ON COUPLED NONLINEAR WAVE EQUATIONS OF KIRCHHOFF TYPE WITH DAMPING AND SOURCE TERMS

Shun-Tang Wu

Abstract

The initial boundary value problem for a system of nonlinear wave equations of Kirchhoff type with strong damping in a bounded domain is considered. The existence, asymptotic behavior and blow-up of solutions are discussed under some conditions. The decay estimates of the energy function and the estimates for the lifespan of solutions are given.

1. Introduction

We consider the initial boundary value problem for the following nonlinear coupled wave equations of Kirchhoff type :

$$
\begin{equation*}
u_{t t}-M\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \Delta u+h_{1}\left(u_{t}\right)=f_{1}(u) \text { in } \Omega \times[0, \infty) \tag{1.1}
\end{equation*}
$$

with initial conditions,

$$
\begin{equation*}
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x), \quad x \in \Omega \tag{1.4}
\end{equation*}
$$

and boundary conditions,

$$
\begin{equation*}
u(x, t)=v(x, t)=0, x \in \partial \Omega, t>0 \tag{1.5}
\end{equation*}
$$

[^0]where $\Omega \subset \mathbb{R}^{N}, N \geq 1$, is a bounded domain with smooth boundary $\partial \Omega$ so that Divergence theorem can be applied. Let $\Delta=\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}$ be the Laplace operator, $h_{1}\left(u_{t}\right)=-\Delta u_{t}, h_{2}\left(v_{t}\right)=-\Delta v_{t}$ and $M(r)$ be a nonnegative locally Lipschitz function for $r \geq 0$ like $M(r)=m_{0}+b r^{\gamma}$, with $m_{0} \geq 0, b \geq 0, m_{0}+b>0, \gamma \geq 1$, and $f_{i}(s), i=1,2, s \in \mathbb{R}$, be a nonlinear function. We denote $\|\cdot\|_{p}$ to be L^{p}-norm.

The existence and nonexistence of solutions for a single wave equation of Kirchhoff type:

$$
\begin{equation*}
u_{t t}-M\left(\|\nabla u\|_{2}^{2}\right) \Delta u+h\left(u_{t}\right)=f(u) \text { in } \Omega \times[0, \infty) \tag{1.6}
\end{equation*}
$$

have been discussed by many authors and the references cited therein. The function h in (1.6) is considered in three different cases. For $h\left(u_{t}\right)=\delta u_{t}, \delta>0$, the global existence and blow-up results can be found in $[3,5,12,17]$; for $h\left(u_{t}\right)=$ $-\Delta u_{t}$, some global existence and blow-up results are given in $[4,5,10,13,14,17]$; for $h\left(u_{t}\right)=\left|u_{t}\right|^{m} u_{t}, m>0$, the main results of existence and blow-up are in $[1,2,8,11,17]$. As a model it describes the nonlinear vibrations of an elastic string. When $h \equiv f \equiv 0$, Kirchhoff [6] was the first one to study the equation, so that (1.6) is named the wave equation of Kirchhoff type. For the system of wave equations related to $(1.1)-(1.5)$, Park and Bae $[15,16]$ considered the system of $(1.1)-(1.5)$ with $h_{i}(s)=|s|^{\alpha} s, f_{i}(s)=|s|^{\beta} s, i=1,2, \alpha, \beta \geq 0, s \in \mathbb{R}$ and showed the global existence and asymptotic behavior of solutions under some restrictions on initial energy. Recently, Liu and Wang [7] considered the system (1.1) - (1.5) with $M(r)=m_{0}+b r, h_{i}(r)=|r|^{\lambda_{i}} r, m_{0} \geq 0, b \geq 0, m_{0}+b>0, \lambda_{i} \geq 0, i=1,2$ and obtain the global existence for the nonlinear damping with $\lambda_{1} \geq \lambda_{2}$. Concerning blowing up property, Benaissa and Messaoudi [2] studied blowing up properties for the system $(1.1)-(1.5)$ with negative initial energy. Later, Wu and Tsai [18] studied the system $(1.1)-(1.5)$ with $M=M\left(\|\nabla u\|_{2}^{2}\right)$ and $M=M\left(\|\nabla v\|_{2}^{2}\right)$ in (1.1), (1.2), respectively. In that paper, we consider more general function f and obtain the blow-up result for small positive initial energy. Liu and Wang [7] considered blow-up properties of solutions for $(1.1)-(1.5)$ with linear damping.

The first purpose of this paper is to study the global existence and to derive decay properties of solutions to problem (1.1) - (1.5). We obtain the solution decay at an exponential rate as $t \rightarrow \infty$ in the non-degenerate case $\left(m_{0}>0\right)$ and a certain algebraic rate in the degenerate case $\left(m_{0}=0\right)$ by using Nako's inequality [9]. The second purpose is to show blowing up of a local solution to problem $(1.1)-(1.5)$. We shall prove that the local solution blows up in finite time by applying the concave method, that is, we show that there exists a finite time $T^{*}>0$ such that $\lim _{t \rightarrow T^{*-}} \int_{\Omega}\left(|\nabla u|^{2}+|\nabla v|^{2}\right) d x=\infty$. Estimates for the blow-up time T^{*} are also given. In this way, we extend the nonexistence result in [18] for more general M. This work also improves early one [13] in which the global existence
and non-existence results have been established only for a single equation. The paper is organized as follows. In section 2, we present the preliminaries and some lemmas. In section 3 , we will show the existence of a unique local solution (u, v) of our problem $(1.1)-(1.5)$ with $u_{0}, v_{0} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and $u_{1}, v_{1} \in L^{2}(\Omega)$ by applying the Banach fixed point theorem. In section 4, we first define an energy function $E(t)$ and show that it is a nonincreasing function. Then the global existence and decay property are derived in Theorem 4.5. Finally, the blow-up properties of $(1.1)-(1.5)$ are obtained in the case of the initial energy being non-positive.

2. Preliminaries

Let us begin by stating the following lemmas, which will be used later.
Lemma 2.1. (Sobolev-Poincare inequality [13]). If $1 \leq p \leq \frac{2 N}{[N-2 m]^{+}}(1 \leq$ $p<\infty$ if $N \leq 2 m)$, then

$$
\|u\|_{p} \leq c_{*}\left\|(-\Delta)^{\frac{m}{2}} u\right\|_{2}, \quad \text { for } u \in D\left((-\Delta)^{\frac{m}{2}}\right)
$$

holds with some positive constant c_{*}, where $[a]^{+}=\max \{a, 0\}, a \in \mathbb{R}$.
Lemma 2.2. [9]. Let $\phi(t)$ be a non-increasing and nonnegative function on $[0, T], T>1$, such that

$$
\phi(t)^{1+r} \leq \omega_{0}(\phi(t)-\phi(t+1)) \text { on }[0, T]
$$

where ω_{0} is a positive constant and r is a nonnegative constant. Then we have
(i) if $r>0$, then

$$
\phi(t) \leq\left(\phi(0)^{-r}+\omega_{0}^{-1} r[t-1]^{+}\right)^{-\frac{1}{r}}
$$

(ii) If $r=0$, then

$$
\phi(t) \leq \phi(0) e^{-\omega_{1}[t-1]^{+}} \text {on }[0, T]
$$

where $\omega_{1}=\ln \left(\frac{\omega_{0}}{\omega_{0}-1}\right)$, here $\omega_{0}>1$.

3. Local Existence

In this section we shall discuss the local existence of solutions to problem (1.1) - (1.5) by method of Banach fixed point theorem. In the sequal, for the sake of simplicity we will omit the dependence on t, when the meaning is clear.

Assume that
(A1) $f_{i}(0)=0, i=1,2$ and for any $\rho>0$ there exists a constant $k(\rho)>0$ such that

$$
\left|f_{1}(s)-f_{1}(t)\right| \leq k(\rho)\left(|s|^{p}+|t|^{p}\right)|s-t|
$$

and

$$
\left|f_{2}(s)-f_{2}(t)\right| \leq k(\rho)\left(|s|^{q}+|t|^{q}\right)|s-t|
$$

where $|s|,|t| \leq \rho$, for $s, t \in \mathbb{R}$, and $0 \leq p, q \leq \frac{4}{N-2},(0 \leq p, q<\infty$, if $N \leq 2)$.
An important step in the proof of local existence Theorem 3.2 below is the study of the following simpler problem :

$$
\begin{gather*}
u^{\prime \prime}-m(t) \Delta u-\Delta u^{\prime}=f(t) \text { in } \Omega \times[0, T] \\
u(0)=u_{0}, u^{\prime}(0)=u_{1}, x \in \Omega \tag{3.1}\\
u(x, t)=0, x \in \partial \Omega, t>0
\end{gather*}
$$

here $u^{\prime}=\frac{\partial u}{\partial t}$ and $T>0$..
Theorem 3.1. ([13]). Let $m(t)$ be a nonnegative Lipschitz function and $f(t)$ be a Lipschitz function on $[0, T], T>0$. If $u_{0} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and $u_{1} \in L^{2}(\Omega)$, then there exists a unique solution u of (3.1) satisfying

$$
u(t) \in C\left([0, T] ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)
$$

and

$$
u^{\prime}(t) \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left((0, T) ; H_{0}^{1}(\Omega)\right)
$$

Theorem 3.2. Assume (A1) holds and $M(r)$ is a nonnegative locally Lipschitz function for $r \geq 0$ with the Lipschitz constant L. If $u_{0}, v_{0} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and $u_{1}, v_{1} \in L^{2}(\Omega)$, then there exist a unique local solution (u, v) of $(1.1)-(1.5)$ satisfying

$$
u(t), v(t) \in C\left([0, T] ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)
$$

and

$$
u^{\prime}(t), v^{\prime}(t) \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left((0, T) ; H_{0}^{1}(\Omega)\right), \text { for } T>0
$$

Moreover, at least one of the following statements hold :
(i) $T=\infty$.
(ii) $e(u(t), v(t)) \equiv\left\|u_{t}\right\|_{2}^{2}+\|\Delta u\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+\|\Delta v\|_{2}^{2} \rightarrow \infty$ as $t \rightarrow T^{-}$.

Proof. We set $w(t)=(u(t), v(t))$, and define the following two-parameter space :

$$
X_{T, R_{0}}=\left\{\begin{array}{c}
u(t), v(t) \in C\left([0, T] ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \\
u_{t}(t), v_{t}(t) \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left((0, T) ; H_{0}^{1}(\Omega)\right): \\
e(u(t), v(t)) \leq R_{0}^{2}, \text { with } w(0)=\left(u_{0}, v_{0}\right), w_{t}(0)=\left(u_{1}, v_{1}\right)
\end{array}\right\}
$$

for $T>0, R_{0}>0$. Then $X_{T, R_{0}}$ is a complete metric space with the distance
(3.2) $d(y, z)=\sup _{0 \leq t \leq T}\left\{\left\|(\mu-\varphi)_{t}\right\|_{2}^{2}+\|\Delta(\mu-\varphi)\|_{2}^{2}+\left\|(\xi-\psi)_{t}\right\|_{2}^{2}+\|\Delta(\xi-\psi)\|_{2}^{2}\right\}^{\frac{1}{2}}$,
where $y(t)=(\mu(t), \xi(t)), z(t)=(\varphi(t), \psi(t)) \in X_{T, R_{0}}$.
Given $\widehat{w}(t)=(\widehat{u}(t), \widehat{v}(t)) \in X_{T, R_{0}}$, we consider the linear system

$$
\begin{align*}
& u_{t t}-M\left(\|\nabla \widehat{u}\|_{2}^{2}+\|\nabla \widehat{v}\|_{2}^{2}\right) \Delta u-\Delta u_{t}=f_{1}(\widehat{u}) \text { in } \Omega \times[0, T), \tag{3.3}\\
& v_{t t}-M\left(\|\nabla \widehat{u}\|_{2}^{2}+\|\nabla \widehat{v}\|_{2}^{2}\right) \Delta v-\Delta v_{t}=f_{2}(\widehat{v}) \text { in } \Omega \times[0, T), \tag{3.4}
\end{align*}
$$

with initial conditions,

$$
\begin{align*}
& u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega, \tag{3.5}\\
& v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x), \quad x \in \Omega, \tag{3.6}
\end{align*}
$$

and boundary conditions,

$$
\begin{equation*}
u(x, t)=v(x, t)=0, x \in \partial \Omega, t>0 \tag{3.7}
\end{equation*}
$$

By Theorem 3.1, there exists a unique solution $w(t)=(u(t), v(t))$ of (3.3) - (3.7). We define the nonlinear mapping $S \widehat{w}=w$, and then, we will show that there exist $T>0$ and $R_{0}>0$ such that
(i) $S: X_{T, R_{0}} \rightarrow X_{T, R_{0}}$,
(ii) S is a contraction mapping in $X_{T, R_{0}}$ with respect to the metric $d(\cdot, \cdot)$ defined in (3.2).

Indeed, multiplying (3.3) by $2 u_{t}$ and integrating it over Ω, and then by Divergence theorem, we get

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left\|u_{t}\right\|_{2}^{2}+M\left(\|\nabla \widehat{u}\|_{2}^{2}+\|\nabla \widehat{v}\|_{2}^{2}\right)\|\nabla u\|_{2}^{2}\right\}+2\left\|\nabla u_{t}\right\|_{2}^{2}=I_{u 1}+I_{u 2}, \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{u 1}=\left(\frac{\mathrm{d}}{\mathrm{~d} t} M\left(\|\nabla \widehat{u}\|_{2}^{2}+\|\nabla \widehat{v}\|_{2}^{2}\right)\right)\|\nabla u\|_{2}^{2}, \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
I_{u 2}=\int_{\Omega} 2 f_{1}(\widehat{u}) u_{t} \mathrm{~d} x \tag{3.10}
\end{equation*}
$$

Similarly, we also have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left\|v_{t}\right\|_{2}^{2}+M\left(\|\nabla \widehat{u}\|_{2}^{2}+\|\nabla \widehat{v}\|_{2}^{2}\right)\|\nabla v\|_{2}^{2}\right\}+2\left\|\nabla v_{t}\right\|_{2}^{2}=I_{v 1}+I_{v 2} \tag{3.11}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{v 1}=\left(\frac{\mathrm{d}}{\mathrm{~d} t} M\left(\|\nabla \widehat{u}\|_{2}^{2}+\|\nabla \widehat{v}\|_{2}^{2}\right)\right)\|\nabla v\|_{2}^{2} \\
& I_{v 2}=\int_{\Omega} 2 f_{2}(\widehat{v}) v_{t} d x
\end{aligned}
$$

From Divergence theorem, $\widehat{w} \in X_{T, R_{0}}$ and Lemma2.1, we have

$$
\begin{align*}
\left|I_{u 1}\right| & \leq 2 L\left(\|\Delta \widehat{u}\|_{2}\left\|\widehat{u_{t}}\right\|_{2}+\|\Delta \widehat{v}\|_{2}\left\|\widehat{v_{t}}\right\|_{2}\right)\|\nabla u\|_{2}^{2} \tag{3.12}\\
& \leq c_{0} L R_{0}^{2} e(u, v)
\end{align*}
$$

and
(3.13)

$$
\left|I_{v 1}\right| \leq c_{0} L R_{0}^{2} e(u, v)
$$

where $c_{0}=4 c_{*}^{2}$.
By (A1), Lemma 2.1 and Hölder inequality, we have from (3.10)

$$
\begin{align*}
\left|I_{u 2}\right| & \leq 2 k\left(c_{*}\|\Delta \widehat{u}\|_{2}\right)^{p+1}\left\|u_{t}\right\|_{2} \\
& \leq 2 k c_{*}^{p+1} R_{0}^{p+1} e(u, v)^{\frac{1}{2}} \tag{3.14}
\end{align*}
$$

and

$$
\begin{equation*}
\left|I_{v 2}\right| \leq 2 k c_{*}^{q+1} R_{0}^{q+1} e(u, v)^{\frac{1}{2}} \tag{3.15}
\end{equation*}
$$

Combining (3.8) and (3.11) together, and using (3.12) - (3.15), we arrive at

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+M\left(\|\nabla \widehat{u}\|_{2}^{2}+\|\nabla \widehat{v}\|_{2}^{2}\right)\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)\right\} \\
& +2\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right) \tag{3.16}\\
\leq & 2 c_{0} L R_{0}^{2} e(u, v)+c_{1}\left(R_{0}^{p+1}+R_{0}^{q+1}\right) e(u, v)^{\frac{1}{2}}
\end{align*}
$$

where $c_{1}=2 k \max \left(c_{*}^{p+1}, c_{*}^{q+1}\right)$. On the other hand, multiplying (3.3) by $-2 \Delta u$ and (3.4) by $-2 \Delta v$ and integrating them over Ω and adding them together, we get

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\{\|\Delta u\|_{2}^{2}+\|\Delta v\|_{2}^{2}-2\left(\int_{\Omega} u_{t} \Delta u \mathrm{~d} x+\int_{\Omega} v_{t} \Delta v \mathrm{~d} x\right)\right\} \\
& +2 M\left(\|\nabla \widehat{u}\|_{2}^{2}+\|\nabla \widehat{v}\|_{2}^{2}\right)\left(\|\Delta u\|_{2}^{2}+\|\Delta v\|_{2}^{2}\right) \tag{3.17}\\
\leq & 2\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right)+c_{1}\left(R_{0}^{p+1}+R_{0}^{q+1}\right) e(u, v)^{\frac{1}{2}}
\end{align*}
$$

the last inequality in (3.17) is obtained by following the argument as in (3.14) and (3.15). Multiplying (3.17) by $\varepsilon, 0<\varepsilon \leq 1$, and adding (3.16) together, we obtain

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} e_{\hat{u}, \hat{v}}^{*}(u, v)+2(1-\varepsilon)\left[\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right] \tag{3.18}\\
\leq & 2 c_{0} L R_{0}^{2} e(u, v)+2(1+\varepsilon) c_{1}\left(R_{0}^{p+1}+R_{0}^{q+1}\right) e(u, v)^{\frac{1}{2}}
\end{align*}
$$

where

$$
\begin{align*}
& e_{\widehat{u}, \widehat{v}}^{*}(u, v) \\
= & \left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+M\left(\|\nabla \widehat{u}\|_{2}^{2}+\|\nabla \widehat{v}\|_{2}^{2}\right)\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \tag{3.19}\\
& -2 \varepsilon\left(\int_{\Omega} u_{t} \Delta u \mathrm{~d} x+\int_{\Omega} v_{t} \Delta v \mathrm{~d} x\right)+\varepsilon\left(\|\Delta u\|_{2}^{2}+\|\Delta v\|_{2}^{2}\right) .
\end{align*}
$$

By Young's inequality, we get $\left|2 \varepsilon \int_{\Omega} u_{t} \Delta u d x\right| \leq 2 \varepsilon\left\|u_{t}\right\|_{2}^{2}+\frac{\varepsilon}{2}\|\Delta u\|_{2}^{2}$. Hence

$$
\begin{aligned}
e_{\widehat{u}, \widehat{v}}^{*}(u, v) \geq & (1-2 \varepsilon)\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right)+\frac{\varepsilon}{2}\left(\|\Delta u\|_{2}^{2}+\|\Delta v\|_{2}^{2}\right) \\
& +M\left(\|\nabla \widehat{u}\|_{2}^{2}+\|\nabla \widehat{v}\|_{2}^{2}\right)\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) .
\end{aligned}
$$

Choosing $\varepsilon=\frac{2}{5}$, we have

$$
\begin{equation*}
e_{\hat{u}, \hat{v}}^{*}(u, v) \geq \frac{1}{5} e(u, v) . \tag{3.20}
\end{equation*}
$$

Then, from (3.18), we obtain

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} e_{\widehat{u}, \hat{v}}^{*}(u(t), v(t)) \leq & 10 c_{0} L R_{0}^{2} e_{\hat{u}, \hat{v}}^{*}(u(t), v(t)) \\
& +\frac{14 \sqrt{5}}{5} c_{1}\left(R_{0}^{p+1}+R_{0}^{q+1}\right) e_{\vec{u}, \hat{v}}^{*}(u(t), v(t))^{\frac{1}{2}} .
\end{aligned}
$$

By Gronwall Lemma, we deduce
(3.21)

$$
e_{\widehat{u}, \hat{v}}^{*}(u(t), v(t)) \leq\left(e_{\widehat{u}(0), \hat{v}(0)}^{*}\left(u_{0}, v_{0}\right)^{\frac{1}{2}}+\frac{7 \sqrt{5}}{5} c_{1}\left(R_{0}^{p+1}+R_{0}^{q+1}\right) T\right)^{2} \mathrm{e}^{10 c_{0} L R_{0}^{2} T}
$$

Thanks to Young's inequality, we observe that

$$
\begin{equation*}
e_{\hat{u}(0), \widehat{v}(0)}^{*}\left(u_{0}, v_{0}\right) \leq c_{2}, \tag{3.22}
\end{equation*}
$$

where

$$
\begin{aligned}
c_{2}= & 2\left(\left\|u_{1}\right\|_{2}^{2}+\left\|v_{1}\right\|_{2}^{2}\right)+\left\|\Delta u_{0}\right\|_{2}^{2}+\left\|\Delta v_{0}\right\|_{2}^{2} \\
& +M\left(\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}\right)\left(\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}\right) .
\end{aligned}
$$

Thus, from (3.21) and using (3.20) and (3.22), we obtain for any $t \in[0, T]$,

$$
\begin{align*}
e(u(t), v(t)) & \leq 5 e_{\widehat{u}, \widehat{v}}^{*}(u(t), v(t)) \\
& \leq \chi\left(u_{0}, u_{1}, v_{0}, v_{1}, R_{0}, T\right)^{2} \mathrm{e}^{10 c_{0} L R_{0}^{2} T} \tag{3.23}
\end{align*}
$$

where

$$
\chi\left(u_{0}, u_{1}, v_{0}, v_{1}, R, T\right)=c_{2}^{\frac{1}{2}}+\frac{7 \sqrt{5}}{5} c_{1}\left(R_{0}^{p+1}+R_{0}^{q+1}\right) T
$$

In order that S maps $X_{T, R_{0}}$ into itself, it will be enough that the parameters T and R_{0} satisfy

$$
\begin{equation*}
\chi\left(u_{0}, u_{1}, v_{0}, v_{1}, R_{0}, T\right)^{2} \mathrm{e}^{10 c_{0} L R_{0}^{2} T} \leq R_{0}^{2} \tag{3.24}
\end{equation*}
$$

Moreover, by Theorem 3.1, $w \in C^{0}\left([0, T] ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)$ and it follows from (3.24) that $u^{\prime}, v^{\prime} \in L^{2}\left((0, T) ; H_{0}^{1}(\Omega)\right)$.

Next, we will show that S is a contraction mapping with respect to the metric $d(\cdot, \cdot)$. Let $\left(\widehat{u}_{i}, \widehat{v}_{i}\right) \in X_{T, R_{0}}$ and $\left(u^{(i)}, v^{(i)}\right) \in X_{T, R_{0}}, i=1,2$, be the corresponding solution to $(3.3)-(3.7)$. Setting $w_{1}(t)=\left(u^{(1)}-u^{(2)}\right)(t), w_{2}(t)=\left(v^{(1)}-v^{(2)}\right)(t)$, then w_{1} and w_{2} satisfy the following system:

$$
\begin{align*}
& \left(w_{1}\right)_{t t}-M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right) \Delta w_{1}-\Delta\left(w_{1}\right)_{t} \\
= & f_{1}\left(\widehat{u}_{1}\right)-f_{1}\left(\widehat{u}_{2}\right)+\left[M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)\right. \tag{3.25}\\
& \left.-M\left(\left\|\nabla \widehat{u}_{2}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{2}\right\|_{2}^{2}\right)\right] \Delta u^{(2)} \\
& \left(w_{2}\right)_{t t}-M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right) \Delta w_{2}-\Delta\left(w_{2}\right)_{t} \\
= & f_{2}\left(\widehat{v}_{1}\right)-f_{2}\left(\widehat{v}_{2}\right)+\left[M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)\right. \tag{3.26}\\
& \left.-M\left(\left\|\nabla \widehat{u}_{2}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{2}\right\|_{2}^{2}\right)\right] \Delta v^{(2)},
\end{align*}
$$

Multiplying (3.25) by $2\left(w_{1}\right)_{t}$, and integrating it over Ω, we have

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left\|\left(w_{1}\right)_{t}\right\|_{2}^{2}+M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)\left\|\nabla w_{1}\right\|_{2}^{2}\right\}+2\left\|\nabla\left(w_{1}\right)_{t}\right\|_{2}^{2} \tag{3.28}\\
= & I_{u 3}+I_{u 4}+I_{u 5},
\end{align*}
$$

where

$$
\begin{align*}
I_{u 3} & =\left(\frac{\mathrm{d}}{\mathrm{~d} t} M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)\right)\left\|\nabla w_{1}\right\|_{2}^{2} \tag{3.29}\\
I_{u 4}= & 2\left[M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)\right. \\
& \left.-M\left(\left\|\nabla \widehat{u}_{2}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{2}\right\|_{2}^{2}\right)\right] \int_{\Omega} \Delta u^{(2)}\left(w_{1}\right)_{t} \mathrm{~d} x \tag{3.30}
\end{align*}
$$

$$
\begin{equation*}
I_{u 5}=2 \int_{\Omega}\left(f_{1}\left(\widehat{u}_{1}\right)-f_{1}\left(\widehat{u}_{2}\right)\right)\left(w_{1}\right)_{t} \mathrm{~d} x . \tag{3.31}
\end{equation*}
$$

Similarly, we also have

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left\|\left(w_{2}\right)_{t}\right\|_{2}^{2}+M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)\left\|\nabla w_{2}\right\|_{2}^{2}\right\}+2\left\|\nabla\left(w_{2}\right)_{t}\right\|_{2}^{2} \tag{3.32}\\
= & I_{v 3}+I_{v 4}+I_{v 5},
\end{align*}
$$

where

$$
\begin{aligned}
& I_{v 3}=\left(\frac{\mathrm{d}}{\mathrm{~d} t} M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)\right)\left\|\nabla w_{2}\right\|_{2}^{2}, \\
& I_{v 4}=2\left[M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)-M\left(\left\|\nabla \widehat{u}_{2}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{2}\right\|_{2}^{2}\right)\right] \int_{\Omega} \Delta v^{(2)}\left(w_{2}\right)_{t} \mathrm{~d} x, \\
& I_{v 5}=2 \int_{\Omega}\left(f_{2}\left(\widehat{v}_{1}\right)-f_{2}\left(\widehat{v}_{2}\right)\right)\left(w_{2}\right)_{t} \mathrm{~d} x .
\end{aligned}
$$

To proceed the estimation, it follows from (3.29) that

$$
\begin{align*}
\left|I_{u 3}\right| & \leq 2 L\left(\left\|\Delta \widehat{u}_{1}\right\|_{2}\left\|\left(\widehat{u}_{1}\right)_{t}\right\|_{2}+\left\|\Delta \widehat{v}_{1}\right\|_{2}\left\|\left(\widehat{v}_{1}\right)_{t}\right\|_{2}\right)\left\|\nabla w_{1}\right\|_{2}^{2} \tag{3.33}\\
& \leq c_{0} L R_{0}^{2} e\left(w_{1}, w_{2}\right) .
\end{align*}
$$

Note that by Lemma 2.1, we have

$$
\begin{aligned}
& \left|M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)-M\left(\left\|\nabla \widehat{u}_{2}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{2}\right\|_{2}^{2}\right)\right| \\
\leq & L\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}+\left\|\nabla \widehat{u}_{2}\right\|_{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}+\left\|\nabla \widehat{v}_{2}\right\|_{2}\right)\left(\left\|\nabla \widehat{u}_{1}-\nabla \widehat{u}_{2}\right\|_{2}+\left\|\nabla \widehat{v}_{1}-\nabla \widehat{v}_{2}\right\|_{2}\right) \\
\leq & 4 c_{*}^{2} R R_{0} L e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Then, from (3.30), we obtain

$$
\begin{equation*}
\left|I_{u 4}\right| \leq 8 c_{*}^{2} L R_{0}^{2} e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}} e\left(w_{1}, w_{2}\right)^{\frac{1}{2}} . \tag{3.34}
\end{equation*}
$$

And by (A1), we see that

$$
\begin{equation*}
\left|I_{u 5}\right| \leq 4 k c_{*}^{p+2} R_{0}^{p} e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}} e\left(w_{1}, w_{2}\right)^{\frac{1}{2}} \tag{3.35}
\end{equation*}
$$

By the same procedure, we have the inequality for $I_{v 3}, I_{v 4}$ and $I_{v 5}$. Hence, combining (3.28) and (3.32) together and using (3.33) - (3.35), we obtain

$$
\begin{align*}
& \quad \frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left\|\left(w_{1}\right)_{t}\right\|_{2}^{2}+\left\|\left(w_{2}\right)_{t}\right\|_{2}^{2}+M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)\left(\left\|\nabla w_{1}\right\|_{2}^{2}+\left\|\nabla w_{2}\right\|_{2}^{2}\right)\right\} \\
& \quad+2\left(\left\|\nabla\left(w_{1}\right)_{t}\right\|_{2}^{2}+\left\|\nabla\left(w_{2}\right)_{t}\right\|_{2}^{2}\right) \tag{3.36}\\
& \leq \\
& \quad 2 c_{0} L R_{0}^{2} e\left(w_{1}, w_{2}\right)+16 c_{*}^{2} L R_{0}^{2} e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}} e\left(w_{1}, w_{2}\right)^{\frac{1}{2}} \\
& \quad+c_{3}\left(R_{0}^{p}+R_{0}^{q}\right) e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}} e\left(w_{1}, w_{2}\right)^{\frac{1}{2}}
\end{align*}
$$

where $\mathrm{c}_{3}=4 k \max \left(c_{*}^{p+2}, c_{*}^{q+2}\right)$. On the other hand, multiplying (3.25) by $-2 \Delta w_{1}$ and (3.26) by $-2 \Delta w_{2}$, and integrating them over Ω and adding them together, we deduce

$$
\begin{align*}
& \quad \frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left\|\Delta w_{1}\right\|_{2}^{2}+\left\|\Delta w_{2}\right\|_{2}^{2}-2\left(\int_{\Omega}\left(w_{1}\right)_{t} \Delta w_{1} \mathrm{~d} x+\int_{\Omega}\left(w_{2}\right)_{t} \Delta w_{2} \mathrm{~d} x\right)\right\} \\
& \quad+2 M\left(\left\|\nabla \widehat{u}_{1}\right\|_{2}^{2}+\left\|\nabla \widehat{v}_{1}\right\|_{2}^{2}\right)\left(\left\|\Delta w_{1}\right\|_{2}^{2}+\left\|\Delta w_{2}\right\|_{2}^{2}\right) \tag{3.37}\\
& \leq \\
& \quad 2\left[\left\|\nabla\left(w_{1}\right)_{t}\right\|_{2}^{2}+\left\|\nabla\left(w_{2}\right)_{t}\right\|_{2}^{2}\right]+\left(16 c_{*}^{2} L R_{0}^{2} e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}}\right. \\
& \left.\quad+c_{3}\left(R_{0}^{p}+R_{0}^{q}\right) e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}}\right) e\left(w_{1}, w_{2}\right)^{\frac{1}{2}}
\end{align*}
$$

Multiplying (3.37) by $\varepsilon, 0<\varepsilon \leq 1$, and adding it to (3.36), we have

$$
\begin{align*}
& \quad \frac{\mathrm{d}}{\mathrm{~d} t} e_{\widehat{u}_{1}, \widehat{v}_{1}}^{*}\left(w_{1}, w_{2}\right)+2(1-\varepsilon)\left[\left\|\nabla\left(w_{1}\right)_{t}\right\|_{2}^{2}+\left\|\nabla\left(w_{2}\right)_{t}\right\|_{2}^{2}\right] \\
& \leq \tag{3.38}\\
& 2 c_{0} L R_{0}^{2} e\left(w_{1}, w_{2}\right)+16 c_{*}^{2}(1+\varepsilon) L R_{0}^{2} e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}} e\left(w_{1}, w_{2}\right)^{\frac{1}{2}} \\
& \quad+(1+\varepsilon) c_{3}\left(R_{0}^{p}+R_{0}^{q}\right) e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}} e\left(w_{1}, w_{2}\right)^{\frac{1}{2}}
\end{align*}
$$

where $e_{\widehat{u}_{1}, \widehat{v}_{1}}^{*}\left(w_{1}, w_{2}\right)$ is given by (3.19) with $u=w_{1}, v=w_{2}, \widehat{u}=\widehat{u}_{1}$ and $\widehat{v}=\widehat{v}_{1}$. Taking $\varepsilon=\frac{2}{5}$ in (3.38), and as in (3.17) - (3.20), we obtain

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} e_{\widehat{u}_{1}, \widehat{v}_{1}}^{*}\left(w_{1}, w_{2}\right) \leq & L R_{0}^{2} 10 c_{0} e_{\widehat{u}_{1}, \widehat{v}_{1}}^{*}\left(w_{1}, w_{2}\right) \\
& +c_{5}\left(R_{0}^{p}+R_{0}^{q}\right) e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}} e_{\widehat{u}_{1}, \widehat{v}_{1}}^{*}\left(w_{1}, w_{2}\right)^{\frac{1}{2}} \\
& +c_{4} L R_{0}^{2} e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)^{\frac{1}{2}} e_{\widehat{u}_{1}, \widehat{v}_{1}}^{*}\left(w_{1}, w_{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

where $c_{4}=\frac{112 \sqrt{5}}{5} c_{*}^{2}$ and $c_{5}=\frac{7 \sqrt{5}}{5} c_{3}$. Noting that $e_{\widehat{u}_{1}(0), \widehat{v}_{1}(0)}^{*}\left(w_{1}(0), w_{2}(0)\right)=0$, and by applying Gronwall Lemma, we get

$$
e_{\widehat{u}_{1}, \widehat{v}_{1}}^{*}\left(w_{1}, w_{2}\right) \leq\left[\frac{c_{4}}{2} L R_{0}^{2}+\frac{c_{5}}{2}\left(R_{0}^{p}+R_{0}^{q}\right)\right]^{2} T^{2} \mathrm{e}^{10 c_{0} L R_{0}^{2} T} \sup _{0 \leq t \leq T} e\left(\widehat{u}_{1}-\widehat{u}_{2}, \widehat{v}_{1}-\widehat{v}_{2}\right)
$$

Thus, by (3.2), we have

$$
d\left(\left(u^{(1)}, v^{(1)}\right),\left(u^{(2)}, v^{(2)}\right)\right) \leq C\left(T, R_{0}\right)^{\frac{1}{2}} d\left(\left(\widehat{u}_{1}, \widehat{v}_{1}\right),\left(\widehat{u}_{2}, \widehat{v}_{2}\right)\right)
$$

where

$$
\begin{equation*}
C\left(T, R_{0}\right)=\sqrt{5}\left[\frac{c_{4}}{2} L R_{0}^{2}+\frac{c_{5}}{2}\left(R_{0}^{p}+R_{0}^{q}\right)\right] T \mathrm{e}^{5 c_{0} L R_{0}^{2} T} . \tag{3.39}
\end{equation*}
$$

Hence, under inequality (3.24), S is a contraction mappingn if $C\left(T, R_{0}\right)<1$. Indeed, we choose R_{0} sufficient large and T sufficient small so that (3.24) and (3.39) are satisfied at the same time. By applying Banach fixed point theorem, we obtain the local existence result.

4. Global Existence

In this section, we shall consider the global existence and the asymptotic behavior of the solution for the following equations :

$$
\begin{gather*}
u_{t t}-M\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \Delta u-\Delta u_{t}=|u|^{p} u \tag{4.1}\\
v_{t t}-M\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \Delta v-\Delta v_{t}=|v|^{q} v \tag{4.2}\\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega \tag{4.3}\\
v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x), \quad x \in \Omega \tag{4.4}
\end{gather*}
$$

where $M(s)=m_{0}+b s^{\gamma}$, with $m_{0} \geq 0, b>0, \gamma \geq 1, s \geq 0$ and $2 \gamma<p, q \leq \frac{4}{N-2}$.
Let

$$
\begin{align*}
I(u, v) \equiv & I(t)=m_{0}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)+b\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{\gamma+1} \\
& -\|u\|_{p+2}^{p+2}-\|v\|_{q+2}^{q+2} \tag{4.6}
\end{align*}
$$

and

$$
J(u, v) \equiv J(t)=\frac{m_{0}}{2}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)+\frac{b}{2(\gamma+1)}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{\gamma+1}
$$

$$
\begin{equation*}
-\frac{1}{p+2}\|u\|_{p+2}^{p+2}-\frac{1}{q+2}\|v\|_{q+2}^{q+2} \tag{4.7}
\end{equation*}
$$

We define the energy function of the solution $(u(t), v(t))$ of (4.1) - (4.5) by

$$
\begin{equation*}
E(u, v) \equiv E(t)=\frac{1}{2}\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right)+J(t) \tag{4.8}
\end{equation*}
$$

Lemma 4.1. $E(t)$ is a nonincreasing function on $[0, T)$ and we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} E(t)=-\left\|\nabla u_{t}\right\|_{2}^{2}-\left\|\nabla v_{t}\right\|_{2}^{2} \tag{4.9}
\end{equation*}
$$

Proof. By differenting (4.8) and using (4.1) - (4.5), we get

$$
\frac{\mathrm{d}}{\mathrm{~d} t} E(t)=-\left\|\nabla u_{t}\right\|_{2}^{2}-\left\|\nabla v_{t}\right\|_{2}^{2}
$$

Thus, Lemma 4.1 follows at once.
Lemma 4.2. Let $(u(t), v(t))$ be the solution of $(4.1)-(4.5)$ with $u_{0}, v_{0} \in$ $W \cap H^{2}(\Omega)$ and $u_{1}, v_{1} \in L^{2}(\Omega)$, where

$$
W=\left\{(u, v) \in H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) ; I(u, v)>0\right\} \cup\{0\}
$$

Assume that

$$
\begin{equation*}
(i) \quad \alpha_{1}<1, \text { for } m_{0}>0 \tag{4.10}
\end{equation*}
$$

(ii) $\quad \alpha_{2}<1$ and $p \geq q$, for $m_{0}=0$,
here

$$
\alpha_{1}=\frac{1}{m_{0}} \max \left\{c_{*}^{p+2}\left(\frac{2(\gamma+1)}{\gamma} E(0)\right)^{\frac{p}{2}}, c_{*}^{q+2}\left(\frac{2(\gamma+1)}{\gamma} E(0)\right)^{\frac{q}{2}}\right\}
$$

and

$$
\alpha_{2}=\frac{1}{b} \max \left\{c_{*}^{p+2}\left(\frac{2(\gamma+1)(q+2)}{b(q-2 \gamma)} E(0)\right)^{\frac{p-2 \gamma}{2(\gamma+1)}} c_{*}^{q+2}\left(\frac{2(\gamma+1)(q+2)}{b(q-2 \gamma)} E(0)\right)^{\frac{q-2 \gamma}{2(\gamma+1)}}\right\}
$$

Then $I(t)>0$, for all $t \geq 0$.
Proof. Since $I(0)>0$, then it follows from the continuity of $u(t)$ and $v(t)$ that

$$
\begin{equation*}
I(t) \geq 0 \tag{4.12}
\end{equation*}
$$

for some interval near $t=0$. Let $t_{\max }>0$ be a maximal time (possibly $\left.t_{\max }=T\right)$, when (4.12) holds on [$0, t_{\text {max }}$).
From (4.7) and (4.6), we observe that if $m_{0}>0$, then

$$
\begin{align*}
J(t)= & \frac{\gamma}{2(\gamma+1)}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)+\frac{p-2 \gamma}{2(\gamma+1)(p+2)}\|u\|_{p+2}^{p+2} \\
& +\frac{q-2 \gamma}{2(\gamma+1)(q+2)}\|v\|_{q+2}^{q+2}+\frac{1}{2(\gamma+1)} I(t) \tag{4.13}\\
\geq & \frac{\gamma}{2(\gamma+1)}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)
\end{align*}
$$

and if $m_{0}=0$, then
(4.14)

$$
\begin{aligned}
J(t)= & \frac{1}{q+2} I(t)+\frac{q-2 \gamma}{2(\gamma+1)(q+2)}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{\gamma+1} \\
& +\frac{p-q}{(q+2)(p+2)}\|u\|_{p+2}^{p+2} \\
\geq & \frac{q-2 \gamma}{2(\gamma+1)(q+2)}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{\gamma+1}
\end{aligned}
$$

Thus, by Lemma 4.1, we have that if $m_{0}>0$, then

$$
\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}
$$

$$
\begin{equation*}
\leq \frac{2(\gamma+1)}{\gamma} J(t) \leq \frac{2(\gamma+1)}{\gamma} E(t) \leq \frac{2(\gamma+1)}{\gamma} E(0), t \in\left[0, t_{\max }\right) \tag{4.15}
\end{equation*}
$$

and if $m_{0}=0$, then

$$
\begin{align*}
\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{\gamma+1} & \leq \frac{2(\gamma+1)(q+2)}{q-2 \gamma} J(t) \leq \frac{2(\gamma+1)(q+2)}{q-2 \gamma} E(t) \\
& \leq \frac{2(\gamma+1)(q+2)}{q-2 \gamma} E(0), t \in\left[0, t_{\max }\right) \tag{4.16}
\end{align*}
$$

Note that (4.10), it follows from (4.15) that, when $m_{0}>0$,

$$
\begin{align*}
& \|u\|_{p+2}^{p+2}+\|v\|_{q+2}^{q+2} \\
\leq & c_{*}^{p+2}\|\nabla u\|_{2}^{p+2}+c_{*}^{q+2}\|\nabla v\|_{2}^{q+2} \\
\leq & c_{*}^{p+2}\left(\frac{2(\gamma+1)}{\gamma} E(0)\right)^{\frac{p}{2}}\|\nabla u\|_{2}^{2}+c_{*}^{q+2}\left(\frac{2(\gamma+1)}{\gamma} E(0)\right)^{\frac{q}{2}}\|\nabla v\|_{2}^{2} \tag{4.17}\\
\leq & \alpha_{1} m_{0}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \\
< & m_{0}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \text { on }\left[0, t_{\max }\right)
\end{align*}
$$

Similarly, when $m_{0}=0$, by (4.16) and (4.11), we have

$$
\begin{align*}
& \|u\|_{p+2}^{p+2}+\|v\|_{q+2}^{q+2} \\
\leq & c_{*}^{p+2}\|\nabla u\|_{2}^{p-2 \gamma}\|\nabla u\|_{2}^{2(\gamma+1)}+c_{*}^{q+2}\|\nabla v\|_{2}^{q-2 \gamma}\|\nabla v\|_{2}^{2(\gamma+1)} \\
\leq & \alpha_{2} b\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{\gamma+1} \tag{4.18}\\
< & b\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{\gamma+1} \text { on }\left[0, t_{\max }\right) .
\end{align*}
$$

Therefore, whether $m_{0}>0$ or $m_{0}=0$, we deduce that $I(t)>0$ on $\left[0, t_{\max }\right)$. This implies that we can take $t_{\max }=T$.

Lemma 4.3. Suppose that the assumptions of Lemma 4.2 are satisfied, then there exists $0<\eta_{i}<1, i=1,2$ such that

$$
\|u\|_{p+2}^{p+2}+\|v\|_{q+2}^{q+2} \leq\left\{\begin{array}{l}
\left(1-\eta_{1}\right)\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right), m_{0}>0 \\
\left(1-\eta_{2}\right)\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{\gamma+1}, m_{0}=0
\end{array} \quad \text { on }[0, T]\right.
$$

where $\eta_{i}=1-\alpha_{i}, i=1,2$.

Proof. From (4.17), we have

$$
\|u\|_{p+2}^{p+2}+\|v\|_{q+2}^{q+2} \leq \alpha_{1} m_{0}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right), t \in[0, T]
$$

Let $\eta_{1}=1-\alpha_{1}$, then we have the result for $m_{0}>0$. Similarly, from (4.18), we get the result for $m_{0}=0$.

Remark. It follows from Lemma 4.3 that if $m_{0}>0$, then

$$
\begin{equation*}
\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2} \leq \frac{1}{\eta_{1}} I(t), t \in[0, T] \tag{4.19}
\end{equation*}
$$

and if $m_{0}=0$, then

$$
\begin{equation*}
\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{\gamma+1} \leq \frac{1}{\eta_{2}} I(t), t \in[0, T] \tag{4.20}
\end{equation*}
$$

Theorem 4.4. (Energy decay). Suppose that $u_{0}, v_{0} \in W \cap H_{0}^{2}(\Omega), u_{1}, v_{1} \in$ $L^{2}(\Omega)$ and the conditions of Lemma 4.2 are satisfied. Let $(u(t), v(t))$ be the solution of the problem (4.1) - (4.5), then we have the following decay estimates:
(i) when $m_{0}>0$,

$$
E(t) \leq E(0) \mathrm{e}^{-\tau_{1} t}, \text { on }[0, T)
$$

(ii) When $m_{0}=0$,

$$
E(t) \leq\left(E(0)^{-\frac{\gamma}{\gamma+1}}+\frac{\gamma \tau_{2}}{\gamma+1}[t-1]^{+}\right)^{-\frac{\gamma+1}{\gamma}} \text { on }[0, T)
$$

where $\tau_{i}, i=1,2$, is some positive constant given in the proof.
Proof. By integrating (4.9) over $[t, t+1], t>0$, we have

$$
\begin{equation*}
E(t)-E(t+1) \equiv D(t)^{2} \tag{4.21}
\end{equation*}
$$

where

$$
\begin{equation*}
D(t)^{2}=\int_{t}^{t+1}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right) \mathrm{d} t \tag{4.22}
\end{equation*}
$$

Then, there exist $t_{1} \in\left[t, t+\frac{1}{4}\right]$ and $t_{2} \in\left[t+\frac{3}{4}, t+1\right]$ such that

$$
\begin{equation*}
\left\|\nabla u_{t}\left(t_{i}\right)\right\|_{2}^{2}+\left\|\nabla v_{t}\left(t_{i}\right)\right\|_{2}^{2} \leq 4 D(t)^{2}, i=1,2 \tag{4.23}
\end{equation*}
$$

Next, multiplying (4.1) by u and (4.2) by v and integrating them over $\Omega \times\left[t_{1}, t_{2}\right]$ and adding them together, we get
(4.24) $\int_{t_{1}}^{t_{2}} I(t) \mathrm{d} t=-\int_{t_{1}}^{t_{2}} \int_{\Omega}\left(u_{t t} u+v_{t t} v\right) \mathrm{d} x \mathrm{~d} t+\int_{t_{1}}^{t_{2}} \int_{\Omega}\left(\Delta u_{t} u+\Delta v_{t} v\right) \mathrm{d} x \mathrm{~d} t$.

Integrating by parts on the first term of the right hand side of (4.24) and then using Divergence theorem and Lemma 2.1, we obtain

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} I(t) \mathrm{d} t \\
\leq & c_{*}^{2} \sum_{i=1}^{2}\left(\left\|\nabla u_{t}\left(t_{i}\right)\right\|_{2}\left\|\nabla u\left(t_{i}\right)\right\|_{2}+\left\|\nabla v_{t}\left(t_{i}\right)\right\|_{2}\left\|\nabla v\left(t_{i}\right)\right\|_{2}\right) \tag{4.25}\\
& +c_{*}^{2} \int_{t_{1}}^{t_{2}}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right) \mathrm{d} t \\
& +\int_{t_{1}}^{t_{2}}\left(\left\|\nabla u_{t}\right\|_{2}\|\nabla u\|_{2}+\left\|\nabla v_{t}\right\|_{2}\|\nabla v\|_{2}\right) \mathrm{d} t
\end{align*}
$$

To proceed further estimation, we note that from (4.15)-(4.16) and (4.22),

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}}\left(\left\|\nabla u_{t}\right\|_{2}\|\nabla u\|_{2}+\left\|\nabla v_{t}\right\|_{2}\|\nabla v\|_{2}\right) \mathrm{d} t \\
\leq & \left\{\begin{array}{l}
c_{1} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2}}, \text { if } m_{0}>0, \\
c_{2} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2(\gamma+1)}}, \text { if } m_{0}=0 .
\end{array}\right. \tag{4.26}
\end{align*}
$$

And by (4.23), we have

$$
\begin{align*}
& \left\|\nabla u_{t}\left(t_{i}\right)\right\|_{2}\left\|\nabla u\left(t_{i}\right)\right\|_{2}+\left\|\nabla v_{t}\left(t_{i}\right)\right\|_{2}\left\|\nabla v\left(t_{i}\right)\right\|_{2} \\
\leq & \left\{\begin{array}{l}
2 c_{1} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2}}, \text { if } m_{0}>0, \\
2 c_{2} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2(\gamma+1)}}, \text { if } m_{0}=0,
\end{array}\right. \tag{4.27}
\end{align*}
$$

where $c_{1}=2\left(\frac{2(\gamma+1)}{\gamma}\right)^{\frac{1}{2}}$ and $c_{2}=2\left(\frac{2(\gamma+1)(q+2)}{q-2 \gamma}\right)^{\frac{1}{2(\gamma+1)}}$.
Thus, from (4.20) and by (4.26) - (4.27), (4.22), we deduce that if $m_{0}>0$, then

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} I(t) \mathrm{d} t \leq c_{3} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2}}+c_{*}^{2} D(t)^{2}, \tag{4.28}
\end{equation*}
$$

and if $m_{0}=0$, then

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} I(t) \mathrm{d} t \leq c_{4} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2(\gamma+1)}}+c_{*}^{2} D(t)^{2}, \tag{4.29}
\end{equation*}
$$

where $c_{3}=4 c_{*}^{2} c_{1}+c_{1}$ and $c_{4}=4 c_{*}^{2} c_{2}+c_{2}$.
On the other hand, from (4.8) and Poincare inequality, we note that if $m_{0}>0$, then using (4.19) and (4.17),

$$
\begin{align*}
& E(t) \\
\leq & \frac{c_{*}^{2}}{2}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right)+\frac{1}{2(\gamma+1)} I(t)+\frac{\gamma}{2(\gamma+1)}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \\
& +\frac{p-2 \gamma}{2(\gamma+1)(p+2)}\|u\|_{p+2}^{p+2}+\frac{q-2 \gamma}{2(\gamma+1)(q+2)}\|v\|_{q+2}^{q+2} \tag{4.30}\\
\leq & \frac{c_{*}^{2}}{2}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right)+c_{5} I(t)+c_{6}\left(\|u\|_{p+2}^{p+2}+\|v\|_{q+2}^{q+2}\right) \\
\leq & \frac{c_{*}^{2}}{2}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right)+c_{7} I(t),
\end{align*}
$$

and if $m_{0}=0$, then using (4.20) and (4.18),

$$
\begin{align*}
E(t) & \leq \frac{c_{*}^{2}}{2}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right)+c_{8} I(t)+\frac{p-q}{2(q+1)(p+2)}\|u\|_{p+2}^{p+2} \tag{4.31}\\
& \leq \frac{c_{*}^{2}}{2}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right)+c_{9} I(t)
\end{align*}
$$

where $c_{5}=\left(\frac{\gamma}{2(\gamma+1) \eta_{1}}+\frac{1}{2 \gamma+2}\right), c_{6}=\max \left\{\frac{p-2 \gamma}{2(\gamma+1)(p+2)}, \frac{q-2 \gamma}{2(\gamma+1)(q+2)}\right\}, c_{7}=c_{5}$ $+\frac{c_{6} \alpha_{1} m_{0}}{\eta_{1}}, c_{8}=\frac{q-2 \gamma}{2(\gamma+1)(q+2) \eta_{2}}+\frac{1}{q+2}$ and $c_{9}=c_{8}+\frac{\alpha_{2} b(p-q)}{2(q+1)(p+2) \eta_{2}}$.

Hence, by integrating (4.30) over $\left(t_{1}, t_{2}\right)$ and using (4.22) and (4.28), we obtain

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} E(t) \mathrm{d} t \leq c_{10} D(t)^{2}+c_{11} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2}}, \tag{4.32}
\end{equation*}
$$

where $c_{10}=\frac{c_{*}^{2}}{2}+c_{*}^{2} c_{7}$ and $c_{11}=c_{3} c_{7}$.
Moreover, integrating (4.8) over $\left(t, t_{2}\right)$, we get

$$
E(t)=E\left(t_{2}\right)+\int_{t}^{t_{2}}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right) \mathrm{d} s
$$

Since $t_{2}-t_{1} \geq \frac{1}{2}$, it follows that

$$
E\left(t_{2}\right) \leq 2 \int_{t_{1}}^{t_{2}} E(t) \mathrm{d} t
$$

Then, thanks to (4.22), we arrive at

$$
\begin{aligned}
E(t) & \leq 2 \int_{t_{1}}^{t_{2}} E(t) \mathrm{d} t+\int_{t}^{t_{2}}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right) \mathrm{d} s \\
& =2 \int_{t_{1}}^{t_{2}} E(t) \mathrm{d} t+D(t)^{2}
\end{aligned}
$$

Thus, by using (4.32) and Lemma 4.1, we see that

$$
E(t) \leq c_{12} D(t)^{2}+c_{13} D(t) E(t)^{\frac{1}{2}}, t \geq 0
$$

where $c_{11}=2 c_{9}+1$ and $c_{12}=2 c_{10}$.
Hence, by Young's inequality, we deduce

$$
\begin{align*}
E(t) & \leq c_{14} D(t)^{2}, \tag{4.33}\\
& \leq c_{15}[E(t)-E(t+1)] .
\end{align*}
$$

where c_{15} is some positive constant greater than $\max \left(1, c_{14}\right)$. Therefore, by Lemma 2.2 , we have the decay estimate for $m_{0}>0$:

$$
E(t) \leq E(0) \mathrm{e}^{-\tau_{1} t}, \text { on }[0, T),
$$

where $\tau_{1}=\ln \frac{c_{15}}{c_{15}-1}$. Similarly, when $m_{0}=0$, following the arguments as in (4.32) - (4.33), we arrive at

$$
\begin{aligned}
E(t) & \leq c_{16}\left(1+D(t)^{2-\frac{2(\gamma+1)}{2 \gamma+1}}\right) D(t)^{\frac{2(\gamma+1)}{2 \gamma+1}} \\
& \leq c_{16}\left(1+E(0)^{2-\frac{2(\gamma+1)}{2 \gamma+1}}\right) D(t)^{\frac{2(\gamma+1)}{2 \gamma+1}} .
\end{aligned}
$$

This implies that

$$
E(t)^{1+\frac{\gamma}{\gamma+1}} \leq\left(c_{17}(E(0))\right)^{\frac{2 \gamma+1}{\gamma+1}}[E(t)-E(t+1)],
$$

where $c_{17}(E(0))=c_{16}\left[1+E(0)^{2-\frac{2(\gamma+1)}{2 \gamma+1}}\right]$ with $\lim _{E(0) \rightarrow 0} c_{17}(E(0))=c_{15}>0$.
Setting $\tau_{2}=\left(c_{17}(E(0))\right)^{--\frac{2(\gamma+1)}{\gamma+1}}$, then applying Lemma 2.2 yields

$$
E(t) \leq\left(E(0)^{-\frac{\gamma}{\gamma+1}}+\frac{\gamma \tau_{2}}{\gamma+1}[t-1]^{+}\right)^{-\frac{\gamma+1}{\gamma}} \text { on }[0, T) .
$$

Theorem 4.5. (Global existence and Decay property) Suppose that $u_{0}, v_{0} \in$ $W \cap H_{0}^{2}(\Omega)$ and $u_{1}, v_{1} \in L^{2}(\Omega)$ with $\alpha_{1}<1$, for $m_{0}>0$ or $\alpha_{2}<1$ and $p \geq q$, for $m_{0}=0$. Then the problem (4.1)-(4.5) admits a global solution

$$
u(t), v(t) \in C\left([0, \infty) ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right),
$$

and

$$
u^{\prime}(t), v^{\prime}(t) \in C\left([0, \infty) ; L^{2}(\Omega)\right) \cap L^{2}\left((0, \infty) ; H_{0}^{1}(\Omega)\right)
$$

Furthermore, we have the following decay estimates :
(i) if $m_{0}>0$, then

$$
E(t) \leq E(0) \mathrm{e}^{-\tau_{1} t}, \text { on }[0, \infty) .
$$

(ii) If $m_{0}=0$, then

$$
E(t) \leq\left(E(0)^{-\frac{\gamma}{\gamma+1}}+\frac{\gamma \tau_{2}}{\gamma+1}[t-1]^{+}\right)^{-\frac{\gamma+1}{\gamma}} \text { on }[0, \infty) .
$$

Proof. Multiplying (4.1) by $-2 \Delta u$ and (4.2) by $-2 \Delta v$ and integrating them over Ω and combining them together, we obtain

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\{\|\Delta u\|_{2}^{2}+\|\Delta v\|_{2}^{2}-2\left(\int_{\Omega} u_{t} \Delta u d x+\int_{\Omega} v_{t} \Delta v \mathrm{~d} x\right)\right\} \\
& +2 M\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)\left(\|\Delta u\|_{2}^{2}+\|\Delta v\|_{2}^{2}\right) \tag{4.34}\\
\leq & 2\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right)-2 \int_{\Omega}|u|^{p} u \Delta u \mathrm{~d} x-2 \int_{\Omega}|v|^{q} v \Delta v \mathrm{~d} x .
\end{align*}
$$

Multiplying (4.34) by $\varepsilon, 0<\varepsilon \leq 1$, and multiplying (4.8) by 2 and adding them together, we get

$$
\begin{align*}
& \quad \frac{\mathrm{d}}{\mathrm{~d} t} E^{*}(t)+2(1-\varepsilon)\left[\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right] \\
& \quad+2 \varepsilon M\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)\left(\|\Delta u\|_{2}^{2}+\|\Delta v\|_{2}^{2}\right) \tag{4.35}\\
& \leq-2 \varepsilon \int_{\Omega}|u|^{p} u \Delta u \mathrm{~d} x-2 \varepsilon \int_{\Omega}|v|^{q} v \Delta v \mathrm{~d} x,
\end{align*}
$$

where

$$
E^{*}(t)=2 E(t)-2 \varepsilon\left(\int_{\Omega} u_{t} \Delta u \mathrm{~d} x+\int_{\Omega} v_{t} \Delta v \mathrm{~d} x\right)+\varepsilon\left(\|\Delta u\|_{2}^{2}+\|\Delta v\|_{2}^{2}\right) .
$$

By Lemma 4.2 and noting that $\left|2 \varepsilon \int_{\Omega} u_{t} \Delta u d x\right| \leq 2 \varepsilon\left\|u_{t}\right\|_{2}^{2}+\frac{\varepsilon}{2}\|\Delta u\|_{2}^{2}$, we see that

$$
E^{*}(t) \geq(1-2 \varepsilon)\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right)+\varepsilon\left(\|\Delta u\|_{2}^{2}+\|\Delta v\|_{2}^{2}\right)
$$

Choosing $\varepsilon=\frac{2}{5}$, we have

$$
E^{*}(t) \geq \frac{1}{5} e(u, v)
$$

Moreover, we note that

$$
\begin{aligned}
\left.2\left|\int_{\Omega}\right| u\right|^{p} u \Delta u \mathrm{~d} x \mid & =2 p \int_{\Omega}|u|^{p}|\nabla u|^{2} d x \\
& \leq 2 p\|u\|_{p \theta_{1}}^{p}\|\nabla u\|_{2 \theta_{2}}^{2}
\end{aligned}
$$

and

$$
\left.2\left|\int_{\Omega}\right| v\right|^{q} v \Delta v \mathrm{~d} x \mid \leq 2 q\|v\|_{q \theta_{1}}^{q}\|\nabla v\|_{2 \theta_{2}}^{2}
$$

where $\frac{1}{\theta_{1}}+\frac{1}{\theta_{2}}=1$, so that, we put $\theta_{1}=1$ and $\theta_{2}=\infty$, if $N=1 ; \theta_{1}=1+\varepsilon_{1}$ (for arbitrary small $\varepsilon_{1}>0$), if $N=2$; and $\theta_{1}=\frac{N}{2}, \theta_{2}=\frac{N}{N-2}$, if $N \geq 3$. Thus, if $m_{0}>0$, using (4.15), we have

$$
\begin{aligned}
2\left|\int_{\Omega}\left(|u|^{p} u \Delta u+|v|^{q} v \Delta v\right) \mathrm{d} x\right| & \leq 2\left(c_{*}^{p+2} p\|\nabla u\|_{2}^{p}\|\Delta u\|_{2}^{2}+c_{*}^{q+2} q\|\nabla v\|_{2}^{q}\|\Delta v\|_{2}^{2}\right) \\
& \leq c_{18} E^{*}(t),
\end{aligned}
$$

and if $m_{0}=0$, by (4.16), we get

$$
2\left|\int_{\Omega}\left(|u|^{p} u \Delta u+|v|^{q} v \Delta v\right) \mathrm{d} x\right| \leq c_{19} E^{*}(t)
$$

where $c_{18}=10 \max \left(p c_{*}^{p+2}\left(\frac{2(\gamma+1)}{\gamma} E(0)\right)^{\frac{p}{2}}, q c_{*}^{q+2}\left(\frac{2(\gamma+1)}{\gamma} E(0)\right)^{\frac{q}{2}}\right)$ and $c_{19}=$ $10 \max \left(p c_{*}^{p+2}\left(\frac{2(\gamma+1)(q+2)}{q-2 \gamma} E(0)\right)^{\frac{p}{2(\gamma+1)}}, q c_{*}^{q+2}\left(\frac{2(\gamma+1)(q+2)}{q-2 \gamma} E(0)\right)^{\frac{q}{2(\gamma+1)}}\right)$.
Hence, by integrating (4.35) over $(0, t)$, we obtain

$$
E^{*}(t) \leq\left\{\begin{array}{l}
E^{*}(0)+\int_{0}^{t} c_{18} E^{*}(s) \mathrm{d} s, \text { if } m_{0}>0 \\
E^{*}(0)+\int_{0}^{t} c_{19} E^{*}(s) \mathrm{d} s, \text { if } m_{0}=0
\end{array}\right.
$$

Then by Gronwall Lemma, we deduce

$$
E^{*}(t) \leq E^{*}(0) \exp \left(c_{i} t\right)
$$

$i=18,19$, for any $t \geq 0$. Therefore by Theorem 3.2 , whether $m_{0}>0$ or $m_{0}=0$, we have $T=\infty$.

5. Blow-up Property

In this section, we will study blow-up phenomena of solutions for a kind of system (1.1) - (1.5) :

$$
\begin{gather*}
u_{t t}-M\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \Delta u-\Delta u_{t}=f_{1}(u) \\
v_{t t}-M\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \Delta v-\Delta v_{t}=f_{2}(v) \\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega \tag{5.1}\\
v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x), x \in \Omega \\
u(x, t)=v(x, t)=0, x \in \partial \Omega, t>0
\end{gather*}
$$

In order to state our results, we make further assumptions on f_{i} and M :
(A2) there exists a positive constant δ such that

$$
u f_{1}(u)+v f_{2}(v) \geq(2+4 \delta)\left(F_{1}(u)+F_{2}(v)\right), \text { for all } u, v \in \mathbb{R}
$$

and

$$
(2 \delta+1) \bar{M}(s) \geq M(s) s, \text { for all } s \geq 0
$$

where

$$
F_{1}(u)=\int_{0}^{u} f_{1}(r) \mathrm{d} r, F_{2}(v)=\int_{0}^{v} f_{2}(r) \mathrm{d} r \text { and } \bar{M}(s)=\int_{0}^{s} M(r) \mathrm{d} r
$$

Remark. (1) In this case, we define the energy function of the solution (u, v) of (5.1) by
(5.2) $E(t)=\frac{1}{2}\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right)+\frac{1}{2} \bar{M}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)-\int_{\Omega}\left(F_{1}(u)+F_{2}(v)\right) \mathrm{d} x$,
for $t \geq 0$. Then we have

$$
\begin{equation*}
E(t)=E(0)-\int_{0}^{t}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right) \mathrm{d} t \tag{5.3}
\end{equation*}
$$

(2) It is clear that $f_{1}(u)=|u|^{p} u, f_{2}(v)=|v|^{q} v, p, q \geq 0$ and $M(s)=m_{0}+b s^{\gamma}$ for $m_{0} \geq 0, b \geq 0, m_{0}+b>0, \gamma>0, s \geq 0$ satisfies (A2) with $\frac{\gamma}{2}<\delta \leq \min \left(\frac{p}{4}, \frac{q}{4}\right)$.

Definition. A solution $w(t)=(u(t), v(t))$ of (5.1) is called blow-up if there exists a finite time T^{*} such that

$$
\lim _{t \rightarrow T^{*-}} \int_{\Omega}\left(|\nabla u|^{2}+|\nabla v|^{2}\right) \mathrm{d} x=\infty
$$

Now, let

$$
\begin{align*}
a(t)= & \|u\|_{2}^{2}+\|v\|_{2}^{2}+\int_{0}^{t}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \mathrm{d} t+l(t+\tau)^{2} \tag{5.4}\\
& +\left(T_{1}-t\right)\left(\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}\right)
\end{align*}
$$

for $t \geq 0$, here $l \geq 0, \tau>0$ and $T_{1}>0$ are certain constants to be determined later.

Lemma 5.1. Suppose that (A1) and (A2) hold, then the function $a(t)$ satisfies

$$
\begin{align*}
& a^{\prime \prime}(t)-4(\delta+1)\left[l+\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right] \\
\geq & (-2-4 \delta)(2 E(0)+l)+(4+8 \delta) \int_{0}^{t}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right) \mathrm{d} t . \tag{5.5}
\end{align*}
$$

Proof. Form (5.4), we have

$$
\begin{align*}
a^{\prime}(t)= & 2 \int_{\Omega}\left(u u_{t}+v v_{t}\right) \mathrm{d} x+\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}+2 l(t+\tau) \tag{5.6}\\
& -\left(\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}\right)
\end{align*}
$$

By (5.1) and Divergence theorem, we get

$$
\begin{align*}
a^{\prime \prime}(t)= & 2 \int_{\Omega}\left(u_{t}^{2}+v_{t}^{2}\right) d x-2 M\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \tag{5.7}\\
& +2 \int_{\Omega}\left(u f_{1}(u)+v f_{2}(v)\right) \mathrm{d} x+2 l
\end{align*}
$$

Then, by (5.1) - (5.3), we have

$$
\begin{aligned}
& a^{\prime \prime}(t)-4(\delta+1)\left[l+\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right] \\
\geq & (-2-4 \delta)(2 E(0)+l)+(4+8 \delta) \int_{0}^{t}\left(\left\|\nabla u_{t}\right\|_{2}^{2}+\left\|\nabla v_{t}\right\|_{2}^{2}\right) \mathrm{d} s \\
& +(2+4 \delta) \bar{M}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)-2 M\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \\
& +2 \int_{\Omega}\left[u f_{1}(u)+v f_{2}(v)-(2+4 \delta)\left(F_{1}(u)+F_{2}(v)\right)\right] \mathrm{d} x .
\end{aligned}
$$

Therefore, from (A2), we obtain (5.5).
Now, we will find the estimate for the life span of $a(t)$. Let

$$
\begin{equation*}
J(t)=a(t)^{-\delta}, \text { for } t \in\left[0, T_{1}\right] \tag{5.8}
\end{equation*}
$$

Then we have

$$
J^{\prime}(t)=-\delta J(t)^{1+\frac{1}{\delta}} a^{\prime}(t)
$$

and

$$
\begin{equation*}
J^{\prime \prime}(t)=-\delta J(t)^{1+\frac{2}{\delta}} V(t), \tag{5.9}
\end{equation*}
$$

where

$$
\begin{equation*}
V(t)=a^{\prime \prime}(t) a(t)-(1+\delta) a^{\prime}(t)^{2} . \tag{5.10}
\end{equation*}
$$

For simplicity of calculation, we denote

$$
\begin{aligned}
& P_{u}=\int_{\Omega} u^{2} \mathrm{~d} x, P_{v}=\int_{\Omega} v^{2} \mathrm{~d} x, \\
& Q_{u}=\int_{0}^{t}\|\nabla u\|_{2}^{2} \mathrm{~d} t, Q_{v}=\int_{0}^{t}\|\nabla v\|_{2}^{2} \mathrm{~d} t, \\
& R_{u}=\int_{\Omega} u_{t}^{2} \mathrm{~d} x, R_{v}=\int_{\Omega} v_{t}^{2} \mathrm{~d} x, \\
& S_{u}=\int_{0}^{t}\left\|\nabla u_{t}\right\|_{2}^{2} \mathrm{~d} t, S_{v}=\int_{0}^{t}\left\|\nabla v_{t}\right\|_{2}^{2} \mathrm{~d} t .
\end{aligned}
$$

From (5.6), and Hölder inequality, we get

$$
\begin{align*}
& a^{\prime}(t)^{2} \\
= & 4\left(\int_{\Omega}\left(u u_{t}+v v_{t}\right) \mathrm{d} x+\int_{0}^{t} \int_{\Omega}\left(\nabla u \nabla u_{t}+\nabla v \nabla v_{t}\right) \mathrm{d} x \mathrm{~d} t+l(t+\tau)\right)^{2} \tag{5.11}\\
\leq & 4\left(\sqrt{R_{u} P_{u}}+\sqrt{Q_{u} S_{u}}+\sqrt{R_{v} P_{v}}+\sqrt{Q_{v} S_{v}}+\sqrt{l} \sqrt{l}(t+\tau)\right)^{2} .
\end{align*}
$$

By (5.5), we have
(5.12) $a^{\prime \prime}(t) \geq-(2+4 \delta)(2 E(0)+l)+4(1+\delta)\left(R_{u}+S_{u}+R_{v}+S_{v}+l\right)$.

Thus, by (5.11) and (5.12), we obtain from (5.10)

$$
\begin{aligned}
V(t) \geq & a(t)\left[-(2+4 \delta)(2 E(0)+l)+4(1+\delta)\left(R_{u}+S_{u}+R_{v}+S_{v}+l\right)\right] \\
& -4(1+\delta)\left(\sqrt{R_{u} P_{u}}+\sqrt{Q_{u} S_{u}}+\sqrt{R_{v} P_{v}}+\sqrt{Q_{v} S_{v}}+\sqrt{l} \sqrt{l}(t+\tau)\right)^{2} .
\end{aligned}
$$

And by (5.4), we get

$$
\begin{aligned}
V(t) \geq & -(2+4 \delta)(2 E(0)+l) a(t)+4(1+\delta) \Theta(t) \\
& +4(1+\delta)\left(R_{u}+S_{u}+R_{v}+S_{v}+l\right)\left(T_{1}-t\right)\left(\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\Theta(t)= & \left(R_{u}+S_{u}+R_{v}+S_{v}+l\right)\left(P_{u}+Q_{u}+P_{v}+Q_{v}+l(t+\tau)^{2}\right) \\
& -\left(\sqrt{R_{u} P_{u}}+\sqrt{Q_{u} S_{u}}+\sqrt{R_{v} P_{v}}+\sqrt{Q_{v} S_{v}}+\sqrt{l} \sqrt{l}(t+\tau)\right)^{2} .
\end{aligned}
$$

By Schwarz inequality, $\Theta(t)$ is nonnegative. Hence, we have

$$
V(t) \geq-(2+4 \delta)(2 E(0)+l) J(t)^{-\frac{1}{\delta}}, t \in\left[0, T_{1}\right] .
$$

Therefore, from (5.9), we get

$$
\begin{equation*}
J^{\prime \prime}(t) \leq \delta(2+4 \delta)(2 E(0)+l) J(t)^{1+\frac{1}{\delta}} . \tag{5.13}
\end{equation*}
$$

Theorem 5.2. Suppose that (A1) and (A2) hold and that either one of the following statements is satisfied:
(i) $E(0)<0$,
(ii) $E(0)=0$ and $2 \delta \int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right)>\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}$,
then the solution $(u(t), v(t))$ blows up at finite time $T^{*}>0$.
Moreover, the finite time T^{*} can be estimated as follows :
(i) if $E(0)<0$, then

$$
\begin{equation*}
T^{*} \leq \frac{\phi+\sqrt{\phi^{2}-8 E(0) \delta^{2}\left(\left\|u_{0}\right\|_{2}^{2}+\left\|v_{0}\right\|_{2}^{2}\right)}}{4(-E(0)) \delta^{2}} \tag{5.14}
\end{equation*}
$$

(ii) If $E(0)=0$, then

$$
\begin{equation*}
T^{*} \leq \frac{\left\|u_{0}\right\|_{2}^{2}+\left\|v_{0}\right\|_{2}^{2}}{-\phi}, \tag{5.15}
\end{equation*}
$$

where $\phi=\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}-2 \delta \int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right) \mathrm{d} x$.
Proof. Taking $l=-2 E(0)(\geq 0)$ in (5.13) and from (5.8), we see that

$$
\left(a(t)^{-\delta}\right)^{\prime \prime} \leq 0, t \geq 0
$$

Now, we consider two different cases on the sign of the initial energy $E(0)$.
Case 1. $E(0)<0$. First, we choose τ so large that

$$
a^{\prime}(0)=2 \int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right)-4 E(0) \tau>0,
$$

and select T_{1} such that

$$
\begin{equation*}
\frac{a(0)}{\delta a^{\prime}(0)} \leq T_{1}, \tag{5.16}
\end{equation*}
$$

then, we deduce

$$
a(t) \geq\left(\frac{a(0)^{1+\delta}}{a(0)-\delta a^{\prime}(0) t}\right)^{\frac{1}{\delta}}
$$

Therefore, there exists a finite time $T^{*} \leq T_{1}$ such that

$$
\lim _{t \rightarrow T^{*-}}\left\{\int_{\Omega}\left(u^{2}+v^{2}\right) d x+\int_{0}^{t}\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) d t\right\}=\infty .
$$

By Poincaré inequality, it implies that

$$
\lim _{t \rightarrow T^{*-}} \int_{\Omega}\left(|\nabla u|^{2}+|\nabla v|^{2}\right) d x=\infty .
$$

Moreover, inequality (5.16) holds if and only if

$$
T_{1}(\tau) \equiv \frac{\left\|u_{0}\right\|_{2}^{2}+\left\|v_{0}\right\|_{2}^{2}-2 E(0) \tau^{2}}{2 \delta\left(\int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right) \mathrm{d} x-2 E(0) \tau\right)-\left\|\nabla u_{0}\right\|_{2}^{2}-\left\|\nabla v_{0}\right\|_{2}^{2}} \leq T_{1} .
$$

We observe that $T_{1}(\tau)$ take a minimum at

$$
\tau \equiv \tau_{0}=\frac{\phi+\sqrt{\phi^{2}-8 E(0) \delta^{2}\left(\left\|u_{0}\right\|_{2}^{2}+\left\|v_{0}\right\|_{2}^{2}\right)}}{4(-E(0)) \delta}
$$

Thus putting $T_{1}=T_{1}\left(\tau_{0}\right)$, we arrive at (5.14).
Case 2. $E(0)=0$ and $2 \int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right)>0$. Then we see

$$
a^{\prime}(0)=2 \int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right)>0
$$

and

$$
a(0)=\left\|u_{0}\right\|_{2}^{2}+\left\|v_{0}\right\|_{2}^{2}+T_{1}\left(\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}\right) .
$$

Thus, we get (5.15), if we choose $T_{1}=\frac{a(0)}{\delta a^{\prime}(0)}$ in (5.16).

References

1. A. Benaissa and S. A. Messaoudi, Blow-up of solutions of a quasilinear wave equation with nonlinear dissipation, J. Partial Diff. Eqns., 15 (2002), 61-67.
2. A. Benaissa and S. A. Messaoudi, Blow-up of solutions for the Kirchhoff equation of q-Laplacian type with nonlinear dissipation, Colloquium Mathematicum, 94 (2002), 103-109.
3. E. H. Brito, Nonlinear initial boundary value problems, Nonlinear Anal. Theory, Methods, Appliciations, 11 (1987), 125-137.
4. M. Hosoya and Y. Yamada, On some nonlinear wave equations II: global existence and energy decay of solutions, J. Fac. Sci. Univ. Toyko Sect. IA Math., 38 (1991), 239-250.
5. R. Ikehata, A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms, Differential \& Integral Equations, 8 (1995), 607-616.
6. G. Kirchhoff, Vorlesungen Uber Mechanik, Leipzig, Teubner, 1883.
7. L. Liu and M. Wang, Global existence and blow-up of solutions for some systems with damping and source terms, Nonlinear Anal. Theory, Methods, Appliciations, 64 (2006), 69-91.
8. T. Matsuyama and R. Ikehata, On global solutions and energy decay for the wave equations of the Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl., 204 (1996), 729-753.
9. M. Nako, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762.
10. K. Nishihara and Y. Yamada, On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcial Ekvac., 33 (1990), 151-159.
11. M. Ohta, Remarks on blow up of solutions for nonlinear evolution equations of second order, Advances in Math. Sci. \& Appli. Gakkotosho, Toyko, 2 (1998), 901-910.
12. K. Ono, Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Diff. Eqns., 137 (1997), 273-301.
13. K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci., 20 (1997), 151-177.
14. K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. and Appl., 216 (1997), 321-342.
15. J. Y. Park and J. J. Bae, On existence of solutions of nondegenertaer wave equations with nonlinear damping terms, Nihonkai Math. J., 9 (1998), 27-46.
16. J. Y. Park and J. J. Bae, Variational inequality for quasilinear wave equations with nonlinear damping terms, Nonlinear Anal. Theory, Methods, Application, 50 (2002), 1065-1083.
17. S. T. Wu and L. Y. Tsai, Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with some dissipation, Nonlinear Anal. Theory Methods Appliciations, 65 (2006), 243-264.
18. S. T. Wu and L. Y. Tsai, On a system of nonlinear wave equations of Kirchhoff type with a strong dissipation, Tamkang J. Math., 38(1) (2007), 1-20.

Shun-Tang Wu
General Education Center,
National Taipei University of Technology,
Taipei 106, Taiwan
E-mail: stwu@ntut.edu.tw

[^0]: Received September 5, 2005, accepted June 17, 2008.
 Communicated by J. C. Yao.
 2000 Mathematics Subject Classification: 35L70, 35L15.
 Key words and phrases: Blow-up, Global existence, Life span, Strong damping, Nonlinear wave equations.

