CERTAIN CLASS OF CONTACT $C R$-SUBMANIFOLDS OF AN ODD-DIMENSIONAL UNIT SPHERE

Hyang Sook Kim and Jin Suk Pak

Abstract

In this paper we investigate $(n+1)(n \geq 5)$-dimensional contact $C R$-submanifolds M of $(n-1)$ contact $C R$-dimension in a $(2 m+1)$ dimensional unit sphere $S^{2 m+1}$ which satisfy the condition $h(F X, Y)-$ $h(X, F Y)=g(F X, Y) \zeta$ for a normal vector field ζ to M, where h and F denote the second fundamental form and a skew-symmetric endomorphism (defined by (2.3)) acting on tangent space of M, respectively.

1. Introduction

Let $S^{2 m+1}$ be a $(2 m+1)$-unit sphere in the complex $(m+1)$-space \mathbb{C}^{m+1}, i.e.,

$$
S^{2 m+1}:=\left\{\left.\left(z_{1}, \ldots, z_{m+1}\right) \in \mathbb{C}^{m+1}\left|\sum_{j=1}^{m+1}\right| z_{j}\right|^{2}=1\right\}
$$

For any point $z \in S^{2 m+1}$ we put $\xi=J z$, where J denotes the complex structure of \mathbb{C}^{m+1}. Denoting by π the orthogonal projection : $T_{z} \mathbb{C}^{m+1} \rightarrow T_{z} S^{2 m+1}$ and putting $\phi=\pi \circ J$, we can see that the set (ϕ, ξ, η, g) defines a Sasakian structure on $S^{2 m+1}$, where g is the standard metric on $S^{2 m+1}$ induced from that of \mathbb{C}^{m+1} and η is a 1 -form dual to ξ. Hence $S^{2 m+1}$ can be considered as a Sasakian manifold of constant curvature 1 (cf. [1, 2, 10]).

Let M be an $(n+1)$-dimensional submanifold tangent to the structure vector field ξ of $S^{2 m+1}$ and denote by \mathcal{D}_{x} the ϕ-invariant subspace $T_{x} M \cap \phi T_{x} M$ of the tangent space $T_{x} M$ of M at $x \in M$. Then ξ cannot be contained in \mathcal{D}_{x} at any point

Received September 11, 2007, accepted July 13, 2008.
Communicated by Bang-Yen Chen.
2000 Mathematics Subject Classification: 53C40, 53C25.
Key words and phrases: Contact $C R$-submanifold, Odd-dimensional unit sphere, Sasakian structure, Second fundamental form.
This work was supported by the Korea Research Foundation Grant by the Korean Government (MOEHRD) (WISE Project-Kyungnam Center).
$x \in M$ (cf. [5]). Thus the assumption $\operatorname{dim} \mathcal{D}_{x}^{\perp}$ being constant and equal to 2 at each point $x \in M$ yields that M can be dealt with a contact $C R$-submanifold in the sense of Yano-Kon (cf. [1,10]), where \mathcal{D}_{x}^{\perp} denotes the complementary orthogonal subspace to \mathcal{D}_{x} in $T_{x} M$. In fact, if there exists a non-zero vector U which is orthogonal to ξ and contained in $\mathcal{D} \frac{\perp}{x}$, then $N:=\phi U$ must be normal to M. In particular we can easily see that real hypersurfaces tangent to ξ of $S^{2 m+1}$ are typical examples of such submanifolds.

On the other hand, in [7] Nakagawa and Yokote have studied real hypersurfaces M of $S^{2 m+1}$ which satisfy the condition

$$
A F+F A=\rho F
$$

for a function ρ and determined such submanifolds under the additional condition that the scalar curvature is constant, where F denotes a skew-symmetric endomorphism induced from ϕ acting on the tangent bundle $T M$ and A the shape operator of M (see also [10, Theorem 6.2, p.196]).

In this paper we study contact $C R$-submanifolds M of maximal contact $C R$ dimension in $S^{2 m+1}$, namely, those with $\operatorname{dim} \mathcal{D}_{x}=n-1$ at each point $x \in M$ and investigate such submanifolds under the condition

$$
h(F X, Y)-h(X, F Y)=g(F X, Y) \zeta
$$

for a normal vector field ζ to M, where F is a skew-symmetric endomorphism given by (2.3) acting on $T M$ and h the second fundamental form on M.

Manifolds, submanifolds, geometric objects and mappings we discuss in this paper will be assumed to be connected, differentiable and of class C^{∞}.

The present authors would like to express their sincere gratitude to the referee for his valuable suggestions and encouragements to develop this paper.

2. Fundamental Properties of Contact $C R$-Submanifolds

Let \bar{M} be a $(2 m+1)$-dimensional almost contact metric manifold with structure (ϕ, ξ, η, g). By definition it follows that

$$
\begin{array}{r}
\phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1, \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi)
\end{array}
$$

for any tangent vector fields X, Y to \bar{M} (cf. [1, 10]).
Let M be an $(n+1)$-dimensional submanifold tangent to the structure vector field ξ of \bar{M}. If the ϕ-invariant subspace \mathcal{D}_{x} has constant dimension for any $x \in M$, then M is called a contact $C R$-submanifold and the constant is called contact $C R$-dimension of M (cf. [1, 5, 6, 8]).

From now on we assume that M is a contact $C R$-submanifold of $(n-1)$ contact $C R$-dimension in \bar{M}, where $n-1$ must be even. Then, as already mentioned in the previous section, the structure vector ξ is always contained in \mathcal{D}_{x}^{\perp} and $\phi \mathcal{D}_{x}^{\perp} \subset$ $T_{x} M^{\perp}$ at any point $x \in M$. Further, by definition we can see that $\operatorname{dim} \mathcal{D}_{x}^{\perp}=2$ at any point $x \in M$, and thus there exists a unit vector field U contained in \mathcal{D}^{\perp} which is orthogonal to ξ. Since $\phi \mathcal{D}^{\perp} \subset T M^{\perp}, \phi U$ is a unit normal vector field to M, which will be denoted by N, that is,

$$
\begin{equation*}
N:=\phi U . \tag{2.2}
\end{equation*}
$$

Moreover, it is clear that $\phi T M \subset T M \oplus \operatorname{Span}\{N\}$. Hence we have, for any tangent vector field X and for a local orthonormal basis $\left\{N_{\alpha}\right\}_{\alpha=1, \ldots, p}\left(N_{1}:=N, p:=\right.$ $2 m-n$) of normal vectors to M, the following decomposition in tangential and normal components:

$$
\begin{gather*}
\phi X=F X+u(X) N, \tag{2.3}\\
\phi N_{\alpha}=\sum_{\beta=2}^{p} P_{\alpha \beta} N_{\beta}, \quad \alpha=2, \ldots, p . \tag{2.4}
\end{gather*}
$$

It is easily shown that F is a skew-symmetric endomorphism acting on $T_{x} M$ and $P_{\alpha \beta}=-P_{\beta \alpha}$. Since the structure vector field ξ is tangent to M, (2.1), (2.2) and (2.3) imply

$$
\begin{equation*}
F \xi=0, F U=0, u(X)=g(U, X), u(\xi)=g(U, \xi)=\eta(U)=0 \tag{2.5}
\end{equation*}
$$

Next, applying ϕ to (2.3) and using (2.1), (2.2), (2.3) and (2.5), we also have

$$
\begin{equation*}
F^{2} X=-X+u(X) U+\eta(X) \xi, \quad u(F X)=0 \tag{2.6}
\end{equation*}
$$

On the other hand, it is clear from (2.1) and (2.5) that

$$
\begin{equation*}
\phi N=-U \tag{2.7}
\end{equation*}
$$

which combined with (2.4) yields the existence of a local orthonormal basis $\left\{N, N_{a}\right.$, $\left.N_{a^{*}}\right\}_{a=1, \cdots, q}$ of normal vectors to M such that

$$
\begin{equation*}
N_{a^{*}}:=\phi N_{a}, \quad a=1, \cdots, q:=(p-1) / 2 \tag{2.8}
\end{equation*}
$$

We denote by $\bar{\nabla}$ and ∇ the Levi-Civita connection on \bar{M} and M, respectively, and by ∇^{\perp} the normal connection induced from $\bar{\nabla}$ in the normal bundle $T M^{\perp}$ of M. Then Gauss and Weingarten formulae are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.9}
\end{equation*}
$$

$$
\begin{gather*}
\bar{\nabla}_{X} N=-A X+\nabla_{X}^{\perp} N=-A X+\sum_{a=1}^{q}\left\{s_{a}(X) N_{a}+s_{a^{*}}(X) N_{a^{*}}\right\}, \tag{2.10}\\
\bar{\nabla}_{X} N_{a}=-A_{a} X-s_{a}(X) N+\sum_{b=1}^{q}\left\{s_{a b}(X) N_{b}+s_{a b^{*}}(X) N_{b^{*}}\right\}, \tag{2.11}\\
\bar{\nabla}_{X} N_{a^{*}}=-A_{a^{*}} X-s_{a^{*}}(X) N+\sum_{b=1}^{q}\left\{s_{a^{*} b}(X) N_{b}+s_{a^{*} b^{*}}(X) N_{b^{*}}\right\} \tag{2.12}
\end{gather*}
$$

for any tangent vector fields X, Y to M, where $s^{\prime} s$ are coefficients of the normal connection ∇^{\perp}. Here and in the sequel h denotes the second fundamental form and $A, A_{a}, A_{a^{*}}$ the shape operators corresponding to the normals $N, N_{a}, N_{a^{*}}$, respectively. They are related by

$$
\begin{equation*}
h(X, Y)=g(A X, Y) N+\sum_{a=1}^{q}\left\{g\left(A_{a} X, Y\right) N_{a}+g\left(A_{a^{*}} X, Y\right) N_{a^{*}}\right\} . \tag{2.13}
\end{equation*}
$$

From now on we specialize to the case of an ambient Sasakian manifold \bar{M}, that is,

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=\phi X, \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=-g(X, Y) \xi+\eta(Y) X . \tag{2.15}
\end{equation*}
$$

Since the structure vector ξ is tangent to M, it follows from (2.1), (2.3), (2.7), (2.8), (2.11), (2.12) and (2.15) that

$$
\begin{gather*}
A_{a} X=-F A_{a^{*}} X+s_{a^{*}}(X) U, \quad A_{a^{*}} X=F A_{a} X-s_{a}(X) U, \tag{2.16}\\
s_{a}(X)=-u\left(A_{a^{*}} X\right), \quad s_{a^{*}}(X)=u\left(A_{a} X\right) .
\end{gather*}
$$

Moreover, since F is skew-symmetric, (2.16) implies

$$
\begin{equation*}
g\left(\left(F A_{a}+A_{a} F\right) X, Y\right)=s_{a}(X) u(Y)-s_{a}(Y) u(X), \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
g\left(\left(F A_{a^{*}}+A_{a^{*}} F\right) X, Y\right)=s_{a^{*}}(X) u(Y)-s_{a^{*}}(Y) u(X) . \tag{2.19}
\end{equation*}
$$

Differentiating (2.3) and (2.7) covariantly and comparing the tangential and normal parts, we have

$$
\begin{equation*}
\left(\nabla_{Y} F\right) X=-g(Y, X) \xi+\eta(X) Y-g(A Y, X) U+u(X) A Y, \tag{2.20}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{X} U=F A X, \quad\left(\nabla_{Y} u\right) X=g(F A Y, X) \tag{2.21}
\end{equation*}
$$

where we have used (2.3), (2.7), (2.8), (2.9), (2.10), (2.13) and (2.15).
On the other hand, since ξ is tangent to M, (2.14) combined with (2.9) and (2.13) yields

$$
\begin{gather*}
\nabla_{X} \xi=F X, \quad\left(\nabla_{X} \eta\right) Y=g(F X, Y) \tag{2.22}\\
\eta(A X)=g(A \xi, X)=u(X), \quad \text { i.e., } \quad A \xi=U, \tag{2.23}\\
A_{a} \xi=0, \quad A_{a^{*}} \xi=0, \quad a=2, \ldots, q . \tag{2.24}
\end{gather*}
$$

If the ambient manifold \bar{M} is a $(2 m+1)$-dimensional unit sphere $S^{2 m+1}$, then its curvature tensor \bar{R} satisfies

$$
\bar{R}(X, Y) Z=g(Y, Z) X-g(X, Z) Y
$$

for tangent vector fields X, Y, Z to \bar{M}. In this case, from (2.3) and (2.4), we can see that the equations of Codazzi and Ricci imply

$$
\begin{align*}
& \left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\sum_{a=1}^{q}\left\{s_{a}(X) A_{a} Y-s_{a}(Y) A_{a} X\right. \tag{2.25}\\
& \left.\quad+s_{a^{*}}(X) A_{a^{*}} Y-s_{a^{*}}(Y) A_{a^{*}} X\right\}
\end{align*}
$$

$$
\begin{align*}
& \left(\nabla_{X} A_{a}\right) Y-\left(\nabla_{Y} A_{a}\right) X=s_{a}(Y) A X-s_{a}(X) A Y+\sum_{b=1}^{q}\left\{s_{a b}(X) A_{b} Y\right. \tag{2.26}\\
& \left.\quad-s_{a b}(Y) A_{b} X+s_{a b^{*}}(X) A_{b^{*}} Y-s_{a b^{*}}(Y) A_{b^{*}} X\right\},
\end{align*}
$$

$$
\begin{align*}
& \left(\nabla_{X^{\prime}} A_{a^{*}}\right) Y-\left(\nabla_{Y} A_{a^{*}}\right) X=s_{a^{*}}(Y) A X-s_{a^{*}}(X) A Y+\sum_{b=1}^{q}\left\{s_{a^{*} b}(X) A_{b} Y\right. \tag{2.27}\\
& \left.-s_{a^{*} b}(Y) A_{b} X+s_{a^{*} b^{*}}(X) A_{b^{*}} Y-s_{a^{*} b^{*}}(Y) A_{b^{*}} X\right\},
\end{align*}
$$

$$
\begin{equation*}
g\left(R^{\perp}(X, Y) N, N_{\alpha}\right)+g\left(\left[A_{\alpha}, A\right] X, Y\right)=0, \quad \alpha=2, \cdots, p \tag{2.28}
\end{equation*}
$$

for any vector fields X, Y tangent to M, where R and R^{\perp} denote the Riemannian curvature tensor and the normal curvature tensor of M, respectively(cf. [1, 2, 10]).

3. Some Lemmas

Let M be an $(n+1)$-dimensional contact $C R$-submanifold of $(n-1)$ contact $C R$-dimension immersed in $S^{2 m+1}$ which is considered as a Sasakian manifold of constant curvature 1 and let us use the same notations as stated in the previous section.

We assume that the equality

$$
\begin{equation*}
h(F X, Y)-h(X, F Y)=g(F X, Y) \zeta \tag{3.1}
\end{equation*}
$$

holds on M for a normal vector field ζ to M. We also use the orthonormal basis (2.8) of normal vectors to M and set

$$
\zeta=\rho N+\sum_{a=1}^{q}\left(\rho_{a} N_{a}+\rho_{a^{*}} N_{a^{*}}\right)
$$

Then by means of (2.13) the condition (3.1) is equivalent to

$$
\begin{equation*}
(A F+F A) X=\rho F X \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\left(A_{a} F+F A_{a}\right) X=\rho_{a} F X, \quad\left(A_{a^{*}} F+F A_{a^{*}}\right) X=\rho_{a *} F X \tag{3.3}
\end{equation*}
$$

for all $a=1, \ldots, q$. Moreover, the last two equations combined with (2.18) and (2.19) yield

$$
\begin{equation*}
s_{a}(X) u(Y)-s_{a}(Y) u(X)=\rho_{a} g(F X, Y) \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
s_{a^{*}}(X) u(Y)-s_{a^{*}}(Y) u(X)=\rho_{a *} g(F X, Y) \tag{3.4}
\end{equation*}
$$

from which, putting $Y=U$ and $Y=\xi$ into (3.4), respectively, and using (2.5), we obtain

$$
\begin{gather*}
s_{a}(X)=s_{a}(U) u(X), \quad s_{a^{*}}(X)=s_{a^{*}}(U) u(X) \tag{3.5}\\
s_{a}(\xi)=0, \quad s_{a^{*}}(\xi)=0, \quad a=1, \cdots, q \tag{3.6}
\end{gather*}
$$

Substituting (3.5) into (3.4), we have

$$
\begin{equation*}
\rho_{a}=0, \quad \rho_{a^{*}}=0, \quad a=1, \cdots, q \tag{3.7}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
F A_{a}+A_{a} F=0, \quad F A_{a^{*}}+A_{a^{*}} F=0, \quad a=1, \cdots, q \tag{3.8}
\end{equation*}
$$

with the aid of (3.3)
As a direct consequence of (3.2) and (3.8), it follows from (2.5), (2.6), (2.17), (2.23) and (2.24) that

$$
\begin{equation*}
A U=\lambda U+\xi, \quad \lambda:=u(A U) \tag{3.9}
\end{equation*}
$$

and, for $a=1, \cdots, q$,

$$
\begin{equation*}
A_{a} U=u\left(A_{a} U\right) U=s_{a^{*}}(U) U, \quad A_{a^{*}} U=u\left(A_{a^{*}} U\right) U=-s_{a}(U) U \tag{3.10}
\end{equation*}
$$

Inserting $F X$ into (3.2) instead of X and using (2.6), (2.23) and (3.9), we have (3.11)

$$
-A X+\{(\lambda-\rho) u(X)+\eta(X)\} U+\{u(X)-\rho \eta(X)\} \xi+F A F X=-\rho X
$$

On the other hand, $F \mathcal{D}_{x}=\mathcal{D}_{x}$ at each point $x \in M$, and thus there exists a local orthonormal basis $\left\{E_{\kappa}\right\}_{\kappa=1, \cdots, n+1}:=\left\{E_{i}, E_{i^{*}}, U, \xi\right\}_{i=1, \cdots, l}$ of tangent vectors to M such that

$$
\begin{equation*}
E_{i^{*}}=F E_{i}, \quad i=1, \cdots, l:=(n-1) / 2 \tag{3.12}
\end{equation*}
$$

Taking the trace of the both side of (3.11) by using this orthonormal basis, we have

$$
\begin{equation*}
\operatorname{tr} A=\lambda+\rho(n-1) / 2 \tag{3.13}
\end{equation*}
$$

because of $\sum_{i=1}^{l}\left\{g\left(F A F E_{i}, E_{i}\right)+g\left(F A F E_{i^{*}}, E_{i^{*}}\right)\right\}=-\operatorname{tr} A+\lambda$.
Differentiating (3.9) covariantly and using (2.21), (2.22) and the symmetry of A, we can easily show that

$$
g\left(\left(\nabla_{X} A\right) Y, U\right)+g(F A X, A Y)=(X \lambda) u(Y)+\lambda g(F A X, Y)+g(F X, Y)
$$

from which, taking the skew-symmetric part and substituting (2.25) into the equation thus obtained,

$$
\begin{equation*}
-(2+\lambda \rho) g(F X, Y)+2 g(F A X, A Y)=(X \lambda) u(Y)-(Y \lambda) u(X) \tag{3.14}
\end{equation*}
$$

with the help of (2.17), (3.2) and (3.5). Putting $Y=U$ into (3.14) and using (2.5) and (3.9), we have

$$
\begin{equation*}
(X \lambda)=(U \lambda) u(X) \tag{3.15}
\end{equation*}
$$

which together with (3.2) and (3.14) implies

$$
-(2+\lambda \rho) F X+2\left(\rho F A X-F A^{2} X\right)=0
$$

Applying F to this equation and using (2.5), (2.6), (2.23) and (3.9), we can easily obtain

$$
\begin{align*}
& 2 A^{2} X-2 \rho A X+(2+\lambda \rho) X \\
+ & \left\{\left(\lambda \rho-2 \lambda^{2}-4\right) u(X)+2(\rho-\lambda) \eta(X)\right\} U \tag{3.16}\\
+ & \{2(\rho-\lambda) u(X)-(\lambda \rho+4) \eta(X)\} \xi=0,
\end{align*}
$$

and thus, it is clear that, at a point $x \in M$ with $\rho(x)=0$,

$$
A^{2} X+X-\left\{\left(\lambda^{2}+2\right) u(X)+\lambda \eta(X)\right\} U-\{\lambda u(X)+2 \eta(X)\} \xi=0
$$

Therefore, the eigenvalue ν corresponding to an eigenvector of A, orthogonal to U and ξ, satisfies $\nu^{2}+1=0$ which is a contradiction because A is a real symmetric tensor.

Thus we have
Remark. The function ρ given by (3.2) takes a value zero nowhere.
Now we prepare some lemmas for later use.
Lemma 3.1. Let M be an $(n+1)(n \geq 3)$-dimensional contact $C R$-submanifold of $(n-1)$ contact $C R$-dimension in $S^{2 m+1}$. If the equality (3.1) holds on M for a normal vector field ζ to M, then λ determined by (3.9) is constant. Moreover,

$$
\begin{equation*}
A\left(\mu_{1} U+\xi\right)=\mu_{1}\left(\mu_{1} U+\xi\right), \quad A\left(\mu_{2} U+\xi\right)=\mu_{2}\left(\mu_{2} U+\xi\right) \tag{3.17}
\end{equation*}
$$

where $\mu_{i}(i=1,2)$ denote the solutions of the quadratic equation

$$
\begin{equation*}
\mu^{2}-\lambda \mu-1=0 . \tag{3.18}
\end{equation*}
$$

Proof. Tentatively we denote by $\beta:=U \lambda$ in (3.15) and differentiate the equation thus obtained covariantly. Then, from (2.5), (2.21) and (3.2), we have

$$
(Y \beta) u(X)-(X \beta) u(Y)+\beta \rho g(F Y, X)=0,
$$

from which, putting $Y=U$ and using (2.5), it follows that $(X \beta)=(U \beta) u(X)$ and so

$$
\beta \rho g(F Y, X)=0 .
$$

As already shown in the above remark, ρ is nowhere vanishing and consequently $\beta=0$, which together with (3.15) implies that λ is constant. The last assertion (3.17) can be easily obtained from (2.23), (3.9) and (3.18).

Differentiating (3.2) covariantly and using (2.20), (2.23), (3.2) and (3.9), we have

$$
\begin{aligned}
& \left(\nabla_{X} A\right) F Y+F\left(\nabla_{X} A\right) Y+u(Y) A^{2} X+\{(\lambda-\rho) u(Y)+2 \eta(Y)\} A X \\
+ & \{u(Y)-\rho \eta(Y)\} X-\{g(X, Y)+(\lambda-\rho) g(A X, Y)+g(A X, A Y)\} U \\
- & \{2 g(A X, Y)-\rho g(X, Y)\} \xi=(X \rho) F Y,
\end{aligned}
$$

from which, using (2.5) and the orthonormal basis given by (3.12),

$$
\begin{align*}
& \sum_{\kappa=1}^{n+1} g\left(\left(\nabla_{E_{\kappa}} A\right) F Y, E_{\kappa}\right)-\sum_{i=1}^{l} g\left(\left(\nabla_{E_{i}} A\right) F E_{i}-\left(\nabla_{F E_{i}} A\right) E_{i}, Y\right) \tag{3.19}\\
+ & \operatorname{tr} A^{2} u(Y)+\operatorname{tr} A\{(\lambda-\rho) u(Y)+2 \eta(Y)\}+n\{u(Y)-\rho \eta(Y)\} \\
- & (\lambda-\rho) u(A Y)-u\left(A^{2} Y\right)-2 \eta(A Y)=(F Y) \rho
\end{align*}
$$

On the other hand, using (2.5), (2.17), (2.25) and (3.5), we have

$$
\sum_{\kappa=1}^{n+1} g\left(\left(\nabla_{E_{\kappa}} A\right) F Y, E_{\kappa}\right)=\sum_{\kappa=1}^{n+1} g\left(\left(\nabla_{F Y} A\right) E_{\kappa}, E_{\kappa}\right)
$$

and

$$
\sum_{i=1}^{l} g\left(\left(\nabla_{E_{i}} A\right) F E_{i}-\left(\nabla_{F E_{i}} A\right) E_{i}, Y\right)=0
$$

Moreover, taking the trace of (3.16) with respect to the orthonormal bais (3.12) and using (2.23), (3.9) and (3.13), we can find

$$
\operatorname{tr} A^{2}=(n-1) \rho(\rho-\lambda) / 2+\lambda^{2}-n+3
$$

Substituting these equations into (3.19) and taking account of (2.23), (3.9), (3.13), (3.16) and Lemma 3.1, we can see that

$$
(n-3)(F Y) \rho=0
$$

which together with (2.6) implies

$$
\begin{equation*}
(n-3)\{Y \rho-u(Y) U \rho-\eta(Y) \xi \rho\}=0 \tag{3.20}
\end{equation*}
$$

Thus we have

Lemma 3.2. Let M be an $(n+1)(n \geq 5)$-dimensional contact $C R$-submanifold of $(n-1)$ contact $C R$-dimension in $S^{2 m+1}$. If the equality (3.1) holds on M for a normal vector field ζ to M, then the function ρ determined by (3.2) is a non-zero constant.

Proof. Differentiating (3.20) covariantly and using (2.21), (2.22) and (3.2), we can easily obtain
$(X \alpha) u(Y)-(Y \alpha) u(X)+(X \beta) \eta(Y)-(Y \beta) \eta(X)+(\alpha \rho+2 \beta) g(F X, Y)=0$,
where we have put $\alpha:=U \rho$ and $\beta:=\xi \rho$. Putting $X=U$ and $Y=\xi$ into this equation, respectively, and using (2.5), we obtain

$$
X \alpha=(U \alpha) u(X)+(U \beta) \eta(X), \quad X \beta=(\xi \alpha) u(X)+(\xi \beta) \eta(X)
$$

and consequently

$$
\begin{aligned}
& (U \beta)\{\eta(X) u(Y)-\eta(Y) u(X)\}+(\xi \alpha)\{u(X) \eta(Y)-u(Y) \eta(X)\} \\
+ & (\alpha \rho+2 \beta) g(F X, Y)=0 .
\end{aligned}
$$

Putting $X=\xi$ and $Y=U$ into the last equation and using (2.1) and (2.5), we have $U \beta=\xi \alpha$ and so

$$
\begin{equation*}
\alpha \rho+2 \beta=0 . \tag{3.21}
\end{equation*}
$$

On the other hand, differentiating (2.23) covariantly and using (2.21), (2.22) and (3.2), we have

$$
g\left(\left(\nabla_{X} A\right) \xi, Y\right)=g(2 F A X-\rho F X, Y),
$$

which together with (2.24), (2.25) and (3.6) implies

$$
g\left(\left(\nabla_{\xi} A\right) X, Y\right)=g(2 F A X-\rho F X, Y) .
$$

Taking the trace of the last equation with respect to the basis (3.12) and using (2.5) and (3.2), we obtain

$$
\begin{aligned}
\sum_{\kappa=1}^{n+1} g\left(\left(\nabla_{\xi} A\right) E_{\kappa}, E_{\kappa}\right) & =2 \sum_{i=1}^{l}\left\{g\left(F A E_{i}, E_{i}\right)+g\left(F A F E_{i}, F E_{i}\right)\right\} \\
& =2 \sum_{i=1}^{l}\left\{-g\left(A E_{i}, F E_{i}\right)+g\left(A F E_{i}, E_{i}\right)\right\}=0
\end{aligned}
$$

and thus $\xi(\operatorname{tr} A)=0$, which combined with Lemma 3.1 yields $\beta=\xi \rho=0$. Therefore we can see from (3.21) that $\alpha \rho=0$ and consequently $\alpha=0$ because
ρ takes a value zero nowhere. Hence (3.20) with $\alpha=\beta=0$ implies that ρ is constant.

Finally, differentiating the first equation of (3.10) covariantly and using (2.21), we have

$$
g\left(\left(\nabla_{X} A_{a}\right) Y, U\right)+g\left(A_{a} F A X, Y\right)=X\left(s_{a^{*}}(U)\right) u(Y)+s_{a^{*}}(U) g(F A X, Y)
$$

from which, taking the skew-symmetric part with respect to X and Y and using (2.26), (3.2), (3.5), (3.9) and (3.10), the last equation turns out to be

$$
\begin{align*}
& s_{a}(U) u(Y) \eta(X)-s_{a}(U) u(X) \eta(Y)+\sum_{b=1}^{q}\left\{s_{a b}(X) s_{b^{*}}(U) u(Y)\right. \\
- & \left.s_{a b}(Y) s_{b^{*}}(U) u(X)-s_{a b^{*}}(X) s_{b}(U) u(Y)+s_{a b^{*}}(Y) s_{b}(U) u(X)\right\} \\
+ & g\left(A_{a} F A X, Y\right)-g\left(A_{a} F A Y, X\right) \tag{3.22}\\
= & X\left(s_{a^{*}}(U)\right) u(Y)-Y\left(s_{a^{*}}(U)\right) u(X)+\rho s_{a^{*}}(U) g(F X, Y)
\end{align*}
$$

Taking $Y=U$ in (3.22) and using (2.5), (3.9) and (3.10), it follows that

$$
\begin{aligned}
X\left(s_{a^{*}}(U)\right)= & U\left(s_{a^{*}}(U)\right) u(X)+s_{a}(U) \eta(X)+\sum_{b=1}^{q}\left[s_{a b}(X) s_{b^{*}}(U)\right. \\
& \left.-s_{a b^{*}}(X) s_{b}(U)-u(X)\left\{s_{a b}(U) s_{b^{*}}(U)-s_{a b^{*}}(U) s_{b}(U)\right\}\right]
\end{aligned}
$$

Inserting the last equation back into (3.22) and using (3.2) and (3.8), we have

$$
-g\left(F A_{a} A X, Y\right)-g\left(F A A_{a} X, Y\right)+\rho g\left(F A_{a} X, Y\right)=\rho s_{a^{*}}(U) g(F X, Y)
$$

Replacing Y by $F Y$ in the last equation and using (2.6), we can easily obtain

$$
\begin{gather*}
g\left(\left(A_{a} A+A A_{a}\right) X, Y\right)=2 \lambda s_{a^{*}}(U) u(X) u(Y)+s_{a^{*}}(U)\{\eta(X) u(Y) \\
+u(X) \eta(Y)\}+\rho\left\{g\left(A_{a} X, Y\right)-s_{a^{*}}(U) g(X, Y)+s_{a^{*}}(U) \eta(X) \eta(Y)\right\} \tag{3.23}
\end{gather*}
$$

where we have used

$$
\begin{aligned}
u\left(A_{a} A X\right)=s_{a^{*}}(U)\{\lambda u(X)+\eta(X)\}, \quad u\left(A A_{a} X\right) & =\lambda s_{a^{*}}(U) u(X) \\
\eta\left(A A_{a} X\right) & =s_{a^{*}}(U) u(X)
\end{aligned}
$$

which are direct consequences of (2.23), (2.24), (3.5), (3.9) and (3.10).
On the other hand, taking account of $(2.10)-(2.12)$, we can easily see that

$$
\begin{aligned}
g\left(R^{\perp}(X, Y) N, N_{c}\right)= & \left(\nabla_{X} s_{c}\right) Y-\left(\nabla_{Y} s_{c}\right) X+\sum_{a=1}^{q}\left\{s_{a}(Y) s_{a c}(X)\right. \\
& \left.-s_{a}(X) s_{a c}(Y)+s_{a^{*}}(Y) s_{a^{*} c}(X)-s_{a^{*}}(X) s_{a^{*} c}(Y)\right\}
\end{aligned}
$$

which combined with (2.28) yields

$$
\begin{align*}
& g\left(A_{c} A X, Y\right)-g\left(A A_{c} X, Y\right)+\left(\nabla_{X} s_{c}\right) Y-\left(\nabla_{Y} s_{c}\right) X \\
& \quad+\sum_{a=1}^{q}\left\{s_{a}(Y) s_{a c}(X)-s_{a}(X) s_{a c}(Y)\right. \tag{3.24}\\
& \left.\quad+s_{a^{*}}(Y) s_{a^{*} c}(X)-s_{a^{*}}(X) s_{a^{*} c}(Y)\right\}=0 .
\end{align*}
$$

As a direct consequence of (3.5), we have
$\left(\nabla_{X} s_{a}\right) Y-\left(\nabla_{Y} s_{a}\right) X=X\left(s_{a}(U)\right) u(Y)-Y\left(s_{a}(U)\right) u(X)+\rho s_{a}(U) g(F X, Y)$,
and consequently (3.24) reduces to

$$
\begin{align*}
& g\left(A_{a} A X, Y\right)-g\left(A A_{a} X, Y\right)+X\left(s_{a}(U)\right) u(Y)-Y\left(s_{a}(U)\right) u(X) \\
& \quad+\rho g(F X, Y) s_{a}(U)+\sum_{b=1}^{q}\left\{s_{b}(Y) s_{b a}(X)-s_{b}(X) s_{b a}(Y)\right. \tag{3.25}\\
& \left.\quad+s_{b^{*}}(Y) s_{b^{*} a}(X)-s_{b^{*}}(X) s_{b^{*} a}(Y)\right\}=0 .
\end{align*}
$$

Taking $Y=U$ in (3.25) and using (2.5), (2.24), (3.5), (3.9) and (3.10), we have

$$
\begin{aligned}
X\left(s_{a}(U)\right) u(Y)= & U\left(s_{a}(U)\right) u(X) u(Y)-s_{a^{*}}(U) \eta(X) u(Y) \\
& -\sum_{b=1}^{q}\left\{s_{b}(Y) s_{b a}(X)+s_{b^{*}}(Y) s_{b^{*} a}(X)\right. \\
& \left.-s_{b}(U) s_{b a}(U) u(X) u(Y)-s_{b^{*}}(U) s_{b^{*} a}(U) u(X) u(Y)\right\},
\end{aligned}
$$

which together with (3.25) implies

$$
\begin{align*}
& g\left(A_{a} A X, Y\right)-g\left(A A_{a} X, Y\right) \\
& =s_{a^{*}}(U)\{\eta(X) u(Y)-\eta(Y) u(X)\}-\rho s_{a}(U) g(F X, Y) . \tag{3.26}
\end{align*}
$$

Adding (3.23) and (3.26), we obtain

$$
\begin{align*}
& 2 g\left(A_{a} A X, Y\right)=2 \lambda s_{a^{*}}(U) u(X) u(Y)+2 s_{a^{*}}(U) \eta(X) u(Y) \\
+ & \rho\left\{g\left(A_{a} X, Y\right)-s_{a^{*}}(U) g(X, Y)+s_{a^{*}}(U) \eta(X) \eta(Y)-s_{a}(U) g(F X, Y)\right\} \tag{3.27}
\end{align*}
$$

Now, let X be an eigenvector of A, orthogonal to U and ξ, with the corresponding eigenvalue ν. Then, it follows from (3.27) that

$$
\begin{equation*}
(2 \nu-\rho) A_{a} X=-\rho\left\{s_{a^{*}}(U) X+s_{a}(U) F X\right\} \tag{3.28}
\end{equation*}
$$

and also

$$
(2 \nu-\rho) A_{a} F X=-\rho\left\{s_{a}(U) X-s_{a^{*}}(U) F X\right\}
$$

because of $A F X=(\rho-\nu) F X$. Similarly, from the second equation of (3.10) we can obtain

$$
\begin{aligned}
(2 \nu-\rho) A_{a^{*}} X & =\rho\left\{s_{a}(U) X+s_{a^{*}}(U) F X\right\}, \\
(2 \nu-\rho) A_{a^{*}} F X & =\rho\left\{s_{a^{*}}(U) X-s_{a}(U) F X\right\} .
\end{aligned}
$$

Hence, if the distinguished normal vector field N is parallel with respect to the normal connection, i.e., $\nabla^{\perp} N=0$, then it is clear from (2.10) that $s_{a}=s_{a^{*}}=0$, and therefore the above equations imply that $A_{a}=0$ and $A_{a^{*}}=0$ with the help of (2.24) and (3.10), provided $\rho \neq 2 \nu$.

Thus we have
Lemma 3.3. Let M be as in Lemma 3.1 and let the distinguished normal vector field N is parallel with respect to the normal connection. If the equality (3.1) holds on M for a normal vector field ζ to M and $\rho \neq 2 \nu$, then

$$
A_{a}=0, \quad A_{a^{*}}=0, \quad a=1, \cdots, q .
$$

4. Main Results

We first prepare the following lemma:
Lemma 4.1. Let M be an $(n+1)(n \geq 5)$-dimensional contact $C R$-submanifold of $(n-1)$ contact $C R$-dimension in $S^{2 m+1}$. If the equality (3.1) holds on M for a normal vector field ζ to M, then the shape operator A has 2 constant eigenvalues $\left\{\lambda \pm \sqrt{\lambda^{2}+4}\right\} / 2$ of multiplicities 1 and n, or 4 constant eigenvalues

$$
\left\{\lambda \pm \sqrt{\lambda^{2}+4}\right\} / 2, \quad\left\{\rho \pm \sqrt{\rho^{2}-2(2+\lambda \rho)}\right\} / 2
$$

of multiplicities $1,1,(n-1) / 2$ and $(n-1) / 2$, respectively. Moreover, if A has exactly 2 eigenvalues $\left\{\lambda \pm \sqrt{\lambda^{2}+4}\right\} / 2$, then the eigenvalue ν corresponding to an eigenvector of A, orthogonal to U and ξ, satisfies $2 \nu=\rho=\lambda \pm \sqrt{\lambda^{2}+4}$ and vice-versa.

Proof. If we denote by ν the eigenvalue corresponding to an eigenvector of A, orthogonal to U and ξ, then it is clear from (3.16) that ν satisfies

$$
\begin{equation*}
2 \nu^{2}-2 \rho \nu+\lambda \rho+2=0 \tag{4.1}
\end{equation*}
$$

and consequently the shape operator A has at most 4 constant eigenvalues

$$
\left\{\lambda \pm \sqrt{\lambda^{2}+4}\right\} / 2, \quad\left\{\rho \pm \sqrt{\rho^{2}-2(2+\lambda \rho)}\right\} / 2
$$

whose multiplicities are $1,1,(n-1) / 2$ and $(n-1) / 2$, respectively, with the help of (3.13). Moreover, if A has exactly 2 eigenvalues $\left\{\lambda \pm \sqrt{\lambda^{2}+4}\right\} / 2$, then $2 \nu=\lambda \pm \sqrt{\lambda^{2}+4}$, which together with (3.18) and (4.1) implies

$$
\lambda\left\{\lambda \pm \sqrt{\lambda^{2}+4}\right\}+4-\rho\left\{\lambda \pm \sqrt{\lambda^{2}+4}\right\}+\lambda \rho=0
$$

and hence $\rho=\lambda \pm \sqrt{\lambda^{2}+4}=2 \nu$.
In the sense of Lemma 4.1, we first consider the case of $\rho=\lambda \pm \sqrt{\lambda^{2}+4}=2 \nu$. In this case, the shape operator A has exactly 2 constant eigenvalues

$$
\mu_{1}:=\left\{\lambda+\sqrt{\lambda^{2}+4}\right\} / 2, \quad \mu_{2}:=\left\{\lambda-\sqrt{\lambda^{2}+4}\right\} / 2
$$

of multiplicities, say 1 and n, respectively. Moreover, since ρ is a non-zero constant, (3.5) and (3.28) with $\rho=2 \nu$ imply $s_{a}=s_{a^{*}}=0$, which and (2.10) yield $\nabla^{\perp} N=0$. It is also clear from (2.25) that A is of Codazzi type because of $s_{a}=s_{a^{*}}=0$.

Now, we denote by

$$
T_{k}:=\left\{X \in T M \mid A X=\mu_{k} X\right\}, \quad k=1,2
$$

Since A is of Codazzi type and $\mu_{1} \neq \mu_{2}$, we can easily see that the distributions $T_{k}(k=1,2)$ are both involutive and that the integral submanifolds M_{k} of T_{k} are totally geodesic and parallel along $T_{j}, j \neq k$ (cf. [3]). Hence M is locally a Riemannian product $M_{1} \times M_{2}$, where $\operatorname{dim} M_{1}=1$ and $M_{2}=n$.

In order to investigate the integral submanifolds M_{k} more precisely, we consider the Gauss and Weingarten formulae for $S^{2 m+1} \subset \mathbb{R}^{2 m+2}$ which are given by

$$
\begin{gather*}
\widetilde{\nabla}_{X} Y=\bar{\nabla}_{X} Y+g(X, Y) \tilde{N} \tag{4.2}\\
\widetilde{\nabla}_{X} \tilde{N}=-X \tag{4.3}
\end{gather*}
$$

where $\widetilde{\nabla}$ denotes the Euclidean connection of $\mathbb{R}^{2 m+2}$ and \widetilde{N} the inward unit normal to $S^{2 m+1}$. Then it follows from $\nabla^{\perp} N=0$ and (4.2) that

$$
\begin{equation*}
\widetilde{\nabla}_{X} N=-A X \tag{4.4}
\end{equation*}
$$

for any vector field X tangent to M.
On the other hand, by means of (3.17) M_{1} is a curve on $S^{2 m+1}$ with unit tangent vector

$$
Z=\frac{1}{\sqrt{\mu_{1}^{2}+1}}\left(\mu_{1} U+\xi\right)
$$

Further, using (2.5), (2.21), (2.22), (2.23), (2.24) and (3.9), it follows from (2.9) that $\bar{\nabla}_{Z} Z=\mu_{1} N$. Moreover, it also clear from (2.10) that $\bar{\nabla}_{Z} N=-\mu_{1} Z$. Hence we easily deduce that M_{1} belongs to a circle S^{1} on $S^{2 m+1}$.

Next, we consider the integral submanifold M_{2}. Let P be the position vector of M_{2} in $\mathbb{R}^{2 m+2}$ and put

$$
Q=P+\left(1+\mu_{2}^{2}\right)^{-1}\left(\mu_{2} N+\widetilde{N}\right)
$$

Then, for $X \in T_{2}$, we have $\widetilde{\nabla}_{X} Q=0$ because of $A X=\mu_{2} X$, (4.3) and (4.4), and so Q is a fixed point for M_{2}. Moreover, it is clear that

$$
\|Q-P\|^{2}=\left(1+\mu_{2}^{2}\right)^{-1}
$$

which means that P belongs to a sphere S_{2} with radius $\left(1+\mu_{2}^{2}\right)^{-1 / 2}$ and center Q.

We consider M_{2} as a submanifold of $S^{2 m+1}$. Since M_{2} is totally geodesic in M, it is clear that $A_{Y}{ }^{(2)}=0$ where $A_{Y}{ }^{(2)}$ is the shape operator of M_{2} in $S^{2 m+1}$ with respect to the tangent vector Y to M_{1}. This means that the first normal space (cf. [4]) of M_{2} is contained in $\operatorname{Span}\left\{N, N_{2}, \ldots, N_{p}\right\}$.

We now prove
Lemma 4.2. Span $\left\{N, N_{2}, \ldots, N_{p}\right\}$ is invariant under parallel translation with respect to the normal connection $D^{(2)}$ of M_{2} in $S^{2 m+1}$.

Proof. Since $S^{2 m+1}$ is of constant curvature 1 and $\nabla \frac{\perp}{X} N=0$, (2.28) implies

$$
g\left(\left[A, A_{N^{\prime}}\right] X, Y\right)=g\left(R^{\perp}(X, Y) N, N^{\prime}\right)=0
$$

for any normal vector N^{\prime} to M. Hence $A A_{N^{\prime}}=A_{N^{\prime}} A$ and so, for $X \in T_{2}$ we have $A_{N^{\prime}} X \in T_{2}$, i.e.,

$$
\begin{equation*}
A_{N^{\prime}} T_{2} \subset T_{2} \tag{4.6}
\end{equation*}
$$

On the other hand, for any vector field X tangent to M_{2}, we have

$$
\bar{\nabla}_{X} N_{\alpha}=-A_{\alpha} X+\nabla_{X}^{\perp} N_{\alpha}
$$

But $\nabla \frac{\perp}{X} N_{\alpha} \in \operatorname{Span}\left\{N, N_{2}, \ldots, N_{p}\right\}$ and $A_{\alpha} X \in T_{2}$ as a consequence of (4.5). Hence

$$
D_{X}^{(2)} N_{\alpha}=\nabla_{X}^{\perp} N_{\alpha} \in \operatorname{Span}\left\{N, N_{2}, \ldots, N_{p}\right\}
$$

which completes the proof.
As a consequence of Lemma 4.2 we can apply Erbacher's reduction theorem ([4, p. 339]) and this yields that M_{2} belongs to a totally geodesic submanifold $S(1)$ of dimension $\left(\operatorname{dim} M_{2}+p\right)$ in $S^{2 m+1}$. Therefore M_{2} belongs to the intersection of this sphere $S(1)$ and the sphere $S_{2}\left(\left(1+\mu_{2}^{2}\right)^{-1 / 2}, Q\right)$ obtained above. Note that Q
belongs to the Euclidean space of dimension ($\operatorname{dim} M_{2}+p+1$) through the origin and containing $S(1)$. Since $\operatorname{dim} M_{2}+p$ is even, we may conclude

Theorem 4.3. Let M be an $(n+1)(n \geq 5)$-dimensional contact $C R$-submanifold of $(n-1)$ contact $C R$-dimension in $S^{2 m+1}$. If the equality (3.1) holds on M for a normal vector field ζ to M and $\rho=\lambda \pm \sqrt{\lambda^{2}+4}$, then M is locally a product $S^{1} \times M_{2}$, where M_{2} belongs to some sphere of odd-dimension.

Finally, we consider the case of $\rho \neq \lambda \pm \sqrt{\lambda^{2}+4}$ under the assumption that the distinguished normal vector field N be parallel with respect to the normal connection. In this case, by means of Lemma 3.3 and Erbacher's reduction theorem ([4, p. 339]), we have

Theorem 4.4. Let M be as in Theorem 4.3 and let the distinguished normal vector field N be parallel with respect to the normal connection. If the equality (3.1) holds on M for a normal vector field ζ to M and $\rho \neq \lambda \pm \sqrt{\lambda^{2}+4}$, then there exists an $(n+2)$-dimensional unit sphere S^{n+2} which is totally geodesic in $S^{2 m+1}$ and $M \subset S^{n+2}$.

In Lemma 4.4, since the tangent space $T_{x} S^{n+2}$ of the totally geodesic submanifold S^{n+2} at $x \in M$ is $T_{x} M \oplus \operatorname{Span}\{N\}, S^{n+2}$ is an invariant submanifold of $S^{2 m+1}$ because of (2.2) and (2.3). Therefore M can be regarded as a real hypersurface of S^{n+2} which is a totally geodesic invariant submanifold of $S^{2 m+1}$. Hence, under the assumptions stated in Lemma 4.4, Lemma 4.1 implies that M is a real hypersurface of an odd-dimensional unit sphere S^{n+2} whose shape operator A has exactly 4 constant eigenvalues of multiplicities $1,1,(n-1) / 2,(n-1) / 2$, respectively. Thus a theorem of Takagi [9](see also [10, Example 1.1, p. 159] and [7, Theorem 4.1, p. 239]) implies

Theorem 4.5. Let M be an $(n+1)(n \geq 5)$-dimensional contact CRsubmanifold of $(n-1)$ contact $C R$-dimension in $S^{2 m+1}$ and let the distinguished normal vector field N be parallel with respect to the normal connection. If the equality (3.1) holds on M for a normal vector field ζ to M and $\rho \neq \lambda \pm \sqrt{\lambda^{2}+4}$, then M is locally a hypersurface $M^{\prime}(n+1, t)$ of S^{n+2} defined by

$$
M^{\prime}(n+1, t):=\left\{\left.\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{C}^{k}| | \sum_{j=1}^{k} z_{j}^{2}\right|^{2}=t, \sum_{j=1}^{k}\left|z_{j}\right|^{2}=1\right\}
$$

where $k:=(n+3) / 2$.
Combining Theorem 4.3 and Theorem 4.5, we have

Theorem 4.6. Let M be an $(n+1)(n \geq 5)$-dimensional contact $C R$ submanifold of $(n-1)$ contact $C R$-dimension in $S^{2 m+1}$ and let the distinguished normal vector field N be parallel with respect to the normal connection. If the equality (3.1) holds on M for a normal vector field ζ to M, then M is locally one of the following:
(1) a product $S^{1} \times M_{2}$, where M_{2} belongs to some sphere of odd-dimension.
(2) a hypersurface $M^{\prime}(n+1, t)$ of S^{n+2} given in Theorem 4.5.

References

1. A. Bejancu, Geometry of $C R$-submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986.
2. B. Y. Chen, Geometry of submanifolds, Marcel Dekker Inc., New York, 1973.
3. A. Derdzinski, Some remarks on the local structure of Codazzi tensors, Lecture Notes in Math., Vol. 838, 251-255, Springer-Verlag, Berlin, 1981.
4. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom., 5 (1971), 333-340.
5. J.-H. Kwon and J. S. Pak, On some contact $C R$-submanifolds of an odd-dimensional unit sphere, Soochow J. Math., 26 (2000), 427-439.
6. H. S. Kim and J. S. Pak, Certain contact $C R$-submanifolds of an odd-dimensional unit sphere, Bull. Korean Math. Soc., 44 (2007), 109-116.
7. H. Nakagawa and I. Yokote, Compact hypersurfaces in an odd dimensional unit sphere, Kodai Math. Sem. Rep., 25 (1973), 225-245.
8. J. S. Pak, J.-H. Kwon, H. S. Kim and Y.-M. Kim, Contact $C R$-submanifolds of an odd-dimensional unit sphere Geom. Dedicata, 114 (2005), 1-11.
9. R. Tagaki, A class of hypersurfaces with constant principal curvatures in a sphere, J. Differential. Geom., 11 (1976), 225-233.
10. K. Yano and M. Kon, $C R$ submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, Boston, Basel, Stuttgart, 1983.

Hyang Sook Kim

Department of Computational Mathematics,
School of Computer Aided Science,
Institute of Basic Science,
Inje University,
Kimhae, 621-749,
Korea
E-mail: mathkim@inje.ac.kr

Jin Suk Pak
Department of Mathematics Education,
Kyungpook National University,
Daegu 702-701,
Korea
E-mail: jspak@knu.ac.kr

