NORMALIZED SYSTEM FOR WAVE AND DUNKL OPERATORS

Liang Liu and Guang-Bin Ren*

Abstract

Normalized systems are constructed with respect to wave and Dunkl operators. Non-trivial solutions can thus be built to the equation $D v(x)+$ $\lambda v(x)=0$, where D is either the wave operator or the Dunkl operators and $\lambda \in \mathbb{C}$.

1. Introduction

The notion of normalized system with respect to operators was introduced by Karachik ([2]).

Let L_{1} and L_{2} be commuting linear partial differential operators on function space X such that $L_{k} X \subset X \quad(k=1,2)$. A sequence of functions $\left\{f_{k}(x)\right\}_{k=-1}^{\infty}$ in X is called a f-normalized system with respect to L_{1} if $f=f_{-1}$ and

$$
L_{1} f_{k}=f_{k-1}, \quad k \in \mathbb{N} \cup\{0\} .
$$

With normalized system, the differential equations

$$
\begin{equation*}
L_{1} v-L_{2} v=f \tag{1.1}
\end{equation*}
$$

has a formal solution(in [3])

$$
\begin{equation*}
v=\sum_{k=0}^{\infty} L_{2}^{k} f_{k} \tag{1.2}
\end{equation*}
$$

The classical example is that the wave equation in \mathbb{R}^{2}

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial s^{2}}\right) u(s, t)=0
$$

[^0]has solutions
$$
u(s, t)=\cos \left(t \frac{\partial}{\partial s}\right) g_{1}(s)+\cos \left(t \frac{\partial}{\partial s}\right) g_{2}(s)
$$
since
$$
f_{k}(t, s)=\frac{t^{2 k}}{(2 k)!} g_{1}(s)+\frac{t^{2 k+1}}{(2 k+1)!} \frac{d g_{2}}{d s}(s), \quad k \geq 0
$$
presents the 0 -normalized system with respect to $L_{1}:=\frac{\partial^{2}}{\partial t^{2}}$.
Generally, when L_{1} is the Laplace operator Δ in \mathbb{R}^{n}, Karachik [3] constructed the 0-normalized system as
$$
f_{0}(x)=u(x), \quad f_{k}(x)=\frac{|x|^{2 k}}{4^{k} k!(k-1)!} \int_{0}^{1}(1-t)^{k-1} t^{n / 2-1} u(t x) d t
$$

The main purpose of this article is to construct 0 -normalized system with respect to the wave operators and Dunkl operators. As applications, we study Riquier problem and the Helmholtz equations with respect to the wave operators and Dunkl operators.

2. Radial Derivative

In \mathbb{R}^{n}, we let

$$
[x, x]=x_{1}{ }^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{p+q}{ }^{2} .
$$

where $n=p+q$. We consider two kinds of generalized Laplacian. One is the wave operator

$$
\begin{equation*}
\square=\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}{ }^{2}}-\sum_{i=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{i}{ }^{2}} . \tag{2.1}
\end{equation*}
$$

The other is the Dunkl Laplacian. Let G be a Coxeter group associated with a reduced root system R, κ_{v} a multiplicity function on R and σ_{v} the reflection with respect to the root v. We denote $v:=\sum_{v \in R_{+}} \kappa_{v}$ and always assume that $\operatorname{Re} v \geq 0$.
Let \mathcal{D}_{j} be the Dunkl operator attached to the Coxeter group G,

$$
\begin{equation*}
\mathcal{D}_{j} f(x)=\frac{\partial}{\partial x_{j}} f(x)+\sum_{v \in R_{+}} \kappa_{v} \frac{f(x)-f\left(\sigma_{v} x\right)}{\langle x, v\rangle} v_{j} . \tag{2.2}
\end{equation*}
$$

Then the Dunkl Laplacian is defined as

$$
\Delta_{h}=\sum_{j=1}^{n} \mathcal{D}_{j}^{2}
$$

For any $k>0$, we consider the radial derivative and fractional integral operators

$$
\begin{align*}
R_{k} f(x) & =k f(x)+\sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}(x), \tag{2.3}\\
J_{k} f(x) & =\int_{0}^{1}(1-t)^{k-1} t^{n / 2-1} f(t x) d t
\end{align*}
$$

Lemma 2.1. Let Ω be a starlike domain in \mathbb{R}^{n} and $f(x) \in C^{1}(\Omega)$. For any $k>1$,

$$
\begin{equation*}
R_{n / 2+k-1} J_{k} f(x)=(k-1) J_{k-1} f(x) \tag{2.4}
\end{equation*}
$$

Proof. If $f \in C^{1}(\Omega)$, then

$$
\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} f(t x)=t \frac{\partial}{\partial t} f(t x)
$$

for any $t \in[0,1]$ and $x \in \Omega$. By direct calculation, we have

$$
\begin{aligned}
R_{\frac{n}{2}+k-1} J_{k} f(x) & =\left(\frac{n}{2}+k-1\right) J_{k} f(x)+\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} \int_{0}^{1}(1-t)^{k-1} t^{n / 2-1} f(t x) d t \\
& =\left(\frac{n}{2}+k-1\right) J_{k} f(x)+\int_{0}^{1}(1-t)^{k-1} t^{n / 2-1} \sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} f(t x) d t \\
& =\left(\frac{n}{2}+k-1\right) J_{k} f(x)+\int_{0}^{1}(1-t)^{k-1} t^{n / 2-1} t \frac{\partial}{\partial t} f(t x) d t .
\end{aligned}
$$

By integration by part, the last integral equals

$$
\begin{aligned}
& =-\int_{0}^{1} f(t x)\left(-(1-t)^{k-2}(k-1) t^{n / 2}+\frac{n}{2} t^{n / 2-1}(1-t)^{k-1}\right) d t \\
& =-\left(\frac{n}{2}+k-1\right) J_{k} f(x)+\int_{0}^{1} f(t x)(k-1)(1-t)^{k-2} t^{n / 2-1} d t \\
& =-\left(\frac{n}{2}+k-1\right) J_{k} f(x)+(k-1) J_{k-1} f .
\end{aligned}
$$

Combining the above identities, we obtain the desired result.

Lemma 2.2. If $g(x)$ is twice continuously differentiable in a region in \mathbb{R}^{n} and $\square g(x)=0$, then

$$
\begin{equation*}
\square\left([x, x]^{k} g(x)\right)=4 k[x, x]^{k-1} R_{\frac{n+2 k-2}{2}} g(x) \tag{2.5}
\end{equation*}
$$

Proof. We first prove that for any $f, g \in C^{2}(\Omega)$

$$
\begin{equation*}
\square(f g)=(\square f) g+2\langle\tilde{\nabla} f, \nabla g\rangle+f(\square g) \tag{2.6}
\end{equation*}
$$

Here we denote by Δ_{k} and ∇_{k} the usual Laplacian and the gradient with respect to the variables x_{1}, \cdots, x_{p} when $k=1$ or x_{p+1}, \cdots, x_{p+q} when $k=2$, and we denote

$$
\square=\Delta_{1}-\Delta_{2}, \quad \nabla=\left(\nabla_{1}, \nabla_{2}\right), \quad \tilde{\nabla}=\left(\nabla_{1},-\nabla_{2}\right)
$$

Indeed,

$$
\begin{aligned}
\square(f g) & =\Delta_{1}(f g)-\Delta_{2}(f g) \\
& =\left(\Delta_{1} f\right) g+2 \nabla_{1} f \nabla_{1} g+f\left(\Delta_{1} g\right)-\left(\Delta_{2} f\right) g-2 \nabla_{2} f \nabla_{2} g-f\left(\Delta_{2} g\right) \\
& =(\square f) g+2 \nabla_{1} f \nabla_{1} g-2 \nabla_{2} f \nabla_{2} g+f(\square g) \\
& =(\square f) g+2 \tilde{\nabla} f \nabla g+f(\square g)
\end{aligned}
$$

Let $1 \leq i \leq p$ and $1 \leq j \leq q$. Recall

$$
[x, x]^{k}=\left(x_{1}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{p+q}^{2}\right)^{k}
$$

Then

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}}[x, x]^{k} & =2 k[x, x]^{k-1} x_{i} \\
\frac{\partial}{\partial x_{p+j}}[x, x]^{k} & =-2 k[x, x]^{k-1} x_{p+j}
\end{aligned}
$$

so that

$$
\tilde{\nabla}[x, x]^{k}=2 k[x, x]^{k-1} x
$$

We now calculate the second derivatives

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x_{i}^{2}}[x, x]^{k} & =2 k x_{i} \frac{\partial}{\partial x_{i}}[x, x]^{k-1}+2 k[x, x]^{k-1} \\
& =4 k(k-1) x_{i}^{2}[x, x]^{k-2}+2 k[x, x]^{k-1}
\end{aligned}
$$

as well as

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x_{p+j}^{2}}[x, x]^{k} & =-2 k x_{p+j} \frac{\partial}{\partial x_{p+j}}[x, x]^{k-1}-2 k[x, x]^{k-1} \\
& =4 k(k-1) x_{p+j}^{2}[x, x]^{k-2}-2 k[x, x]^{k-1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \Delta_{1}[x, x]^{k}=4 k(k-1)\left(x_{1}^{2}+\ldots+x_{p}^{2}\right)[x, x]^{k-2}+2 k p[x, x]^{k-1} \\
& \Delta_{2}[x, x]^{k}=4 k(k-1)\left(x_{p+1}^{2}+\ldots+x_{p+q}^{2}\right)[x, x]^{k-2}-2 k q[x, x]^{k-1} .
\end{aligned}
$$

Subtract the two identities to yield

$$
\begin{aligned}
\square[x, x]^{k} & =\Delta_{1}[x, x]^{k}-\Delta_{2}[x, x]^{k} \\
& =4 k(k-1)[x, x]^{k-1}+2 k(p+q)[x, x]^{k-1} \\
& =4 k((k-1)+(p+q) / 2)[x, x]^{k-1} .
\end{aligned}
$$

Finally, by taking $f(x)=[x, x]^{k}$ in (2.6), we obtain

$$
\begin{aligned}
& \square\left([x, x]^{k} g(x)\right) \\
= & 4 k((k-1)+(p+q) / 2)[x, x]^{k-1} g(x)+2 \cdot 2 k[x, x]^{k-1} x \nabla g(x)+[x, x]^{k} g(x) \\
= & 4 k[x, x]^{k-1}(((k-1)+(p+q) / 2) g(x)+x \nabla g(x))+[x, x]^{k} g(x) \\
= & 4 k[x, x]^{k-1} R_{\frac{2(k-1)+N}{2}} g(x)+[x, x]^{k} g(x) .
\end{aligned}
$$

Lemma 2.3. [4]. If $u(x)$ is twice continuously differentiable in a region in \mathbb{R}^{n} and $\Delta_{h} u(x)=0$ in this region, then

$$
\begin{equation*}
\Delta_{h}\left(|x|^{\lambda} g(x)\right)=2 \lambda|x|^{\lambda-2} R_{\frac{n+\lambda-2}{2}+v} g(x) \tag{2.7}
\end{equation*}
$$

where λ is an integer larger than 1 .

3. Wave Operator

In this section we give the 0 -normalized systems with respect to \square in a starlike domain of \mathbb{R}^{n}.

Let Ω be a starlike domain in \mathbb{R}^{n}. Assume $u(x) \in C^{1}(\Omega)$ and

$$
\square u(x)=0, \quad x \in \Omega,
$$

Recall the definition of operator J_{k} in (2.3). Put

$$
\begin{align*}
G_{-1}(x ; u) & =0 \\
G_{0}(x ; u) & =u(x) \tag{3.1}\\
G_{k}(x ; u) & =\frac{1}{4^{k} k!(k-1)!}[x, x]^{2 k} J_{k} u .
\end{align*}
$$

Theorem 3.1. $G_{k}(x ; u), k \geq-1$, is the 0 -normalized system with respect to the operator

Proof. Since $\square u(x)=0$, by (2.4) and (2.5) we have

$$
\begin{aligned}
\square G_{k}(x ; u) & =C_{k} \square\left([x, x]^{k} J_{k} u\right) \\
& =4 k C_{k}[x, x]^{k-1} R_{\frac{n+2 k-2}{2}} J_{k} u \\
& =4 k C_{k}[x, x]^{k-1}(k-1) J_{k-1} u \\
& =G_{k-1}(x ; u),
\end{aligned}
$$

which shows that $G_{k}(x ; u)$ is a 0 -normalized system.

As an application of Theorem 3.1, we can now obtain non-trivial solutions to the equation

$$
\begin{equation*}
\square v(x)+\lambda v(x)=0, \quad \forall x \in \Omega \tag{3.2}
\end{equation*}
$$

Theorem 3.2. Let Ω be a starlike domain in \mathbb{R}^{n}. $\lambda \in \mathbb{C}$. If $u(x) \in C^{2}(\Omega)$ such that $\square u(x)=0$ in Ω, then equation (3.2) has solution

$$
v(x)=u(x)+\sum_{k=1}^{\infty} \frac{(-\lambda)^{k}}{4^{k} k!(k-1)!}[x, x]^{2 k} J_{k} u
$$

Proof. Take $G_{k}(x, u)$ to be the 0 -normalized system with respect to D as in (3.1). Then setting $L_{1}=\square, L_{2}=-\lambda$ and $f(x)=0$ in equation (1.1), we obtain solutions to equation (3.2), with

$$
v(x)=\sum_{k=0}^{\infty}(-\lambda)^{k} G_{k}(x, u)=u(x)+\sum_{k=1}^{\infty} \frac{(-\lambda)^{k}}{4^{k} k!(k-1)!}[x, x]^{2 k} J_{k} u
$$

for any function $u(x)$ in Ω such that $\square u(x)=0$.
Next, we apply the normalized system to Riquier 's problem

$$
\left\{\begin{array}{l}
\square^{m} u(x)=0, \tag{3.3}\\
\left.\square^{k} u\right|_{\partial \Omega}=f_{k}(s), \quad s \in \partial \Omega, \quad k=0,1, \ldots, m-1
\end{array}\right.
$$

Theorem 3.3. Let Ω be a starlike domain in \mathbb{R}^{n}. If for any $f(s) \in C(\partial \Omega)$ the Dirichlet problem

$$
\left\{\begin{align*}
\square u(x) & =0, \tag{3.4}\\
\left.u\right|_{\partial \Omega} & =f(s),
\end{align*}\right.
$$

has a solution, then the Riquier 's problem (3.3) with $f_{k}(x)$ being continuous on $\partial \Omega$ has a solution.

Proof. Let $G_{k}(x, u)$ be the normalized system with respect toas in (3.1). Take $u_{(k)}$ to be the solution of Dirichlet problem

$$
\left\{\begin{aligned}
& \square u_{(k)}(x)=0, \quad x \in \Omega \\
&\left.u\right|_{\partial \Omega}=f_{k}(s)-\sum_{i=1}^{m-k-1} G_{i}\left(s, u_{(i+k)}\right) .
\end{aligned}\right.
$$

We claim that the function

$$
u(x)=\sum_{k=0}^{m-1} G_{k}\left(x ; u_{(k)}\right)
$$

satisfies the Riquier 's problem (3.3).
By definition, it is clear that $u(x) \in C^{2 m}(\Omega)$ and $\square^{m} G_{k}(x, v)=0$ for v such that $\square v=0$ and $0 \leq k \leq m-1$. Therefore if we take $0 \leq v \leq m-1$,then by the property of $G_{k}\left(x ; u_{(k)}\right)$, we get

$$
\square^{v} u(x)=\sum_{k=v}^{m-1} G_{k-v}\left(x ; u_{(k)}\right)=u_{(v)}+\sum_{i=1}^{m-v-1} G_{i}\left(x ; u_{(i+v)}\right)
$$

Letting $x \rightarrow \partial \Omega$ and take $k=v$ we obtain $\left.\square^{v} u(x)\right|_{\partial \Omega}=f_{v}(x)$.

4. Dunkl Laplacian

In this section we give the 0 -normalized systems with respect to Δ_{h} in a starlike domain of \mathbb{R}^{n}.

Let Ω be a starlike domain in \mathbb{R}^{n}. Assume $u(x) \in C^{2}(\Omega)$ and

$$
\Delta_{h} u(x)=0, \quad x \in \Omega,
$$

Recall the definition of operator J_{k} in (2.3). Put

$$
\begin{align*}
G_{-1}(x ; u) & =0 \\
G_{0}(x ; u) & =J_{v} u(x), \tag{4.1}\\
G_{k}(x ; u) & =\frac{1}{4^{k} k!(v+1)_{k-1}}|x|^{2 k} J_{k+v} u(x) .
\end{align*}
$$

Here $(v+1)_{k-1}:=(v+1)(v+2) \cdots(v+k-1)$ for $k>1$ and $(v+1)_{0}:=v$.
Theorem 4.1. $G_{k}(x ; u), k \geq-1$, is the 0 -normalized system with respect to Δ_{h}.

Proof. Since $\Delta_{h} u(x)=0$, by (2.4) and (2.7) we have

$$
\begin{aligned}
\Delta_{h} G_{k}(x ; u) & =C_{k} \Delta_{h}\left(|x|^{2 k} J_{k+v} u(x)\right. \\
& =4 k C_{k}|x|^{2 k-2} R_{n+2 k-2}^{2}+v \\
& =4 k C_{k+v} u\left(\left.x\right|^{2 k-2}(k-1+v) J_{k-1+v} u(x)\right. \\
& =C_{k-1}|x|^{2 k-2} J_{k-1+v} u(x) \\
& =G_{k-1}(x ; u)
\end{aligned}
$$

which completes the proof.
As an application of Theorem 4.1, we can now obtain non-trivial solutions to the equation

$$
\begin{equation*}
\Delta_{h} u(x)+\lambda u(x)=0, \quad \forall x \in \Omega . \tag{4.2}
\end{equation*}
$$

Theorem 4.2. Let Ω be a starlike domain in $\mathbb{R}^{n}, \lambda \in \mathbb{C}$. If $u(x) \in C^{2}(\Omega)$ such that $\Delta_{h} u(x)=0$ in Ω, then equation (4.2) has solution

$$
v(x)=J_{v} u(x)+\sum_{k=1}^{\infty} \frac{(-\lambda)^{k}}{4^{k} k!(v+1)_{k-1}}|x|^{2 k} J_{k+v} u(x) .
$$

Proof. Take $G_{k}(x, u)$ to be the 0 -normalized system with respect to D as in (4.1). Then setting $L_{1}=\Delta_{h}, L_{2}=-\lambda$ and $f(x)=0$ in equation (1.1), we obtain solutions to equation (4.2), with

$$
v(x)=\sum_{k=0}^{\infty}(-\lambda)^{k} G_{k}(x, u)=J_{v} u(x)+\sum_{k=1}^{\infty} \frac{(-\lambda)^{k}}{4^{k} k!(v+1)_{k-1}}|x|^{2 k} J_{k+v} u(x) .
$$

References

1. C. F. Dunkl and Y. Xu, Orthogonal Polynomial of Several Variables, Cambridge: Cambridge Univ. Press, 2001.
2. V. V. Karachik, Polynomial solutions to the systems of partial differential equations with constant coefficients, Yokohama Math. J., 47 (2000), 121-142.
3. V. V. Karachik, Normalized system of functions with respect to the Laplace operator and its applications, J. Math. Anal. Appl., 287 (2003), 577-592.
4. G. B. Ren, Almansi decomposition for Dunkl operators, Science in China Ser. A, 48 (2005), 1541-1552.

Liang Liu
College of Mathematics,
Chengdu University of Information Technology, Chengdu, Sichuan 610225,
P. R. China
E-mail: xiaweije@mail.ustc.edu.cn
Guang-Bin Ren
Department of Mathematics,
University of Aveiro,
P-3810-159, Aveiro,
Portugal
E-mail: rengb@ustc.edu.cn

[^0]: Received May 3, 2008, accepted July 29, 2008.
 Communicated by Der-Chen Chang.
 2000 Mathematics Subject Classification: Primary 30G35, Secondary 35C05.
 Key words and phrases: Normalized system, Wave operator, Dunkl operator.
 *Partially supported by the NNSF of China (No. 10771201) and the Unidade de Invesligação
 "Mathemática e Aplicações" of University of Aveiro.

