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CERTAIN CLASS OF CONTACT CR-SUBMANIFOLDS

OF AN ODD-DIMENSIONAL UNIT SPHERE

Hyang Sook Kim and Jin Suk Pak

Abstract. In this paper we investigate (n + 1)(n ≥ 5)-dimensional con-
tact CR-submanifolds M of (n − 1) contact CR-dimension in a (2m + 1)-
dimensional unit sphere S2m+1 which satisfy the condition h(FX, Y ) −
h(X, FY ) = g(FX, Y )ζ for a normal vector field ζ to M , where h and
F denote the second fundamental form and a skew-symmetric endomorphism

(defined by (2.3)) acting on tangent space of M , respectively.

1. INTRODUCTION

Let S2m+1 be a (2m+1)-unit sphere in the complex (m+1)-space Cm+1, i.e.,

S2m+1 := {(z1, . . . , zm+1) ∈ Cm+1|
m+1∑

j=1

|zj |2 = 1}.

For any point z ∈ S2m+1 we put ξ = Jz, where J denotes the complex structure

of Cm+1. Denoting by π the orthogonal projection : TzCm+1 → TzS
2m+1 and

putting φ = π ◦J , we can see that the set (φ, ξ, η, g) defines a Sasakian structure on
S2m+1, where g is the standard metric on S2m+1 induced from that of Cm+1 and

η is a 1-form dual to ξ. Hence S2m+1 can be considered as a Sasakian manifold of

constant curvature 1 (cf. [1, 2, 10]).
Let M be an (n + 1)-dimensional submanifold tangent to the structure vector

field ξ of S2m+1 and denote by Dx the φ-invariant subspace TxM ∩ φTxM of the

tangent space TxM ofM at x ∈ M . Then ξ cannot be contained in Dx at any point
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x ∈ M (cf. [5]). Thus the assumption dimD⊥
x being constant and equal to 2 at

each point x ∈ M yields thatM can be dealt with a contact CR-submanifold in the
sense of Yano-Kon (cf. [1,10]), where D⊥

x denotes the complementary orthogonal

subspace to Dx in TxM . In fact, if there exists a non-zero vector U which is

orthogonal to ξ and contained in D⊥
x , then N := φU must be normal to M . In

particular we can easily see that real hypersurfaces tangent to ξ of S2m+1 are typical

examples of such submanifolds.

On the other hand, in [7] Nakagawa and Yokote have studied real hypersurfaces

M of S2m+1 which satisfy the condition

AF + FA = ρF

for a function ρ and determined such submanifolds under the additional condition

that the scalar curvature is constant, where F denotes a skew-symmetric endomor-

phism induced from φ acting on the tangent bundle TM and A the shape operator

of M (see also [10, Theorem 6.2, p.196]).

In this paper we study contact CR-submanifolds M of maximal contact CR-
dimension in S2m+1, namely, those with dimDx = n− 1 at each point x ∈ M and

investigate such submanifolds under the condition

h(FX, Y )− h(X, FY ) = g(FX, Y )ζ

for a normal vector field ζ to M , where F is a skew-symmetric endomorphism

given by (2.3) acting on TM and h the second fundamental form on M .

Manifolds, submanifolds, geometric objects and mappings we discuss in this

paper will be assumed to be connected, differentiable and of class C∞.

The present authors would like to express their sincere gratitude to the referee

for his valuable suggestions and encouragements to develop this paper.

2. FUNDAMENTAL PROPERTIES OF CONTACT CR-SUBMANIFOLDS

LetM be a (2m+1)-dimensional almost contact metric manifold with structure
(φ, ξ, η, g). By definition it follows that

(2.1)
φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1,

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), η(X) = g(X, ξ)

for any tangent vector fields X , Y to M (cf. [1, 10]).

Let M be an (n + 1)-dimensional submanifold tangent to the structure vector
field ξ of M . If the φ-invariant subspace Dx has constant dimension for any

x ∈ M , then M is called a contact CR-submanifold and the constant is called

contact CR-dimension of M (cf. [1, 5, 6, 8]).



Certain Class of Contact CR-submanifolds 631

From now on we assume thatM is a contact CR-submanifold of (n−1) contact
CR-dimension in M , where n − 1 must be even. Then, as already mentioned in
the previous section, the structure vector ξ is always contained in D⊥

x and φD⊥
x ⊂

TxM⊥ at any point x ∈ M . Further, by definition we can see that dimD⊥
x = 2

at any point x ∈ M , and thus there exists a unit vector field U contained in D⊥

which is orthogonal to ξ. Since φD⊥ ⊂ TM⊥, φU is a unit normal vector field to

M , which will be denoted by N , that is,

(2.2) N := φU.

Moreover, it is clear that φTM ⊂ TM⊕Span{N}. Hence we have, for any tangent
vector field X and for a local orthonormal basis {Nα}α=1,...,p (N1 := N, p :=
2m − n) of normal vectors to M , the following decomposition in tangential and

normal components:

(2.3) φX = FX + u(X)N,

(2.4) φNα =
p∑

β=2

PαβNβ, α = 2, . . . , p.

It is easily shown that F is a skew-symmetric endomorphism acting on TxM and

Pαβ = −Pβα. Since the structure vector field ξ is tangent to M , (2.1), (2.2) and

(2.3) imply

(2.5) Fξ = 0, FU = 0, u(X) = g(U, X), u(ξ) = g(U, ξ) = η(U) = 0,

Next, applying φ to (2.3) and using (2.1), (2.2), (2.3) and (2.5), we also have

(2.6) F 2X = −X + u(X)U + η(X)ξ, u(FX) = 0.

On the other hand, it is clear from (2.1) and (2.5) that

(2.7) φN = −U,

which combined with (2.4) yields the existence of a local orthonormal basis {N, Na,

Na∗}a=1,··· ,q of normal vectors to M such that

(2.8) Na∗ := φNa, a = 1, · · · , q := (p− 1)/2.

We denote by ∇ and ∇ the Levi-Civita connection on M and M , respectively,

and by ∇⊥ the normal connection induced from ∇ in the normal bundle TM⊥ of

M . Then Gauss and Weingarten formulae are given by

(2.9) ∇XY = ∇XY + h(X, Y ),
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(2.10) ∇XN = −AX + ∇⊥
XN = −AX +

q∑

a=1

{sa(X)Na + sa∗(X)Na∗},

(2.11) ∇XNa = −AaX − sa(X)N +
q∑

b=1

{sab(X)Nb + sab∗(X)Nb∗},

(2.12) ∇XNa∗ = −Aa∗X − sa∗(X)N +
q∑

b=1

{sa∗b(X)Nb + sa∗b∗(X)Nb∗}

for any tangent vector fields X, Y to M , where s′s are coefficients of the nor-

mal connection ∇⊥. Here and in the sequel h denotes the second fundamental
form and A, Aa, Aa∗ the shape operators corresponding to the normals N, Na, Na∗,

respectively. They are related by

(2.13) h(X, Y ) = g(AX, Y )N +
q∑

a=1

{g(AaX, Y )Na + g(Aa∗X, Y )Na∗}.

From now on we specialize to the case of an ambient Sasakian manifold M ,

that is,

(2.14) ∇Xξ = φX,

(2.15) (∇Xφ)Y = −g(X, Y )ξ + η(Y )X.

Since the structure vector ξ is tangent toM , it follows from (2.1), (2.3), (2.7), (2.8),

(2.11), (2.12) and (2.15) that

(2.16) AaX = −FAa∗X + sa∗(X)U, Aa∗X = FAaX − sa(X)U,

(2.17) sa(X) = −u(Aa∗X), sa∗(X) = u(AaX).

Moreover, since F is skew-symmetric, (2.16) implies

(2.18) g((FAa + AaF )X, Y ) = sa(X)u(Y ) − sa(Y )u(X),

(2.19) g((FAa∗ + Aa∗F )X, Y ) = sa∗(X)u(Y ) − sa∗(Y )u(X).
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Differentiating (2.3) and (2.7) covariantly and comparing the tangential and

normal parts, we have

(2.20) (∇Y F )X = −g(Y, X)ξ + η(X)Y − g(AY, X)U + u(X)AY,

(2.21) ∇XU = FAX, (∇Y u)X = g(FAY, X),

where we have used (2.3), (2.7), (2.8), (2.9), (2.10), (2.13) and (2.15).

On the other hand, since ξ is tangent to M , (2.14) combined with (2.9) and

(2.13) yields

(2.22) ∇Xξ = FX, (∇Xη)Y = g(FX, Y )

(2.23) η(AX) = g(Aξ, X) = u(X), i.e., Aξ = U,

(2.24) Aaξ = 0, Aa∗ξ = 0, a = 2, . . . , q.

If the ambient manifold M is a (2m + 1)-dimensional unit sphere S2m+1, then

its curvature tensor R satisfies

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y

for tangent vector fields X, Y, Z to M . In this case, from (2.3) and (2.4), we can

see that the equations of Codazzi and Ricci imply

(2.25)
(∇XA)Y − (∇Y A)X =

q∑

a=1

{sa(X)AaY − sa(Y )AaX

+sa∗(X)Aa∗Y − sa∗(Y )Aa∗X},

(2.26)
(∇XAa)Y − (∇Y Aa)X = sa(Y )AX − sa(X)AY +

q∑

b=1

{sab(X)AbY

−sab(Y )AbX + sab∗(X)Ab∗Y − sab∗(Y )Ab∗X},

(2.27)
(∇XAa∗)Y −(∇Y Aa∗)X=sa∗(Y )AX − sa∗(X)AY +

q∑

b=1

{sa∗b(X)AbY

−sa∗b(Y )AbX + sa∗b∗(X)Ab∗Y − sa∗b∗(Y )Ab∗X},

(2.28) g(R⊥(X, Y )N, Nα) + g([Aα, A]X, Y ) = 0, α = 2, · · · , p

for any vector fields X, Y tangent to M , where R and R⊥ denote the Riemannian

curvature tensor and the normal curvature tensor of M , respectively(cf. [1, 2, 10]).



634 Hyang Sook Kim and Jin Suk Pak

3. SOME LEMMAS

Let M be an (n + 1)-dimensional contact CR-submanifold of (n − 1) contact
CR-dimension immersed in S2m+1 which is considered as a Sasakian manifold of

constant curvature 1 and let us use the same notations as stated in the previous
section.

We assume that the equality

(3.1) h(FX, Y )− h(X, FY ) = g(FX, Y )ζ

holds on M for a normal vector field ζ to M . We also use the orthonormal basis

(2.8) of normal vectors to M and set

ζ = ρN +
q∑

a=1

(ρaNa + ρa∗Na∗).

Then by means of (2.13) the condition (3.1) is equivalent to

(3.2) (AF + FA)X = ρFX,

(3.3) (AaF + FAa)X = ρaFX, (Aa∗F + FAa∗)X = ρa∗FX

for all a = 1, . . . , q. Moreover, the last two equations combined with (2.18) and
(2.19) yield

(3.3) sa(X)u(Y ) − sa(Y )u(X) = ρag(FX, Y ),

(3.4) sa∗(X)u(Y ) − sa∗(Y )u(X) = ρa∗g(FX, Y ),

from which, putting Y = U and Y = ξ into (3.4), respectively, and using (2.5), we
obtain

(3.5) sa(X) = sa(U)u(X), sa∗(X) = sa∗(U)u(X),

(3.6) sa(ξ) = 0, sa∗(ξ) = 0, a = 1, · · · , q.

Substituting (3.5) into (3.4), we have

(3.7) ρa = 0, ρa∗ = 0, a = 1, · · · , q
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and consequently

(3.8) FAa + AaF = 0, FAa∗ + Aa∗F = 0, a = 1, · · · , q

with the aid of (3.3)
As a direct consequence of (3.2) and (3.8), it follows from (2.5), (2.6), (2.17),

(2.23) and (2.24) that

(3.9) AU = λU + ξ, λ := u(AU)

and, for a = 1, · · · , q,

(3.10) AaU = u(AaU)U = sa∗(U)U, Aa∗U = u(Aa∗U)U = −sa(U)U.

Inserting FX into (3.2) instead of X and using (2.6), (2.23) and (3.9), we have

(3.11)
−AX+{(λ− ρ)u(X)+η(X)}U+{u(X)−ρη(X)}ξ+FAFX=−ρX.

On the other hand, FDx = Dx at each point x ∈ M , and thus there exists a local

orthonormal basis {Eκ}κ=1,··· ,n+1 := {Ei, Ei∗, U, ξ}i=1,··· ,l of tangent vectors to
M such that

(3.12) Ei∗ = FEi, i = 1, · · · , l := (n − 1)/2

Taking the trace of the both side of (3.11) by using this orthonormal basis, we have

(3.13) trA = λ + ρ(n − 1)/2.

because of
∑l

i=1{g(FAFEi, Ei) + g(FAFEi∗ , Ei∗)} = −trA + λ.
Differentiating (3.9) covariantly and using (2.21), (2.22) and the symmetry of

A, we can easily show that

g((∇XA)Y, U) + g(FAX, AY ) = (Xλ)u(Y ) + λg(FAX, Y ) + g(FX, Y ),

from which, taking the skew-symmetric part and substituting (2.25) into the equation

thus obtained,

(3.14) −(2 + λρ)g(FX, Y ) + 2g(FAX, AY ) = (Xλ)u(Y ) − (Y λ)u(X)

with the help of (2.17), (3.2) and (3.5). Putting Y = U into (3.14) and using (2.5)

and (3.9), we have

(3.15) (Xλ) = (Uλ)u(X),
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which together with (3.2) and (3.14) implies

−(2 + λρ)FX + 2(ρFAX − FA2X) = 0.

Applying F to this equation and using (2.5), (2.6), (2.23) and (3.9), we can easily

obtain

(3.16)

2A2X − 2ρAX + (2 + λρ)X

+{(λρ− 2λ2 − 4)u(X) + 2(ρ− λ)η(X)}U

+{2(ρ− λ)u(X)− (λρ + 4)η(X)}ξ = 0,

and thus, it is clear that, at a point x ∈ M with ρ(x) = 0,

A2X + X − {(λ2 + 2)u(X) + λη(X)}U − {λu(X) + 2η(X)}ξ = 0.

Therefore, the eigenvalue ν corresponding to an eigenvector of A, orthogonal to U

and ξ, satisfies ν2 + 1 = 0 which is a contradiction because A is a real symmetric

tensor.

Thus we have

Remark. The function ρ given by (3.2) takes a value zero nowhere.

Now we prepare some lemmas for later use.

Lemma 3.1. LetM be an (n+1)(n ≥ 3)-dimensional contactCR-submanifold
of (n − 1) contact CR-dimension in S2m+1. If the equality (3.1) holds on M for

a normal vector field ζ to M , then λ determined by (3.9) is constant. Moreover,

(3.17) A(µ1U + ξ) = µ1(µ1U + ξ), A(µ2U + ξ) = µ2(µ2U + ξ),

where µi(i = 1, 2) denote the solutions of the quadratic equation

(3.18) µ2 − λµ − 1 = 0.

Proof. Tentatively we denote by β := Uλ in (3.15) and differentiate the

equation thus obtained covariantly. Then, from (2.5), (2.21) and (3.2), we have

(Y β)u(X)− (Xβ)u(Y ) + βρg(FY, X) = 0,

from which, putting Y = U and using (2.5), it follows that (Xβ) = (Uβ)u(X)
and so

βρg(FY, X) = 0.
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As already shown in the above remark, ρ is nowhere vanishing and consequently

β = 0, which together with (3.15) implies that λ is constant. The last assertion
(3.17) can be easily obtained from (2.23), (3.9) and (3.18).

Differentiating (3.2) covariantly and using (2.20), (2.23), (3.2) and (3.9), we

have

(∇XA)FY + F (∇XA)Y + u(Y )A2X + {(λ− ρ)u(Y ) + 2η(Y )}AX

+{u(Y )− ρη(Y )}X − {g(X, Y ) + (λ − ρ)g(AX, Y ) + g(AX, AY )}U

−{2g(AX, Y )− ρg(X, Y )}ξ = (Xρ)FY,

from which, using (2.5) and the orthonormal basis given by (3.12),

(3.19)

n+1∑

κ=1

g((∇EκA)FY, Eκ) −
l∑

i=1

g((∇EiA)FEi − (∇FEiA)Ei, Y )

+trA2u(Y ) + trA{(λ− ρ)u(Y ) + 2η(Y )} + n{u(Y ) − ρη(Y )}

−(λ− ρ)u(AY ) − u(A2Y ) − 2η(AY ) = (FY )ρ.

On the other hand, using (2.5), (2.17), (2.25) and (3.5), we have

n+1∑

κ=1

g((∇EκA)FY, Eκ) =
n+1∑

κ=1

g((∇FY A)Eκ, Eκ)

and
l∑

i=1

g((∇EiA)FEi − (∇FEiA)Ei, Y ) = 0.

Moreover, taking the trace of (3.16) with respect to the orthonormal bais (3.12) and

using (2.23), (3.9) and (3.13), we can find

trA2 = (n − 1)ρ(ρ− λ)/2 + λ2 − n + 3.

Substituting these equations into (3.19) and taking account of (2.23), (3.9), (3.13),

(3.16) and Lemma 3.1, we can see that

(n − 3)(FY )ρ = 0,

which together with (2.6) implies

(3.20) (n − 3){Y ρ − u(Y )Uρ − η(Y )ξρ} = 0.

Thus we have



638 Hyang Sook Kim and Jin Suk Pak

Lemma 3.2. LetM be an (n+1)(n ≥ 5)-dimensional contactCR-submanifold

of (n− 1) contact CR-dimension in S2m+1. If the equality (3.1) holds on M for a

normal vector field ζ to M , then the function ρ determined by (3.2) is a non-zero
constant.

Proof. Differentiating (3.20) covariantly and using (2.21), (2.22) and (3.2), we

can easily obtain

(Xα)u(Y ) − (Y α)u(X) + (Xβ)η(Y ) − (Y β)η(X) + (αρ + 2β)g(FX, Y ) = 0,

where we have put α := Uρ and β := ξρ. Putting X = U and Y = ξ into this

equation, respectively, and using (2.5), we obtain

Xα = (Uα)u(X) + (Uβ)η(X), Xβ = (ξα)u(X) + (ξβ)η(X)

and consequently

(Uβ){η(X)u(Y ) − η(Y )u(X)}+ (ξα){u(X)η(Y ) − u(Y )η(X)}

+(αρ + 2β)g(FX, Y ) = 0.

Putting X = ξ and Y = U into the last equation and using (2.1) and (2.5), we have

Uβ = ξα and so

(3.21) αρ + 2β = 0.

On the other hand, differentiating (2.23) covariantly and using (2.21), (2.22) and

(3.2), we have

g((∇XA)ξ, Y ) = g(2FAX − ρFX, Y ),

which together with (2.24), (2.25) and (3.6) implies

g((∇ξA)X, Y ) = g(2FAX − ρFX, Y ).

Taking the trace of the last equation with respect to the basis (3.12) and using (2.5)

and (3.2), we obtain

n+1∑

κ=1

g((∇ξA)Eκ, Eκ) = 2
l∑

i=1

{g(FAEi, Ei) + g(FAFEi, FEi)}

= 2
l∑

i=1

{−g(AEi, FEi) + g(AFEi, Ei)} = 0,

and thus ξ(trA) = 0, which combined with Lemma 3.1 yields β = ξρ = 0.
Therefore we can see from (3.21) that αρ = 0 and consequently α = 0 because
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ρ takes a value zero nowhere. Hence (3.20) with α = β = 0 implies that ρ is

constant.

Finally, differentiating the first equation of (3.10) covariantly and using (2.21),

we have

g((∇XAa)Y, U) + g(AaFAX, Y ) = X(sa∗(U))u(Y ) + sa∗(U)g(FAX, Y ),

from which, taking the skew-symmetric part with respect to X and Y and using

(2.26), (3.2), (3.5), (3.9) and (3.10), the last equation turns out to be

(3.22)

sa(U)u(Y )η(X)− sa(U)u(X)η(Y ) +
∑q

b=1{sab(X)sb∗(U)u(Y )

−sab(Y )sb∗(U)u(X)− sab∗(X)sb(U)u(Y ) + sab∗(Y )sb(U)u(X)}

+g(AaFAX, Y )− g(AaFAY, X)

= X(sa∗(U))u(Y )− Y (sa∗(U))u(X) + ρsa∗(U)g(FX, Y ).

Taking Y = U in (3.22) and using (2.5), (3.9) and (3.10), it follows that

X(sa∗(U)) = U(sa∗(U))u(X) + sa(U)η(X) +
q∑

b=1

[sab(X)sb∗(U)

−sab∗(X)sb(U) − u(X){sab(U)sb∗(U) − sab∗(U)sb(U)}].

Inserting the last equation back into (3.22) and using (3.2) and (3.8), we have

−g(FAaAX, Y )− g(FAAaX, Y ) + ρg(FAaX, Y ) = ρsa∗(U)g(FX, Y ).

Replacing Y by FY in the last equation and using (2.6), we can easily obtain

(3.23)
g((AaA + AAa)X, Y ) = 2λsa∗(U)u(X)u(Y ) + sa∗(U){η(X)u(Y )

+u(X)η(Y )}+ ρ{g(AaX, Y ) − sa∗(U)g(X, Y ) + sa∗(U)η(X)η(Y )},

where we have used

u(AaAX) = sa∗(U){λu(X)+ η(X)}, u(AAaX) = λsa∗(U)u(X),

η(AAaX) = sa∗(U)u(X)

which are direct consequences of (2.23), (2.24), (3.5), (3.9) and (3.10).

On the other hand, taking account of (2.10)− (2.12), we can easily see that

g(R⊥(X, Y )N, Nc) = (∇Xsc)Y − (∇Y sc)X +
q∑

a=1

{sa(Y )sac(X)

−sa(X)sac(Y ) + sa∗(Y )sa∗c(X)− sa∗(X)sa∗c(Y )},
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which combined with (2.28) yields

(3.24)

g(AcAX, Y )−g(AAcX, Y )+(∇Xsc)Y −(∇Y sc)X

+
q∑

a=1

{sa(Y )sac(X)−sa(X)sac(Y )

+sa∗(Y )sa∗c(X)−sa∗(X)sa∗c(Y )}=0.

As a direct consequence of (3.5), we have

(∇Xsa)Y − (∇Y sa)X = X(sa(U))u(Y ) − Y (sa(U))u(X) + ρsa(U)g(FX, Y ),

and consequently (3.24) reduces to

(3.25)

g(AaAX, Y ) − g(AAaX, Y ) + X(sa(U))u(Y ) − Y (sa(U))u(X)

+ρg(FX, Y )sa(U) +
q∑

b=1

{sb(Y )sba(X)− sb(X)sba(Y )

+sb∗(Y )sb∗a(X)− sb∗(X)sb∗a(Y )} = 0.

Taking Y = U in (3.25) and using (2.5), (2.24), (3.5), (3.9) and (3.10), we have

X(sa(U))u(Y ) = U(sa(U))u(X)u(Y )− sa∗(U)η(X)u(Y )

−
q∑

b=1

{sb(Y )sba(X) + sb∗(Y )sb∗a(X)

−sb(U)sba(U)u(X)u(Y ) − sb∗(U)sb∗a(U)u(X)u(Y )},

which together with (3.25) implies

(3.26)
g(AaAX, Y ) − g(AAaX, Y )

= sa∗(U){η(X)u(Y ) − η(Y )u(X)}− ρsa(U)g(FX, Y ).

Adding (3.23) and (3.26), we obtain

(3.27)
2g(AaAX, Y ) = 2λsa∗(U)u(X)u(Y ) + 2sa∗(U)η(X)u(Y )

+ρ{g(AaX, Y )−sa∗(U)g(X, Y )+sa∗(U)η(X)η(Y )−sa(U)g(FX, Y )}

Now, let X be an eigenvector of A, orthogonal to U and ξ, with the corresponding

eigenvalue ν. Then, it follows from (3.27) that

(3.28) (2ν − ρ)AaX = −ρ{sa∗(U)X + sa(U)FX},

and also

(2ν − ρ)AaFX = −ρ{sa(U)X − sa∗(U)FX}
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because of AFX = (ρ− ν)FX . Similarly, from the second equation of (3.10) we

can obtain
(2ν − ρ)Aa∗X = ρ{sa(U)X + sa∗(U)FX},

(2ν − ρ)Aa∗FX = ρ{sa∗(U)X − sa(U)FX}.

Hence, if the distinguished normal vector field N is parallel with respect to the

normal connection , i.e., ∇⊥N = 0, then it is clear from (2.10) that sa = sa∗ = 0,
and therefore the above equations imply that Aa = 0 and Aa∗ = 0 with the help of
(2.24) and (3.10), provided ρ 6= 2ν.

Thus we have

Lemma 3.3. Let M be as in Lemma 3.1 and let the distinguished normal
vector field N is parallel with respect to the normal connection. If the equality

(3.1) holds on M for a normal vector field ζ to M and ρ 6= 2ν, then

Aa = 0, Aa∗ = 0, a = 1, · · · , q.

4. MAIN RESULTS

We first prepare the following lemma:

Lemma 4.1. LetM be an (n+1)(n ≥ 5)-dimensional contactCR-submanifold
of (n− 1) contact CR-dimension in S2m+1. If the equality (3.1) holds on M for a

normal vector field ζ to M , then the shape operator A has 2 constant eigenvalues
{λ ±

√
λ2 + 4}/2 of multiplicities 1 and n, or 4 constant eigenvalues

{λ±
√

λ2 + 4}/2, {ρ±
√

ρ2 − 2(2 + λρ)}/2

of multiplicities 1, 1, (n − 1)/2 and (n − 1)/2, respectively. Moreover, if A has

exactly 2 eigenvalues {λ ±
√

λ2 + 4}/2, then the eigenvalue ν corresponding to
an eigenvector of A, orthogonal to U and ξ, satisfies 2ν = ρ = λ±

√
λ2 + 4 and

vice-versa.

Proof. If we denote by ν the eigenvalue corresponding to an eigenvector of A,
orthogonal to U and ξ, then it is clear from (3.16) that ν satisfies

(4.1) 2ν2 − 2ρν + λρ + 2 = 0

and consequently the shape operator A has at most 4 constant eigenvalues

{λ±
√

λ2 + 4}/2, {ρ±
√

ρ2 − 2(2 + λρ)}/2
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whose multiplicities are 1, 1, (n − 1)/2 and (n − 1)/2, respectively, with the
help of (3.13). Moreover, if A has exactly 2 eigenvalues {λ ±

√
λ2 + 4}/2, then

2ν = λ±
√

λ2 + 4, which together with (3.18) and (4.1) implies

λ{λ±
√

λ2 + 4} + 4− ρ{λ±
√

λ2 + 4} + λρ = 0

and hence ρ = λ ±
√

λ2 + 4 = 2ν.

In the sense of Lemma 4.1, we first consider the case of ρ = λ±
√

λ2 + 4 = 2ν.

In this case, the shape operator A has exactly 2 constant eigenvalues

µ1 := {λ +
√

λ2 + 4}/2, µ2 := {λ−
√

λ2 + 4}/2.

of multiplicities, say 1 and n, respectively. Moreover, since ρ is a non-zero constant,
(3.5) and (3.28) with ρ = 2ν imply sa = sa∗ = 0, which and (2.10) yield∇⊥N = 0.
It is also clear from (2.25) that A is of Codazzi type because of sa = sa∗ = 0.

Now, we denote by

Tk := {X ∈ TM | AX = µkX}, k = 1, 2.

Since A is of Codazzi type and µ1 6= µ2, we can easily see that the distributions

Tk(k = 1, 2) are both involutive and that the integral submanifolds Mk of Tk are

totally geodesic and parallel along Tj, j 6= k(cf. [3]). Hence M is locally a

Riemannian product M1 × M2, where dimM1 = 1 and M2 = n.

In order to investigate the integral submanifoldsMk more precisely, we consider

the Gauss and Weingarten formulae for S2m+1 ⊂ R2m+2 which are given by

(4.2) ∇̃XY = ∇XY + g(X, Y )Ñ,

(4.3) ∇̃XÑ = −X,

where ∇̃ denotes the Euclidean connection of R2m+2 and Ñ the inward unit normal

to S2m+1. Then it follows from ∇⊥N = 0 and (4.2) that

(4.4) ∇̃XN = −AX

for any vector field X tangent to M .

On the other hand, by means of (3.17)M1 is a curve on S2m+1 with unit tangent

vector

Z =
1√

µ2
1 + 1

(µ1U + ξ).

Further, using (2.5), (2.21), (2.22), (2.23), (2.24) and (3.9), it follows from (2.9)

that ∇ZZ = µ1N . Moreover, it also clear from (2.10) that ∇ZN = −µ1Z. Hence

we easily deduce that M1 belongs to a circle S1 on S2m+1.
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Next, we consider the integral submanifold M2. Let P be the position vector

of M2 in R2m+2 and put

Q = P + (1 + µ2
2)−1(µ2N + Ñ).

Then, for X ∈ T2, we have ∇̃XQ = 0 because of AX = µ2X , (4.3) and (4.4), and

so Q is a fixed point for M2. Moreover, it is clear that

‖Q − P‖2 = (1 + µ2
2)−1

which means that P belongs to a sphere S2 with radius (1 + µ2
2)−1/2 and center

Q.

We consider M2 as a submanifold of S2m+1. Since M2 is totally geodesic in

M , it is clear that AY
(2) = 0 where AY

(2) is the shape operator of M2 in S2m+1

with respect to the tangent vector Y to M1. This means that the first normal space

(cf. [4]) of M2 is contained in Span{N, N2, . . . , Np}.
We now prove

Lemma 4.2. Span {N, N2, . . . , Np} is invariant under parallel translation with
respect to the normal connection D(2) of M2 in S2m+1.

Proof. Since S2m+1 is of constant curvature 1 and ∇⊥
XN = 0, (2.28) implies

g([A, AN ′]X, Y ) = g(R⊥(X, Y )N, N ′) = 0

for any normal vector N ′ to M . Hence AAN ′ = AN ′A and so, for X ∈ T2 we

have AN ′X ∈ T2, i.e.,

(4.6) AN ′T2 ⊂ T2.

On the other hand, for any vector field X tangent to M2, we have

∇XNα = −AαX + ∇⊥
XNα.

But ∇⊥
XNα ∈ Span{N, N2, . . . , Np} and AαX ∈ T2 as a consequence of (4.5).

Hence

D
(2)
X Nα = ∇⊥

XNα ∈ Span{N, N2, . . . , Np},

which completes the proof.

As a consequence of Lemma 4.2 we can apply Erbacher’s reduction theorem

([4, p. 339]) and this yields thatM2 belongs to a totally geodesic submanifold S(1)
of dimension (dimM2 + p) in S2m+1. Therefore M2 belongs to the intersection of

this sphere S(1) and the sphere S2((1 + µ2
2)−1/2, Q) obtained above. Note that Q
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belongs to the Euclidean space of dimension (dimM2 + p + 1) through the origin
and containing S(1). Since dimM2 + p is even, we may conclude

Theorem 4.3. LetM be an (n+1)(n≥5)-dimensional contact CR-submanifold
of (n − 1) contact CR-dimension in S2m+1. If the equality (3.1) holds on M for

a normal vector field ζ to M and ρ = λ ±
√

λ2 + 4, then M is locally a product

S1 × M2, where M2 belongs to some sphere of odd-dimension.

Finally, we consider the case of ρ 6= λ ±
√

λ2 + 4 under the assumption that
the distinguished normal vector field N be parallel with respect to the normal

connection. In this case, by means of Lemma 3.3 and Erbacher’s reduction theorem

([4, p. 339]), we have

Theorem 4.4. Let M be as in Theorem 4.3 and let the distinguished normal
vector field N be parallel with respect to the normal connection. If the equality

(3.1) holds on M for a normal vector field ζ to M and ρ 6= λ ±
√

λ2 + 4 , then
there exists an (n + 2)-dimensional unit sphere Sn+2 which is totally geodesic in

S2m+1 and M ⊂ Sn+2.

In Lemma 4.4, since the tangent space TxSn+2 of the totally geodesic subman-

ifold Sn+2 at x ∈ M is TxM ⊕ Span{N}, Sn+2 is an invariant submanifold of

S2m+1 because of (2.2) and (2.3). Therefore M can be regarded as a real hypersur-

face of Sn+2 which is a totally geodesic invariant submanifold of S2m+1. Hence,

under the assumptions stated in Lemma 4.4, Lemma 4.1 implies that M is a real

hypersurface of an odd-dimensional unit sphere Sn+2 whose shape operator A has

exactly 4 constant eigenvalues of multiplicities 1, 1, (n− 1)/2, (n− 1)/2, respec-
tively. Thus a theorem of Takagi [9](see also [10, Example 1.1, p. 159] and [7,

Theorem 4.1, p. 239]) implies

Theorem 4.5. Let M be an (n + 1)(n ≥ 5)-dimensional contact CR-
submanifold of (n − 1) contact CR-dimension in S2m+1 and let the distinguished

normal vector field N be parallel with respect to the normal connection. If the

equality (3.1) holds on M for a normal vector field ζ to M and ρ 6= λ±
√

λ2 + 4,
then M is locally a hypersurface M ′(n + 1, t) of Sn+2 defined by

M ′(n + 1, t) := {(z1, . . . , zk) ∈ Ck||
k∑

j=1

z2
j |2 = t,

k∑

j=1

|zj |2 = 1}

where k := (n + 3)/2.

Combining Theorem 4.3 and Theorem 4.5, we have
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Theorem 4.6. Let M be an (n + 1)(n ≥ 5)-dimensional contact CR-

submanifold of (n − 1) contact CR-dimension in S2m+1 and let the distinguished

normal vector field N be parallel with respect to the normal connection. If the

equality (3.1) holds on M for a normal vector field ζ to M , then M is locally one

of the following:

(1) a product S1 × M2, where M2 belongs to some sphere of odd-dimension.

(2) a hypersurface M ′(n + 1, t) of Sn+2 given in Theorem 4.5.
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Birkhäuser, Boston, Basel, Stuttgart, 1983.

Hyang Sook Kim

Department of Computational Mathematics,

School of Computer Aided Science,

Institute of Basic Science,

Inje University,

Kimhae, 621-749,

Korea

E-mail: mathkim@inje.ac.kr



646 Hyang Sook Kim and Jin Suk Pak

Jin Suk Pak

Department of Mathematics Education,

Kyungpook National University,

Daegu 702-701,

Korea

E-mail: jspak@knu.ac.kr


