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NORMALIZED SYSTEM FOR WAVE AND DUNKL OPERATORS

Liang Liu and Guang-Bin Ren*

Abstract. Normalized systems are constructed with respect to wave and Dunkl

operators. Non-trivial solutions can thus be built to the equation Dv(x) +
λv(x) = 0, where D is either the wave operator or the Dunkl operators and

λ ∈ C.

1. INTRODUCTION

The notion of normalized system with respect to operators was introduced by

Karachik ([2]).

Let L1 and L2 be commuting linear partial differential operators on function
space X such that LkX ⊂ X (k = 1, 2). A sequence of functions {fk(x)}∞k=−1

in X is called a f -normalized system with respect to L1 if f = f−1 and

L1fk = fk−1, k ∈ N ∪ {0}.

With normalized system, the differential equations

(1.1) L1v − L2v = f

has a formal solution(in [3])

(1.2) v =
∞∑

k=0

Lk
2fk.

The classical example is that the wave equation in R2

(
∂2

∂t2
− ∂2

∂s2

)
u(s, t) = 0
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has solutions

u(s, t) = cos(t
∂

∂s
)g1(s) + cos(t

∂

∂s
)g2(s),

since

fk(t, s) =
t2k

(2k)!
g1(s) +

t2k+1

(2k + 1)!
dg2

ds
(s), k ≥ 0,

presents the 0-normalized system with respect to L1 := ∂2

∂t2 .

Generally, when L1 is the Laplace operator ∆ in Rn, Karachik [3] constructed

the 0-normalized system as

f0(x) = u(x), fk(x) =
|x|2k

4kk!(k − 1)!

∫ 1

0
(1 − t)k−1tn/2−1u(tx)dt.

The main purpose of this article is to construct 0-normalized system with

respect to the wave operators and Dunkl operators. As applications, we study

Riquier problem and the Helmholtz equations with respect to the wave operators

and Dunkl operators.

2. RADIAL DERIVATIVE

In Rn, we let

[x, x] = x1
2 + ... + xp

2 − xp+1
2 − ...− xp+q

2.

where n = p+q. We consider two kinds of generalized Laplacian. One is the wave

operator

(2.1) � =
p∑

i=1

∂2

∂xi
2
−

p+q∑

i=p+1

∂2

∂xi
2
.

The other is the Dunkl Laplacian. Let G be a Coxeter group associated with a

reduced root system R, κυ a multiplicity function on R and συ the reflection with

respect to the root υ. We denote υ :=
∑

υ∈R+

κυ and always assume that Re υ ≥ 0.

Let Dj be the Dunkl operator attached to the Coxeter group G,

(2.2) Djf(x) =
∂

∂xj
f(x) +

∑

υ∈R+

κυ
f(x) − f(συx)

〈x, υ〉 υj .

Then the Dunkl Laplacian is defined as

∆h =
n∑

j=1

Dj
2
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For any k > 0, we consider the radial derivative and fractional integral operators

(2.3)

Rkf(x) = kf(x) +
n∑

i=1

xi
∂f

∂xi
(x),

Jkf(x) =
∫ 1

0
(1 − t)k−1tn/2−1f(tx)dt.

Lemma 2.1. Let Ω be a starlike domain in Rn and f(x) ∈ C1(Ω). For any
k > 1,

(2.4) Rn/2+k−1Jkf(x) = (k − 1)Jk−1f(x)

Proof. If f ∈ C1(Ω), then

n∑

i=1

xi
∂

∂xi
f(tx) = t

∂

∂t
f(tx)

for any t ∈ [0, 1] and x ∈ Ω. By direct calculation, we have

Rn
2
+k−1Jkf(x) = (

n

2
+ k − 1)Jkf(x) +

n∑

i=1

xi
∂

∂xi

∫ 1

0
(1− t)k−1tn/2−1f(tx)dt

= (
n

2
+ k − 1)Jkf(x) +

∫ 1

0
(1 − t)k−1tn/2−1

n∑

i=1

xi
∂

∂xi
f(tx)dt

= (
n

2
+ k − 1)Jkf(x) +

∫ 1

0
(1 − t)k−1tn/2−1t

∂

∂t
f(tx)dt.

By integration by part, the last integral equals

= −
∫ 1

0

f(tx)
(
−(1 − t)k−2(k − 1)tn/2 +

n

2
tn/2−1(1 − t)k−1

)
dt

= −(
n

2
+ k − 1)Jkf(x) +

∫ 1

0

f(tx)(k − 1)(1− t)k−2tn/2−1dt

= −(
n

2
+ k − 1)Jkf(x) + (k − 1)Jk−1f.

Combining the above identities, we obtain the desired result.

Lemma 2.2. If g(x) is twice continuously differentiable in a region in Rn and

�g(x) = 0, then

(2.5) �([x, x]kg(x)) = 4k[x, x]k−1Rn+2k−2
2

g(x)



678 Liang Liu and Guang-Bin Ren

Proof. We first prove that for any f, g ∈ C2(Ω)

(2.6) (fg) = ( f)g + 2〈∇̃f,∇g〉+ f( g).

Here we denote by ∆k and ∇k the usual Laplacian and the gradient with respect

to the variables x1, · · · , xp when k = 1 or xp+1, · · · , xp+q when k = 2, and we
denote

= ∆1 − ∆2, ∇ = (∇1,∇2), ∇̃ = (∇1,−∇2).

Indeed,

(fg) = ∆1(fg)− ∆2(fg)

= (∆1f)g + 2∇1f∇1g + f(∆1g)− (∆2f)g − 2∇2f∇2g − f(∆2g)

= ( f)g + 2∇1f∇1g − 2∇2f∇2g + f( g)

= ( f)g + 2∇̃f∇g + f( g).

Let 1 ≤ i ≤ p and 1 ≤ j ≤ q. Recall

[x, x]k = (x2
1 + . . . + x2

p − x2
p+1 − . . .− x2

p+q)
k.

Then

∂

∂xi
[x, x]k = 2k[x, x]k−1xi

∂

∂xp+j
[x, x]k = −2k[x, x]k−1xp+j ,

so that

∇̃[x, x]k = 2k[x, x]k−1x.

We now calculate the second derivatives

∂2

∂x2
i

[x, x]k = 2kxi
∂

∂xi
[x, x]k−1 + 2k[x, x]k−1

= 4k(k − 1)x2
i [x, x]k−2 + 2k[x, x]k−1

as well as

∂2

∂x2
p+j

[x, x]k = −2kxp+j
∂

∂xp+j
[x, x]k−1 − 2k[x, x]k−1

= 4k(k − 1)x2
p+j [x, x]k−2 − 2k[x, x]k−1.
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Therefore

∆1[x, x]k = 4k(k − 1)(x2
1 + . . . + x2

p)[x, x]k−2 + 2kp[x, x]k−1

∆2[x, x]k = 4k(k − 1)(x2
p+1 + . . . + x2

p+q)[x, x]k−2 − 2kq[x, x]k−1.

Subtract the two identities to yield

[x, x]k = ∆1[x, x]k − ∆2[x, x]k

= 4k(k − 1)[x, x]k−1 + 2k(p + q)[x, x]k−1

= 4k((k − 1) + (p + q)/2)[x, x]k−1.

Finally, by taking f(x) = [x, x]k in (2.6), we obtain

([x, x]kg(x))

= 4k((k − 1) + (p + q)/2)[x, x]k−1g(x) + 2 · 2k[x, x]k−1x∇g(x) + [x, x]kg(x)

= 4k[x, x]k−1(((k − 1) + (p + q)/2)g(x)+ x∇g(x)) + [x, x]kg(x)

= 4k[x, x]k−1R 2(k−1)+N
2

g(x) + [x, x]kg(x).

Lemma 2.3. [4]. If u(x) is twice continuously differentiable in a region in Rn

and ∆hu(x) = 0 in this region, then

(2.7) ∆h(|x|λg(x)) = 2λ|x|λ−2Rn+λ−2
2

+vg(x)

where λ is an integer larger than 1.

3. WAVE OPERATOR

In this section we give the 0-normalized systems with respect to � in a starlike

domain of Rn.

Let Ω be a starlike domain in Rn. Assume u(x) ∈ C1(Ω) and

�u(x) = 0, x ∈ Ω,

Recall the definition of operator Jk in (2.3). Put

(3.1)

G−1(x; u) = 0,

G0(x; u) = u(x),

Gk(x; u) =
1

4kk!(k − 1)!
[x, x]2kJku.
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Theorem 3.1. Gk(x; u), k ≥ −1, is the 0-normalized system with respect to
the operator �.

Proof. Since �u(x) = 0, by (2.4) and (2.5) we have

�Gk(x; u) = Ck�([x, x]kJku)

= 4kCk [x, x]k−1Rn+2k−2
2

Jku

= 4kCk [x, x]k−1(k − 1)Jk−1u

= Gk−1(x; u),

which shows that Gk(x; u) is a 0-normalized system.

As an application of Theorem 3.1, we can now obtain non-trivial solutions to

the equation

(3.2) �v(x) + λv(x) = 0, ∀ x ∈ Ω.

Theorem 3.2. Let Ω be a starlike domain in Rn. λ ∈ C. If u(x) ∈ C2(Ω)
such that �u(x) = 0 in Ω, then equation (3.2) has solution

v(x) = u(x) +
∞∑

k=1

(−λ)k

4kk!(k − 1)!
[x, x]2kJku.

Proof. Take Gk(x, u) to be the 0-normalized system with respect to D as in

(3.1). Then setting L1 = �, L2 = −λ and f(x) = 0 in equation (1.1), we obtain
solutions to equation (3.2), with

v(x) =
∞∑

k=0

(−λ)kGk(x, u) = u(x) +
∞∑

k=1

(−λ)k

4kk!(k − 1)!
[x, x]2kJku

for any function u(x) in Ω such that �u(x) = 0 .

Next, we apply the normalized system to Riquier ’s problem

(3.3)

{
�mu(x) = 0,

�ku |∂Ω = fk(s), s ∈ ∂Ω, k = 0, 1, . . . , m− 1.
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Theorem 3.3. Let Ω be a starlike domain in Rn. If for any f(s) ∈ C(∂Ω) the
Dirichlet problem

(3.4)

{
�u(x) = 0,

u |∂Ω = f(s),

has a solution, then the Riquier ’s problem (3.3) with fk(x) being continuous on
∂Ω has a solution.

Proof. Let Gk(x, u) be the normalized system with respect to � as in (3.1).

Take u(k) to be the solution of Dirichlet problem





� u(k)(x) = 0, x ∈ Ω.

u |∂Ω = fk(s)−
m−k−1∑

i=1

Gi(s, u(i+k)).

We claim that the function

u(x) =
m−1∑

k=0

Gk(x; u(k))

satisfies the Riquier ’s problem (3.3).

By definition, it is clear that u(x) ∈ C2m(Ω) and �mGk(x, v) = 0 for v such
that �v = 0 and 0 ≤ k ≤ m − 1. Therefore if we take 0 ≤ υ ≤ m− 1,then by the
property of Gk(x; u(k)), we get

� υu(x) =
m−1∑

k=υ

Gk−υ(x; u(k)) = u(υ) +
m−υ−1∑

i=1

Gi(x; u(i+υ))

Letting x → ∂Ω and take k = υ we obtain �υu(x)|∂Ω = fυ(x).

4. DUNKL LAPLACIAN

In this section we give the 0-normalized systems with respect to ∆h in a starlike

domain of Rn.

Let Ω be a starlike domain in Rn. Assume u(x) ∈ C2(Ω) and

∆hu(x) = 0, x ∈ Ω,
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Recall the definition of operator Jk in (2.3). Put

(4.1)

G−1(x; u) = 0

G0(x; u) = Jυu(x),

Gk(x; u) =
1

4kk!(υ+1)k−1
|x|2kJk+υu(x).

Here (υ + 1)k−1 := (υ + 1)(υ + 2) · · ·(υ + k − 1) for k > 1 and (υ + 1)0 := υ.

Theorem 4.1. Gk(x; u), k ≥ −1, is the 0-normalized system with respect to
∆h.

Proof. Since ∆hu(x) = 0, by (2.4) and (2.7) we have

∆hGk(x; u) = Ck∆h(|x|2kJk+υu(x)

= 4kCk |x|2k−2Rn+2k−2
2

+υJk+υu(x)

= 4kCk |x|2k−2(k−1 + υ)Jk−1+υu(x)

= Ck−1|x|2k−2Jk−1+υu(x)

= Gk−1(x; u)

which completes the proof.

As an application of Theorem 4.1, we can now obtain non-trivial solutions to

the equation

(4.2) ∆hu(x) + λu(x) = 0, ∀ x ∈ Ω.

Theorem 4.2. Let Ω be a starlike domain in Rn, λ ∈ C. If u(x) ∈ C2(Ω)
such that ∆hu(x) = 0 in Ω, then equation (4.2) has solution

v(x) = Jυu(x) +
∞∑

k=1

(−λ)k

4kk!(υ+1)k−1
|x|2kJk+υu(x).

Proof. Take Gk(x, u) to be the 0-normalized system with respect to D as in

(4.1). Then setting L1 = ∆h, L2 = −λ and f(x) = 0 in equation (1.1), we obtain
solutions to equation (4.2), with

v(x) =
∞∑

k=0

(−λ)kGk(x, u) = Jυu(x) +
∞∑

k=1

(−λ)k

4kk!(υ+1)k−1
|x|2kJk+υu(x).
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