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A STRUCTURED DOUBLING ALGORITHM FOR DISCRETE-TIME
ALGEBRAIC RICCATI EQUATIONS WITH SINGULAR

CONTROL WEIGHTING MATRICES

Chun-Yueh Chiang, Hung-Yuan Fan and Wen-Wei Lin

Abstract. In this paper we propose a structured doubling algorithm for solv-
ing discrete-time algebraic Riccati equations without the invertibility of control
weighting matrices. In addition, we prove that the convergence of the SDA
algorithm is linear with ratio less than or equal 1

2 when all unimodular eigen-
values of the closed-loop matrix are semi-simple. Numerical examples are
shown to illustrate the feasibility and efficiency of the proposed algorithm.

1. INTRODUCTION

The paper concerns with a structured doubling algorithm (SDA) for finding
the symmetric almost stabilizing solution Xs of a discrete-time algebraic Riccati
equation (DARE) of the form

(1.1)
R(X) ≡ −X + A�XA + Q

−(C + B�XA)�(R + B�XB)−1(C + B�XA) = 0,

where A ∈ R
n×n , B ∈ R

n×m, C ∈ R
m×n, Q = Q� ∈ R

n×n and R = R� ∈
Rm×m, respectively. A symmetric solution X ∈ Rn×n of (1.1) is called stabilizing
(respectively, almost stabilizing) if R+B�XB is invertible and all the eigenvalues
of the closed-loop matrix AF ≡ A + BF are in the open (respectively, closed) unit
disk, where

(1.2) F = −(R + B�XB)−1(B�XA + C).

Moreover, we say that DARE (1.1) has an almost stabilizing solution X with prop-
erty (P) if X is an almost stabilizing solution to DARE (1.1) and all unimodular
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eigenvalues of AF are semi-simple. The DARE (1.1) arises, e.g., in (a) filtering
or stochastic realization problems, and (b) linear quadratic control problems. In
case (a), R is the measurement noise covariance and it is not uncommon for this
kind of matrix to be singular. For (b), R is the control weighting matrix and in the
discrete-time case, such a matrix can occasionally be singular as well. Therefore,
we focus on the DARE (1.1) with a singular matrix R throughout the paper.

As is widely known, the DARE (1.1) and its stabilizing solution X s originated in
the discrete-time linear quadratic control problem (case (b) from above) formulated
for the discrete-time system

xk+1 = Axk + Buk , k = 0, 1, . . . , x0 = ξ.(1.3)

We wish to minimize the cost functional

(1.4) J(u) =
∞∑

k=0

[
x�

k u�
k

] [
Q C�

C R

][
xk

uk

]
,

where usually R is positive definite and Q is positive semidefinite (see, e.g., [19]
and references therein).

Necessary and sufficient conditions for the existence of the stabilizing solution
Xs to the DARE (1.1) are derived in [13] without any assumptions on the invert-
ibility of A or positivity of R or Q. Note that if the DARE (1.1) has a stabilizing
solution Xs, then it is unique [13, Proposition 1].

For any n× n matrices A and B, the matrix pencil A− λB is called regular if
det(A− λB) ≡/ 0. We shall be concerned only with regular pencils throughout the
paper. A k-dimensional subspace χ of Cn is called a deflating subspace for A−λB

if there exists matrices P1, P2 ∈ C
n×k and Q1, Q2 ∈ C

k×k such that AP1 = P2Q1,
BP1 = P2Q2 and the columns of P1 span χ. A deflating subspace χ of the pencil
A − λB is called stable if the spectrum of A − λB restricted to χ is contained
in the open unit disk. On the other hand, a space V ∈ C2n is called isotropic if

xHJ y = 0 for any x, y ∈ V , where the skew-symmetric matrix J ≡
[

0 I

−I 0

]
and

I is an n×n identity matrix. A deflating subspace V ⊆ C
2n of A−λB ∈ C

2n×2n

is called a stable Lagrangian subspace if it is a maximal isotropic subspace and the
spectrum of A−λB restricted to V is contained in the closed unit disk. For solving
the symmetric stabilizing solution Xs to the DARE (1.1), one common approach is
to compute the stable deflating subspace of the extended symplectic pencil (ESP)
M− λL associated with the DARE (1.1), where

(1.5) M =

 A 0 B
−Q I −C�

C 0 R

 , L =

 I 0 0
0 A� 0
0 −B� 0

 .
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This dilated pencil appears naturally when writing the canonical system associated
with (1.3) and (1.4) in descriptor form. If DARE (1.1) has a symmetric solution X ,
then after some elementary block-row operations, we have

(1.6) M− λL eq.∼
 A + BF − λI 0 B

0 λI − (A + BF )� 0
0 λB� R + B�XB

 .

According to (1.6), a unimodular number λ is an eigenvalue of A + BF with
algebraic multiplicity k if and only if it is an eigenvalue of M−λL with algebraic
multiplicity 2k. The following results give some useful properties of the spectrum
of ESP.

Lemma 1.1. [8]. Let λ be a complex number with |λ| = 1 and X be a solution
of (1.1) such that R + B�XB is positive definite. If

(1.7) rank[λI − A, B] = n,

then the elementary divisors of A+BF corresponding to λ have degrees k 1,k2,. . . ,ks

(1≤k1≤· · ·≤ks≤n) if and only if the elementary divisors of M−λL correspond-
ing to λ have degrees 2k1, . . . , 2ks.

Theorem 1.1. [13]. Suppose that the ESP (1.5) is regular, then we have:
1. deg det(M− λL) ≤ 2m.
2. If λ �= 0 is a generalized eigenvalue of M−λL, then 1/λ is also a generalized

eigenvalue of the same multiplicity.
3. If λ = 0 is a generalized eigenvalue of M − λL with multiplicity r, then

λ = ∞ is a generalized eigenvalue of multiplicity m + r.

If the stable deflating subspace χ is spanned by columns of a (2n + m) × n
matrix

(1.8) V =

V1

V2

V3

 }n
}n
}m

,

and V1 is invertible, then Xs = V2V
−1
1 is the stabilizing solution of DARE (1.1),

see, e.g., [7, 13, 22]. Unfortunately, algorithms based on this property do not take
into account the symplectic structure of M−λL in (1.5). Non-structure-preserving
iterative processes loosen the symplectic structure, and this may cause the algorithm
to fail or lose accuracy in adverse circumstances. When (M,L) has no unimodular
eigenvalues and R > 0, the quadratically convergent SDA algorithms [6, 11], based
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on the viewpoint of the inverse-free iteration [1, 17], have been developed for finding
the unique symmetric stabilizing solution Xs of generalized DAREs. Extensive
numerical experiments show that the SDA is more efficient and outperforms the
other algorithms. Therefore, one of our main purposes is to develop a structured
doubling algorithm for computing the symmetric stabilizing solution Xs to DARE
(1.1) without the restriction R > 0.

Since the DARE (1.1) is a nonlinear matrix equation, it is natural to apply
Newton’s method (NTM) to obtain an approximate solution. There is an extensive
literature on the application of Newton’s method for the solution of algebraic Riccati
equations, for both the continuous and the discrete case. In the past, an efficient
Newton-type method has been proposed by [8] to find the symmetric maximal
solution X+ ∈ Rn×n of DARE (1.1). Sufficient conditions for the existence of the
maximal solution X+ to the DARE (1.1) are given in [8, Theorem 1.1].

For A ∈ Rn×n and B ∈ Rn×m, the pair (A, B) is said to be d-stabilizable if
rank[λI − A, B] = n for all λ ∈ C with |λ| � 1. For real symmetric matrices X
and Y , we write X � Y (X > Y ) if X − Y is positive semi-definite (definite).
A symmetric solution X+ of (1.1) is called maximal if X+ � S for every sym-
metric solution S. Maximal and almost stabilizing solutions play important roles in
applications, see, e.g., [8, 13, 14, 19] and references given therein. The following
theorem tells us that the maximal solution is at least almost stabilizing.

Theorem 1.2. [8]. Let (A, B) be d-stabilizable pair and assume that there is a
symmetric solution X̃ of the inequality R(X) � 0 for which R+B�X̃B > 0. Then
there exists a maximal symmetric solution X + of (1.1). Moreover, R+B�X+B > 0
and all the eigenvalues of the closed-loop matrix A F lie in the closed unit disk.

As in Theorem 1.4 of [8], Newton’s iteration converges quadratically to the
symmetric maximal solution X+ when the same conditions as in Theorem 1.2 are
assumed and all eigenvalues of the associated closed-loop matrix AF are in the
open unit disk. In this case, the maximal solution is at least a stabilizing solution
of DARE (1.1). Moreover, it has been proven in [8, Theorem 4.3] that Newton’s
method converges linearly with ratio 1

2 to the maximal solution X+ of the DARE
(1.1) under the same conditions as in Theorem 1.2 and the ESP in (1.5) satisfies
the following assumption.

(A) All elementary divisors of unimodular eigenvalues of M− λL are of degree
two.

Assumption (A) is equivalent to the condition that all eigenvalues of the closed-
loop matrix AF = A − B(R + B�X+B)−1(C + B�X+A) on the unit circle are
semisimple if the first Fréchet derivative of R in (1.1) at the maximal solution X+

is not invertible [8] and the conditions of Theorem 1.2 are satisfied. In Section 3,
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under the assumption (A), we shall prove that the SDA algorithm converges linearly
with ratio less than or equal 1

2 to an almost stabilizing solution Xs with property
(P) of the DARE (1.1).

The paper is organized as follows. In Section 2, we propose a structured dou-
bling algorithm for computing the symmetric stabilizing solution or the maximal
solution of DARE (1.1) without the invertibility of R. Furthermore, a min-max op-
timization problem is proposed for selecting a suitable symmetric matrix Y needed
to initialize algorithm. The convergence analysis of SDA for solving DAREs (1.1)
is shown in Section 3. Some numerical examples with singular matrices R are given
in Section 4 to illustrate the efficiency and feasibility of the SDA algorithm. Finally,
concluding remarks are given in Section 5.

Throughout this paper, we denote AH = Ā� the conjugate transpose of A ∈
C

n×n and ı =
√−1. For any positive integer k, Ik and 0k denote the k×k identity

and zero matrices, respectively. ‖ · ‖ denotes any matrix norm, ρ(A) denotes the
spectral radius of A.

2. SDA AND NEWTON’S METHOD FOR DARES

In this section we first introduce a structured doubling algorithm for solving the
almost stabilizing solution Xs of DARE (1.1) with the control-weighting matrix R
being singular. In general, if a symmetric matrix X ∈ R

n×n satisfies the DARE
(1.1) and all eigenvalues of the closed-loop matrix AF are in the closed unit disk,
then we have

(2.1) M
 I
X

F

 = L
 I
X

F

 Φ,

where the matrix F is as in (1.2) and Φ = AF = A+BF with ρ(Φ) � 1. Since the
control matrix B ∈ R

n×m is usually of full column rank in many applications of
control system theory, we can select an appropriate matrix Y = Y� ∈ Rn×n such
that R̃ ≡ R + B�Y B is invertible. After some elementary block row operators are
applied on both sides of (2.1), we obtain

(2.2)


(I − G0Y )A − BR̃−1C 0 0

−Q + C�R̃−1(C + B�Y A) I 0

C + B�Y A 0 R̃


 I

X

F



=


I − G0Y G0 0

C�R̃−1B�Y A� − C�R̃−1B� 0
B�Y −B� 0


 I

X

F

Φ,
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where G0 = BR̃−1B�.
Next, post-multiplying the second columns of the matrix pair in (2.2) by Y , and

then adding them to the first columns, it follows that

(2.3)


(I − G0Y )A − BR̃−1C 0 0

Q̃ I 0

C + B�Y A 0 R̃


 I

X − Y

F



=

 I G0 0

A�Y A� − C�R̃−1B� 0
0 −B� 0


 I

X − Y

F

 Φ

with Q̃ = −Q + C�R̃−1(C + B�Y A) + Y . Pre-multiplying above matrix pair in
(2.3) by the following block elementary matrix

E =

 I 0 0
−A�Y I 0

0 0 I

 ,

we thus have

(2.4)

 A0 0 0
−H0 I 0

C + B�Y A 0 R̃

  I

X − Y
F

 =

I G0 0
0 A�

0 0
0 −B� 0

  I

X − Y
F

 Φ,

where

A0 = (I − G0Y )A − BR̃−1C,(2.5a)

G0 = BR̃−1B�,(2.5b)

H0 = A�Y A0 − Q̃.(2.5c)

Note that the matrixes G0 and H0 are symmetric. Consider the matrix pair (M0,L0)
in standard symplectic form (SSF), where

(2.6) M0 =
[

A0 0
−H0 I

]
, L0 =

[
I G0

0 A�
0

]
which satisfies M0JM�

0 = L0JL�
0 . By Theorem 1.1, Lemma 1.1, (A) and (2.4),

it is obvious that the spectrum of (M0,L0) is the same of (M,L) except m infinite
eigenvalues. The generalized eigenvalues of (M0,L0) can be arranged as

0, . . . , 0︸ ︷︷ ︸
r

, λr+1, . . . , λ�, ω1, ω1, . . .ωn−�, ωn−�︸ ︷︷ ︸
unimodular eigenvalues

, λ−1
� , . . . , λ−1

r+1,∞, . . . ,∞︸ ︷︷ ︸
r

,
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where the eigenvalues λi are inside the unit circle except the origin, i = r+1, . . . , �.
From (2.4)–(2.5c), we immediately obtain

(2.7) M0

[
I

X − Y

]
= L0

[
I

X − Y

]
Φ.

The DARE associated with the symplectic matrix pair (M0,L0) in SSF is

(2.8) X̃ = A�
0 X̃(I + G0X̃)−1A0 + H0,

on which the efficient SDA algorithm [6, 16] can be applied. Note that if X̃ is the
symmetric solution to the above DARE (2.8), then X = X̃ + Y is the symmetric
solution to the DARE (1.1). As we have mentioned, we can use several elementary
block-row and one block column operations to transform the DARE (1.1) to an
equivalent DARE (2.8) with the associated symplectic matrix pair (M0,L0) in
SSF. As derived in [6], for given any SSF form (2.6), we construct

(2.9) M(0)
∗ =

[
A0(I+G0H0)−1 0

−A�
0 (I+H0G0)−1H0 I

]
, L(0)

∗ =

[
I A0G0(I+H0G0)−1

0 A�
0 (I+H0G0)−1

]

and consequently deduce that

M(0)
∗ L0 = L(0)

∗ M0.(2.10)

We now compute L(0)
∗ L0 and M(0)

∗ M0, and apply the Sherman-Morrison-Woodbury
formula to produce

M1 ≡ M(0)
∗ M0 =

[
A1 0
−H1 I

]
, L1 ≡ L(0)

∗ L0 =
[

I G1

0 A�
1

]
,(2.11)

where

A1 = A0(I + G0H0)−1A0,(2.12a)

G1 = G0 + A0G0(I + H0G0)−1A�
0 ,(2.12b)

H1 = H0 + A�
0 (I + H0G0)−1H0A0.(2.12c)

Equations in (2.11) show that the matrix pair (M1,L1) is again in SSF form.
From (2.10)–(2.11), the pair (M1,L1) satisfies the doubling property: if M0x =
λL0x, then M1x = λM(0)

∗ L0x = λL(0)
∗ M0x = λ2L(0)

∗ L0x = λ2L1x. Equations
(2.12a)–(2.12c) form the basis of the SDA [6, 16], which can be modified for the
DAREs (1.1) as follows:



940 Chun-Yueh Chiang, Hung-Yuan Fan and Wen-Wei Lin

Algorithm 2.1 (SDA for DAREs).

Input: A, B, C, Q, R; τ (a small tolerance); k=0, err=1;
Output: a symmetric stabilizing solution X to DARE (1.1).

Select a symmetric matrix Y such that R̃ ≡ R + B�Y B is invertible;
Put A0 := (I − GY )A − BR̃−1C ,

G0 := BR̃−1B�,
H0 := Q − Y − C�R̃−1B�Y A − A�Y BR̃−1C

−C�R̃−1C + A�Y (I − GY )A;
While err > τ ,

Put Ak+1 := Ak(I + GkHk)−1A�
k ,

Gk+1 := Gk + AkGk(I + HkGk)−1A�
k ,

Hk+1 := Hk + A�
k (I + HkGk)−1HkAk,

err := ‖Hk+1−Hk‖
max{1,‖Hk‖} ;

If I + GkHk is ill-conditioned, then break down,
Else set k := k + 1;
End if

End
X := Hk + Y.

The Newton’s Method in [8, 14] is developed to solve the DARE (1.1) by solving
a discrete-time Lyapunov equation (or Stein) at each iteration. The convergence of
Newton’s method is shown to be either quadratic or linear with the common ratio
1
2 . Specifically, the Newton’s method can be stated as follows. Here we use the
Matlab command dlyap to solve the Stein equation [18].

Algorithm 2.2 (NTM for DAREs).

Input: A, B, C, Q, R; τ (a small tolerance); k=0, err=1;
Output: a symmetric stabilizing solution X to DARE.

Choose L0 such that A0 ≡ A − BL0 is d-stable;
Solve X0 := dlyap(A�

0 , Q + L�
0 RL0 − C�L0 − L�

0 C);
While err > τ ,

Put Lk+1 := (R + B�XkB)−1(C + B�XkA) and Ak+1 := A − BLk;
Solve Xk+1 := dlyap(A�

k , Q + L�
k+1RLk+1 − C�Lk+1 − L�

k+1C);
Put err := ‖Hk+1−Hk‖

max{1,‖Hk‖} ;
Set k := k + 1;

End
X := Xk.

2.1. Selection of Y

For simplicity, we choose Y = γI ∈ Rn×n such that Rγ ≡ R + γB�B is
invertible for γ > 0. We first derive the forward error bounds of matrices A0, G0
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and H0 given in (2.5a)–(2.5c), respectively. According to these forward errors, we
can design a numerical scheme to determine an appropriate value γ̂ > 0. In the
following roundoff analysis, we use fl(·) to denote computed floating point values.
The quantity u is the unit roundoff (or machine precision), which is typically of
order 10−8 or 10−16 in single and double precision computer arithmetic, respectively.
When A and B are m × n real matrices, the matrix B := |A| if bij = |aij| for all
i, j, and A 
 B if aij ≤ bij for all i, j. The 1- and ∞- matrix norms are denoted
by ‖ · ‖1 and ‖ · ‖∞, respectively.

Since Y = γI , it follows from (2.5a)-(2.5c) that

(2.13) A0 = A − γBR−1
γ B�A − BR−1

γ C,

(2.14) G0 = BR−1
γ B�,

(2.15)
H0 = Q − C�R−1

γ C − γI − γC�R−1
γ B�A − γA�BR−1

γ C

+γA�A − γ2A�BR−1
γ B�A.

Since Rγ ∈ R
m×m is symmetric indefinite, the matrix WB ≡ R−1

γ B� can be
computed by block LDL� factorization with any pivoting strategy, for instance,
the Bunch-Kaufman partial pivoting strategy, see e.g., [10, Chapter 11]. Suppose
this algorithm yields the computed factorization PRγP� ≈ L̃D̃L̃�, where P is a
permutation matrix and D̃ has diagonal blocks of dimension 1 or 2. From Theorem
11.3 of [10], we obtain

(2.16)
fl(WB)= WB + E1,

|E1|
 p1(m)u
[
|R−1

γ |(|Rγ|+P�|L̃||D̃||L̃�|P )|fl(WB)|
]
+O(u2),

where p1(m) is a linear polynomial. Since it can be shown that the matrix |L̃||D̃||L̃�|
satisfies the bound [9]

(2.17) ‖ |L̃||D̃||L̃�| ‖M ≤ 36mρm‖Rγ‖M ,

where ‖Rγ‖M ≡ maxi,j |(Rγ)ij| and ρm is the growth factor.
Therefore, it follows from (2.16) and (2.17) that the forward error E1 satisfies

(2.18)

‖E1‖∞ ≤ p1(m)u
[‖R−1

γ ‖∞‖Rγ‖∞‖fl(WB)‖∞
+‖R−1

γ ‖∞‖ |L̃||D̃||L̃�| ‖∞‖fl(WB)‖∞
]

+ O(u2)

≤ p1(m)u
[‖R−1

γ ‖∞‖Rγ‖∞‖fl(WB)‖∞
+m‖R−1

γ ‖∞‖ |L̃||D̃||L̃�| ‖M‖fl(WB)‖∞
]

+ O(u2)
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≤ p1(m)(1 + 36m2ρm)ρmu(‖R−1
γ ‖∞‖Rγ‖∞‖fl(WB)‖∞) + O(u2)

≤ p(m)ρmu(‖R−1
γ ‖∞‖Rγ‖∞‖fl(WB)‖∞) + O(u2),

where p(m) is a cubic polynomial. Similarly, the forward error bound in evaluating
WC ≡ R−1

γ C is given by

(2.19)
fl(WC) = WC + E2,

‖E2‖∞ ≤ p(m)ρmu(‖R−1
γ ‖∞‖Rγ‖∞‖fl(WC)‖∞) + O(u2).

Furthermore, it can be derived from (2.18) and (2.19) that

(2.20)

fl(γBR−1
γ B�A) = γBR−1

γ B�A + E3,

‖E3‖∞ � p(m)ρmu(γ‖B‖∞‖R−1
γ ‖∞‖Rγ‖∞‖fl(WB)‖∞‖A‖∞)

+O(u2),

and

(2.21)

fl(BR−1
γ C) = BR−1

γ C + E4,

‖E4‖∞ � p(m)ρmu(‖B‖∞‖R−1
γ ‖∞‖Rγ‖∞‖fl(WC)‖∞)

+mu(‖B‖∞‖R−1
γ ‖∞‖C‖∞) + O(u2).

Therefore, from (2.18), (2.20) and (2.21), we can deduce that the forward error
bounds in evaluating A0 and G0 in (2.13)-(2.14) are

(2.22)

fl(A0) = A0 + E5,

‖E5‖∞ � p(m)ρmu [ (γ‖A‖∞ + 1)‖B‖∞κ∞(Rγ)‖fl(WB)‖∞ ]

+(2n + 3)u(γ‖B‖∞‖R−1
γ ‖∞‖B‖1‖A‖∞)

+(m + 1)u(‖B‖∞‖R−1
γ ‖∞‖C‖∞)

+2u‖A‖∞ + O(u2),

and

(2.23)

fl(G0) = G0 + E6,

‖E6‖∞ � p(m)ρmu(‖B‖∞κ∞(Rγ)‖fl(WB)‖∞)

+mu(‖B‖∞‖R−1
γ ‖∞‖B‖1) + O(u2),

where κ∞(Rγ) = ‖R−1
γ ‖∞‖Rγ‖∞ is the condition number of Rγ .
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Finally, from (2.18) and (2.19), the forward error bound in evaluating the matrix
H0 in (2.15) is given by

(2.24)

fl(H0) = H0 + E7,

‖E7‖∞ � p(m)ρmu( ‖C‖1κ∞(Rγ)‖fl(WC)‖∞
+γ‖C‖1κ∞(Rγ)‖fl(WB)‖∞‖A‖∞
+γ‖A‖1‖B‖∞κ∞(Rγ)‖fl(WC)‖∞
+γ2‖A‖1‖B‖∞κ∞(Rγ)‖fl(WB)‖∞‖A‖∞ )

+(m + 6)u(‖C‖1‖R−1
γ ‖∞‖C‖∞)

+6u(‖Q‖∞ + γ) + (n + 3)u(γ‖A‖1‖A‖∞)

+(n + m + 5)u(γ‖C‖1‖R−1
γ ‖∞‖B‖1‖A‖∞)

+(n + m + 4)u(γ‖A‖1‖B‖∞‖R−1
γ ‖∞‖C‖∞)

+(3n + 2)u(γ2‖A‖1‖B‖∞‖R−1
γ ‖∞‖B‖1‖A‖∞) + O(u2).

In order to control the forward error bounds of A0, G0 and H0, and the condi-
tioning of I + G0H0, we consider the following min-max optimization problem, to
determine an optimal value γ̂ > 0:

(2.25) min
γ>0

F (γ), F (γ) ≡ max{fi(γ), i = 1, 2, 3},

where the functions f1(γ) = κ∞(Rγ), f2(γ) = γ2κ∞(Rγ) and f3(γ) = cond(I +
G0H0), respectively.

Since the condition number κ∞(Rγ) is bounded as γ → ∞, it follows that F (γ)
becomes unbounded as γ → ∞. Extensive numerical experiments on randomly gen-
erated matrices indicate that F (γ) is a strictly convex function in the neighborhood
of the optimal γ̂ where the global minimum of F (γ) occurs. For illustration, we
report a sample of graphs of F (γ) in Figure 2.1.

We can apply the Fibonacci search method to compute an approximate value
of γ̂, see, e.g., [3, p. 272]. In order to save computational costs, our experience
indicates that three to five iterations of Fibonacci search are adequate to obtain a
suboptimal yet acceptable approximation to γ̂ .

3. CONVERGENCE OF SDA

In [13], necessary and sufficient conditions are given for the existence of the
stabilizing solution Xs = X�

s ∈ Rn×n to DARE (1.1).
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Fig. 2.1. The graph of F (γ).

Definition 3.1. [13]. A regular ESP is called disconjugate if it has no gener-
alized eigenvalues on the unit circle and V 1 is invertible in (1.8).

It has been proven in [13] that the DARE (1.1) has a unique stabilizing solution
Xs if and only if the ESP is disconjugate. In this section we shall first characterize
the quadratic convergence of SDA under the same conditions. It is easily seen from
(2.7) that the standard symplectic pencil M0 − λL0 in (2.6) is also disconjugate if
the ESP is disconjugate. Therefore, we deduce that the simplified DARE (2.8) has
a unique stabilizing solution X̃s. For simplicity, we only consider complex matrices
in the following convergence theorems. The proof for real symplectic pencils can
be modified slightly from the complex cases. Suppose that there exist nonsingular
U , W such that

(3.1) UM0W =
[
Js 0
0 I

]
, UL0W =

[
I 0
0 Js

]
,

where Js is the stable Jordan block of size n, i.e., ρ(Js) < 1. If we denote

(3.2) W =
[
W1 W3

W2 W4

]
,

where Wi ∈ C
n×n for i = 1, 2, 3, 4, the quadratic convergence of the SDA algorithm

has been proved in [6, Theorem 1].
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Theorem 3.1. [6]. Suppose that the ESP is disconjugate. If W 1 and W4 in (3.2)
are invertible, then the sequences {Ak, Hk, Gk} computed by the SDA algorithm
satisfy:

(i) ‖Ak‖ = O(‖J2k

s ‖) → 0 as k → ∞.
(ii) Hk → X̃s, where X̃s is a stabilizing solution of DARE (2.8)

X̃ = A�
0 X̃(I + G0X̃)−1A0 + H0.

(iii) Gk → X̃d, where X̃d solves the dual DARE

Ỹ = A0Ỹ (I + H0Ỹ )−1A�
0 + G0.

Moreover, the convergence rate in (i)–(iii) above is O
(
|λn|2k

)
, where |λ1| � · · · �

|λn| < 1 < |λn|−1 � · · · � |λ1|−1 with λi, λ−1
i being the eigenvalues of M0−λL0

(including 0 and ∞).

Remark 3.1. Assuming the conditions in Theorem 3.1 and X̃s is the unique
stabilizing solution of DARE (2.8), it follows that the symmetric matrix X s = X̃s+Y
must be the unique maximal, stabilizing solution of DARE (1.1).

On the other hand, when the ESP satisfies the condition (A), we shall prove the
linear convergence of SDA with ratio less than or equal to 1

2 . Denote the Jordan
block of size p corresponding to a unimodular eigenvalue ω ≡ eıθ by

Jω,p =



ω 1 0 · · · 0

0 ω 1
. . . ...

... . . . . . . . . . 0

... . . . . . . 1
0 · · · · · · 0 ω


p×p

.(3.3)

In particular, for the unimodular eigenvalues ωj = eıθj of the matrix pair (M0,L0)
with p = 1, we have

Jωj ,1 = [ωj ](3.4)

for j = 1, . . . , n − �. From symplectic Kronecker Theorem for (M,L) (see [15]),
there exist a symplectic matrix Z (i.e., Z�JZ = J ) and a nonsingular Q such
that

QM0Z =
[

Js ⊕ J1 0� ⊕ Γ1

0 I� ⊕ J−H
1

]
≡ JM,(3.5a)

QL0Z =
[

I� ⊕ Iµ 0
0 JH

s ⊕ Iµ

]
≡ JL,(3.5b)
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where Js is the stable Jordan block of size �,

J1 = Jω1,1 ⊕ · · · ⊕ Jωµ,1,(3.6)

Γ1 = Iµ,(3.7)

with µ = n − � and ⊕ denoting the direct sum of matrices. Note that J−H
1 = J1,

and the matrices JM and JL in (3.5) commute with each other. Therefore, from
(3.5), one can derive

M0ZJL = Q−1JLJM = L0ZJM.(3.8)

From (3.5) it follows that span{Z(:, 1 : n)} forms the unique stable Lagrangian
deflating subspace of (M,L) corresponding to Js ⊕J1. Let {(Mk,Lk)}∞k=0 be the
sequence of symplectic pairs in SSF with

Mk =
[

Ak 0
−Hk I

]
, Lk =

[
I Gk

0 A�
k

]
(3.9)

generated by Algorithm 2.1. It follows from (3.8) as well as (2.10)–(2.11) that

M1ZJ 2
L = M(0)

∗ M0ZJ 2
L = M(0)

∗ L0ZJMJL = L(0)
∗ M0ZJLJM(3.10)

= L(0)
∗ L0ZJ 2

M = L1ZJ 2
M.

Inductively, we have

MkZJ 2k

L = LkZJ 2k

M(3.11)

for any positive integer k. From the definitions of JM and JL in (3.5a) and (3.5b),
respectively, it can be deduced that (3.11) can be rewritten as

MkZ
[

I 0
0 (JH

s )2
k ⊕ Iµ

]
= LkZ

[
J2k

s ⊕ J2k

1 0� ⊕ Γk

0 I� ⊕ J2k

1

]
,(3.12)

where

Γk = 2k−1J2k−1−1
1(3.13)

for any positive number k. From (3.6) and (3.13), we immediately obtain the
following Lemma.

Lemma 3.1. Let J1, Js and Γk be defined in (3.6) and (3.13), respectively.
Then Γk is invertible and satisfies

‖Γ−1
k ‖ = O(2−k), ‖J2k

1 ‖ = O(1), ‖J2k

s ⊕ Γ−1
k ‖ = O(2−k).(3.14)
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Based on the Lemma 3.1, we shall prove the linear convergence of SDA under
the condition (A). We now partition Z in (3.8) by

Z =
[

Z1 Z3

Z2 Z4

]
,(3.15)

where Zi ∈ Rn×n, for i = 1, 2, 3, 4.

Theorem 3.2. Suppose that the (M,L) in (1.5) satisfies the assumption (A)
and that the DARE (1.1) has an almost stabilizing solution X s with property (P).
Let Z2b = Z2(:, 1 : µ) and Z4a = Z4(:, 1 : �). If the matrix [Z4a Z2b] ∈ R

n×n is
invertible, then Z1 is invertible, X̃s = Z2Z

−1
1 is an almost stabilizing solution of

DARE (2.8), and the sequences {Ak, Gk, Hk} generated by Algorithm 2.1 satisfy

(1) lim sup
k→∞

k
√‖Ak‖ ≤ 1

2 .

(2) lim sup
k→∞

‖Hk+1 − X̃s‖
‖Hk − X̃s‖

≤ 1
2 , i.e., Hk → X̃s linearly with rate less than or

equal to 1
2 . Moreover, Xs = X̃s + Y .

Proof. By Assumption (A) and assumptions in Lemma 1.1, span
[
Z1

Z2

]
and

span
[

I

X

]
forms the same unique stable Lagrangian of (M0,L0) corresponding to

Js ⊕ J1. Then Z1 is invertible, and X̃s = Z2Z
−1
1 solves the DARE (2.8)[19].

On the other hand, substituting (Mk,Lk) of (3.9) and Z of (3.15) into (3.12),
and comparing both sides we obtain

AkZ1 = (Z1 + GkZ2)
(
J2k

s ⊕ J2k

1

)
,(3.16a)

AkZ3

(
(JH

s )2
k ⊕ Iµ

)
= (Z1 + GkZ2) (0� ⊕ Γk)(3.16b)

+(Z3 + GkZ4)
(
I� ⊕ J2k

1

)
,

−HkZ1 + Z2 = A�
k Z2

(
J2k

s ⊕ J2k

1

)
,(3.16c)

(−HkZ3 + Z4)
(
(JH

s )2
k ⊕ Iµ

)
= A�

k Z2 (0� ⊕ Γk) + A�
k Z4

(
I� ⊕ J2k

1

)
.(3.16d)

Postmultiplying (3.16c) by Z−1
1 and then substituting Hk into (3.16d), we have

(3.17)
(−X̃sZ3 + A�

k Z2(J2k

s ⊕ J2k

1 )Z−1
1 Z3 + Z4)((JH

s )2
k ⊕ Iµ)

= A�
k Z2 (0� ⊕ Γk) + A�

k Z4

(
I� ⊕ J2k

1

)
.
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Postmultiplying (3.17) by (I� ⊕ Γ−1
k ), we get

(3.18)

A�
k

[
Z2(0� ⊕ Iµ) + Z4(I� ⊕ J2k

1 Γ−1
k )

−Z2(J2k

s ⊕ J2k

1 ))Z−1
1 Z3((JH

s )2
k ⊕ Γ−1

k )
]

= (−X̃sZ3 + Z4)((JH
s )2

k ⊕ Γ−1
k ).

By Lemma 3.1 and assumptions in Theorem 3.2, for sufficient large k, the matrix
Z2 (0� ⊕ Iµ) + Z4

(
I� ⊕ J2k

1 Γ−1
k

)
is invertible and the matrix Z2(J2k

s ⊕ J2k

1 ))Z−1
1

Z3((JH
s )2

k ⊕ Γ−1
k ) tends to 0. Therefore, Z2 (0� ⊕ Iµ) + Z4

(
I� ⊕ J2k

1 Γ−1
k

)
−

Z2(J2k

s ⊕J2k

1 ))Z−1
1 Z3((JH

s )2
k⊕Γ−1

k ) will be invertible for sufficiently large values
of k. Then the sequence {Ak} satisfies

lim sup
k→∞

k
√

‖Ak‖ ≤ lim sup
k→∞

k

√
O(1)2−k =

1
2
.(3.19)

From (3.16c), we get

lim sup
k→∞

‖Hk+1 − X̃s‖
‖Hk − X̃s‖

≤ lim sup
k→∞

k

√
‖Hk − X̃s‖

= lim sup
k→∞

k

√
‖A�

k Z2(J2k

s ⊕ J2k

1 )Z−1
1 ‖ ≤ 1

2
.

Corollary 3.3. Assume that (A, B) is d-stabilizable and that the same condi-
tions as in Theorem 3.2 hold. If the DARE (1.1) has a maximal solution X +, then
it must coincide with the almost stabilizing solution X s computed by SDA.

Form Theorem 1.2, it can be seen that the maximal solution X+ satisfies
R+B�X+B > 0 and ρ(AF ) ≤ 1. In addition, since (A, B) is d-stabilizable, the as-

sumptions of Lemma 1.1 can be guaranteed. Therefore, the subspaces span
[

I

X+ − Y

]
and span

[
I

X̃s

]
are unique stable Lagrangian subspaces of matrix pair (M0,L0) cor-

responding to the spectrum of Js ⊕ J1. Hence, this completes the proof.

Remark 3.2. If the d-stabilizability of the pair (A, B) is replaced by a weaker
condition (1.7), then the conclusion of Corollary 3.3 still holds.

4. NUMERICAL EXAMPLES

The aim of this section is to illustrate the superior performance of the SDA,
as compared to the Newton’s Method [8]. The flop counts for each iteration in
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SDA and NTM is 23
3 n3 and 30n3, respectively. We test some numerical examples

satisfying Assumption(A) by the SDA and NTM. The convergence of NTM is
guaranteed under the same conditions, and the rate of convergence is linear with
ratio 1

2 .
Note that the NTM can be used to solve DARE with a more general case when

R is singular, but we must assume that there is a symmetric solution X+ of the
inequality R(X+) ≥ 0 for which R + B�X+B > 0. In the SDA, matrices G0

and H0 in (2.5) are only required to be symmetric. Under this relaxed condition,
the existence of sequence {Ak, Gk, Hk} is guaranteed. As mentioned before, the
approximate solution computed by SDA algorithm is an almost stabilizing solution
Xs of DARE (1.1) when all eigenvalues of AF are in closed unit disk. The Newton’s
method converges to the maximal solution X+ of DARE (1.1). In Corollary 3.3,
we prove that these two solutions are coincident which is observed in our numerical
experiments.

We report the numbers of iterations by “ITs”, the CPU time by “CPU” for
two algorithms, and the “Err” in SDA and NTM is defined by ‖Hk+1 − Hk‖ and
‖Xk+1 −Xk‖, respectively. We list five examples in this section. Example 4.1, 4.2
and 4.3 are identical to numerical examples in [5], which were presented originally
in [13, 8, 21]. In the fourth example, the proven convergence rate of the SDA has
been observed when the close loop matrix AF has semi-simple eigenvalues on the
unit circle. In the last example , we list the CPU time ratios of the SDA and NTM
with increasing dimensions n.

For the residual of DARE, we use the “normalized” residual (DNRes) formula

DNRes

≡ ‖ − X̃ + A�X̃A + Q − (C + B�X̃A)�(R + B�X̃B)−1(C + B�X̃A)‖
‖X̃‖ + ‖A�X̃A‖ + ‖Q‖+ ‖(C + B�X̃A)�(R + B�X̃B)−1(C + B�X̃A)‖ ,

proposed in [4], where X̃ is an approximate solution to DARE.
All computations were performed in MATLAB/version 7.0 on a PC with a Intel

Pentium-IV 3.2 GHZ processor and 2.5 GB main memory, using IEEE double-
precision.

Example 4.1. [13]. For the following numerical data with singular A and R

A =
[
0 1
0 −1

]
, B =

[
1 0
2 1

]
, Q =

[− 4
11 − 4

11
− 4

11
7
11

]

C =
[

3 1
−1 7

]
, R =

[
9 3
3 1

]
.

Note that the rank of R is 1, i.e., R is singular. The symplectic pencil (M,L) has
no eigenvalue on the unit circle. At each NTM iteration, Algorithm 2.2 solves a
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Stein equation expensively [2]. From Table 1 we see that the SDA and NTM are
both converge quadratically and the CPU time of the SDA is shorter than of NTM.

Table 1. Results for Example 4.1.
SDA NTM

DNRes 2.89× 10−16 1.6× 10−16

ITs 6 6
CPU 0.016 0.12
Err 1.1× 10−10 1.4× 10−10

Example 4.2. [8]. We consider the DARE with n = m = 2 defined by

A =
[

0 −1
0 2

]
, B =

[
1 0
1 1

]
, C = 0, Q =

[
1 0
0 0

]
, R =

[
4 2
2 1

]
.

We note that R is singular, and the symplectic pencil (M,L) has eigenvalues

{0, 1, 1,∞,∞,∞}. It can be easily seen X =
[

1 0
0 0

]
which is the only solution

of the DARE. The close-loop A + BF has eigenvalues {0, 1} and the elementary
divisors of M − λL corresponding to the eigenvalue {1} are of degree two. We
can see that the convergence of the SDA and NTM are both linear with rate 1

2 . The
numerical results are recorded in Table 2.

Table 2. Results for Example 4.2.
SDA NTM

DNRes 1.2× 10−16 1.6 × 10−16

ITs 24 26
CPU 0.031 0.14
Err 3.0× 10−8 1.4 × 10−8

Example 4.3. [21]. Consider the DARE (1.1) with

A =

0 10−1 0
0 0 10−1

0 0 0

 , B =

1 0
0 0
0 1

 ,

and

Q =

105 0 0
0 103 0
0 0 −10

 , R =
[
0 0
0 1

]
, C = 0.

The exact solution of the DARE is X = diag(105, 103, 0). Since the symplectic pair
(M,L) has no eigenvalues on the unit circle, both methods converge quadratically.



SDA for DARE with Singular Control Matrices 951

Here, we choose the initial matrix L0 = 0 so that A − BL0 = A is d-stable. From
Table 3, it follows that the approximate solutions X from the SDA and NTM both
have 16 significant digits.

Table 3. Results for Example 4.3.
SDA NTM

DNRes 4.6× 10−16 3.9× 10−16

ITs 2 2
CPU 0.031 0.047
Err 0 0

Example 4.4. Let r be an arbitrary number, and R =
[
1
r

] [
1 r

]
, A =[

2 + r2 0
0 0

]
, B = I2 =

[
1 0
0 1

]
, C = 0, and Q = I2 − A�A + (C + B�A)�(R +

B�B)−1(C + B�A). It can be easily verified that the almost stabilizing solution

X = I2, and A + BF =
[
1 0
r 0

]
has eigenvalues 1, 0; i.e., assumption (A) holds.

Newton’s method needs to choose an initial matrix L0 such that A−BL0 is d-stable.
It is easy to check that L0 = A satisfies the requirement. We list the absolute errors
after the 20th iteration in the SDA and NTM in Table 4, the linear convergence rate
with ratio 1

2 can be observed.

Table 4. Results for Example 4.4.
ITs Err(SDA) Err(NTM)
20 1.26e-6 1.68e-6
21 6.29e-7 6.21e-7
22 3.15e-7 3.16e-7
23 1.58e-7 1.64e-7
24 8.01e-8 8.07e-8

Example 4.5. In this example, we run the algorithms on some randomly gen-
erated examples with the dimension n varying from 50 to 300. We shall construct
n × n matrices A, B, Q and R such that the spectrum of A + BF lies on the
unit circle. In the first place, let U be a random unitary matrix and A = 2U . The
solution X is a symmetric positive definite matrix, and R is a symmetric positive
semidefinite matrix with one eigenvalue 0, n− 1 eigenvalues between 0 and 1. Let
B = X− 1

2 chol(I −R), C = 1
2B−1A− B�XA, Q = X − A�XA− A�B−2A. It

is easy to check that the matrix A + BF and the unitary matrix U are identical, as
we have designed.
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In Figure 4.1, we report a comparison of CPU times for the SDA and NTM for
n = 50, 100, 150, 200, 250, 300. We also list the normalized residuals (NRes) in
Table 5. From Table 5, we observe that the residuals of the SDA are smaller than
those of NTM, up to 1-2 more digits of accuracy for all n. This indicates that the

Fig. 4.1. The ratio of CPU times of Example 4.5.

Table 5. Results for Example 4.5.

Methods NTM SDA Methods NTM SDA
IT 17 19 IT 18 20

n = 50 CPU 0.41 0.17 n=200 CPU 14 2.1
NRes 4.6e-12 2.3e-13 NRes 5.2e-14 9.6-14

IT 18 19 IT 17 21
n = 100 CPU 2.3 0.33 n=250 CPU 29 4.9

NRes 4.3e-12 6.1e-13 NRes 4.1e-12 5.6e-14
IT 18 20 IT 17 20

n = 150 CPU 6.8 1.1 n=300 CPU 57 6.4
NRes 5.4e-12 1.6e-13 NRes 2.3e-12 7.8e-14

SDA computes more accurate solutions than NTM, generally. In Figure 4.1, we see
that the CPU time of the SDA is approximately 10% to 30% of that of NTM.

5. CONCLUDING REMARKS

In this paper, we propose the structured doubling algorithm for finding the
stabilizing or almost stabilizing solution of DARE (1.1). In Theorem 3.1 and 3.2,
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we prove quadratic and global linear with ratio 1
2 convergence for SDA algorithms,

respectively. The convergence behavior is similar to that of Newton’s method. We
prove in Corollary 3.3 that the almost stabilizing solution computed by SDA is the
same as the maximal solution computed by Newton’s method. However, in each
Newton’s iteration, a Stein equation must be solved, which is rather expensive.
Numerical examples show that our structured doubling algorithm is efficient, out-
performing Newton’s method.
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