+1)−x̂(k) ‖< 10−8 and ‖�̂λmax(x(k))‖ < 10−8.
Once again, Fig. 7 highlights the quadratic convergence of Newton’s method. Fig. 8
shows that Newton’s method is most efficient among the proposed three methods.

Fig. 3. Numerical results for Example 1 by using the bisection method.

Fig. 4. Numerical results for Example 1 by using Newton’s method.
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Fig. 5. Comparisons of the efficiency of numerical methods.

Fig. 6. Numerical results for Example 2 by using the bisection method.
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Fig. 7. Numerical results for Example 2 by using Newton’s method.

Fig. 8. Comparisons of the efficiency of numerical methods.
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Example 3. The example is from[30]. Consider

M =

1 + i 10 − 2i −20i

5i 3 + i −1 + 3i

−2 i 4 − i

 .

Since there is no exact solution to Example 3, we exploit the computation results
by using the bisection method to obtain an acceptable solution,

x̃ =

0.1565412174129063
0.4692003612185643
1.0000000000000000

 .

Since Newton’s method is locally convergent, obtaining an appropriate initial
guess is a crucial step for Newton’s method. In this example, we adopt the iterative
vector x(k) generated by the bisection method so that ‖ x̂(k+1) − x̂(k)‖ < 0.05 or
‖�̂λmax(x(k))‖ < 0.05, to be an initial vector for Newton’s method.

Figs. 9, 10, illustrate the numerical results for Example 3 by applying the bisec-
tion and “bisection + Newton’s” method, respectively, with initial guess

[
1 1 1

]T .
Here “bisection + Newton’s” method means that we use the bisection method first
to obtain a reliable initial vector and then apply the Newton’s method to compute
the solution of the problem. Fig. 11 illustrate the numerical results for Example 3
by applying Newton’s method with a good initial guess

[
0.1 0.4 1.0

]T which is
closer to the target vector x̃. The results in Fig. 11 show the quadratic convergent
behavior of Newton’s method. Finally, we show the comparison of numerical re-
sults of proposed algorithms in Fig. 12. The results of comparison conclude that
the method associated with gevp in MatLab LMI Toolbox which realize the in-
terior point method for Problem 1 is very competitive with the bisection method.
However, Newton’s method is the most efficient algorithm for Example 3.

7. CONCLUSION

In this paper, we investigate the computation for the largest structured singular
value, µ∆(M), under a diagonal uncertainty which can be seen to be an upper bound
of µ∆(M) for the case of a general structured uncertainty. We develop a Newton’s
type method for computing the upper bound of µ∆(M). The related theoretical
results are studied as well. Numerical implementation shows the efficiency for
the developed Newton’s method. In addition, the numerical results illustrate that
the Newton’s method converges local quadratically. Recently, the computation of
the largest structured singular value µ∆(M) with various structured uncertainties,
becomes an important problem [18, 19, 20, 23] because that the computation is the
kernel issue for the optimal µ-synthesis controller designment which is more close
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to the real-world application than H2 or H∞ control. However, a fast algorithm
for the computation of the largest structured singular value with various structured
uncertainty is under investigated.

Fig. 9. Numerical results for Example 3 by using the bisection method.

Fig. 10. Numerical results for Example 3 by using bisection + Newton’s method.
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Fig. 11. Numerical results for Example 3 by Newton’s method with initial guess
[0.1 0.4 1.0]T .

Fig. 12. Comparisons of the efficiency of numerical methods.
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