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JENSEN’S FUNCTIONAL EQUATION IN MULTI-NORMED SPACES

M. S. Moslehian and H. M. Srivastava

Abstract. We investigate the Hyers-Ulam stability of the Jensen functional

equation for mappings from linear spaces into multi-normed spaces. We then

establish an asymptotic behavior of the Jensen equation in the framework of

multi-normed spaces which are somewhat similar to the operator sequence

spaces and have some connections with operator spaces and Banach lattices.

1. INTRODUCTION AND MOTIVATION

The concept of stability for a functional equation arises when one replaces a

functional equation by an inequality which acts as a perturbation of the equation.

In 1940 Ulam [19] posed the first stability problem. In the following year, Hyers

[7] gave a partial affirmative answer to the question of Ulam. Hyers’ theorem was

generalized by Aoki [1] for additive mappings and by Rassias [15] for linear map-

pings by considering an unbounded Cauchy difference. The paper [15] of Rassias

has significantly influenced the development of what we now call the Hyers-Ulam-

Rassias stability of functional equations. During the past decades, several stability

problems for various functional equations have been investigated by a number of

mathematicians; we refer the reader to [3, 8, 10, 16, 17] and also to the references

cited therein.

The first result on the stability of the following classical Jensen functional equa-

tion:

f

(
x + y

2

)
=

f(x) + f(y)
2

was given by Kominek [11]. The author who presumably investigated the stability

problem on a restricted domain for the first time was Skof [18]. The stability of
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the Jensen equation and of its generalizations were studied by numerous researchers

(cf., e.g., [2, 4, 12, 13, 14]).

In this paper, using some ideas from the earlier works [5, 9], we investigate

the Hyers-Ulam stability of the Jensen functional equation for mappings from linear

spaces into multi-normed spaces. We then establish an asymptotic behavior of the

Jensen equation in the framework of multi-normed spaces. Our results generalize

those of Jung [9]. The theory of multi-normed spaces as well as the theory of

multi-Banach algebras were originated in [6].

Let (E, ‖· ‖) be a complex linear space. Also let k ∈ N. We denote by Ek the

linear spaceE⊕· · ·⊕E consisting of k-tuples (x1, · · · , xk), where x1, · · · , xk ∈ E.
The linear operations on Ek are defined coordinatewise. The zero element of either

E or Ek is denoted by 0. We denote by Nk the set {1, 2, 3, · · · , k} and by Sk the

group of permutations on k symbols.

2. MULTI-NORMED SPACES AND MULTI-BOUNDED OPERATORS

We start this section by recalling the notion of a multi-normed space from [6].

Throughout this section, (E, ‖ · ‖) denotes a complex normed space.

Definition 1. A multi-norm on {Ek : k ∈ N} is a sequence

(‖ · ‖k) = (‖ · ‖k : k ∈ N)

such that ‖ · ‖k is a norm on Ek for each k ∈ N, such that ‖x‖1 = ‖x‖ for each
x ∈ E, and such that the following axioms are satisfied for each k ∈ N with k = 2:

(M1)
∥∥(xσ(1), · · · , xσ(k))

∥∥
k

= ‖(x1, · · · , xk)‖k (σ ∈ Sk; x1, · · · , xk ∈ E) ;

(M2) ‖(α1x1, · · · , αnxk)‖k 5 (maxi∈Nk
|αi|) ‖(x1, · · · , xk)‖k

(α1, · · · , αk ∈ C; x1, · · · , xk ∈ E) ;

(M3) ‖(x1, · · · , xk−1, 0)‖k = ‖(x1, · · · , xk−1)‖k−1 (x1, · · · , xk−1 ∈ E) ;

(M4) ‖(x1, · · · , xk−1, xk−1)‖k = ‖(x1, · · · , xk−1)‖k−1 (x1, · · · , xk−1 ∈ E) .

In this case, we say that ((Ek, ‖ · ‖k) : k ∈ N) is a multi-normed space.
The motivation for the study of multi-normed spaces (and multi-normed alge-

bras) and many examples are detailed in the earlier investigation [6].

Suppose that ((Ek, ‖ · ‖k) : k ∈ N) is a multi-normed space, and take k ∈ N.
The following properties are almost immediate consequences of the axioms.

(a) ‖(x, · · · , x)‖k = ‖x‖ (x ∈ E);
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(b) maxi∈Nk
‖xi‖5‖(x1, · · · , xk)‖k 5

k∑
i=1

‖xi‖5k max
i∈Nk

‖xi‖ (x1, · · · , xk∈E).

It follows from the item (b) above that, if (E, ‖ · ‖) is a Banach space, then
(Ek, ‖ · ‖k) is a Banach space for each k ∈ N; in this case, ((Ek, ‖ · ‖k) : k ∈ N)
is a multi-Banach space.

Now we recall two important examples of multi-norms for an arbitrary normed

space E (see, for details, [6]).

Example 1. The sequence (‖ · ‖k : k ∈ N) on {Ek : k ∈ N} defined by

‖(x1, · · · , xk)‖k := max
i∈Nk

‖xi‖ (x1, · · · , xk ∈ E)

is a multi-norm called the minimum multi-norm. The terminology minimum is

justified here by Property (c).

Example 2. Let

{(‖ · ‖α
k : k ∈ N) and α ∈ A}

be the (non-empty) family of all multi-norms on {Ek : k ∈ N}. For k ∈ N, we set

|||(x1, · · · , xk)|||k := sup
α∈A

‖(x1, · · · , xk)‖α
k (x1, · · · , xk ∈ E).

Then (|||·|||k : k ∈ N) is a multi-norm on {Ek : k ∈ N}, which is called the
maximum multi-norm.

We need the following observation which can be easily deduced from the triangle

inequality for the norm ‖ · ‖k and the property (b) of multi-norms.

Lemma. Suppose that k ∈ N and (x1, · · · , xk) ∈ Ek.

For each j ∈ {1, · · · , k}, let {xj
n}n∈N be a sequence in E such that

lim
n→∞

xj
n = xj .

Then, for each (y1, · · · , yk) ∈ Ek,

lim
n→∞

(x1
n − y1, · · · , xk

n − yk) = (x1 − y1, · · · , xk − yk) .

Definition 2. Let ((Ek, ‖ · ‖k) : k ∈ N) be a multi-normed space. A sequence
(xn) in E is a multi-null sequence if, for each ε > 0, there exists n0 ∈ N such that

sup
k∈N

‖(xn, · · · , xn+k−1)‖k < ε (n = n0).
Let x ∈ E. Then
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lim
n→∞

xn = x

if (xn − x) is a multi-null sequence; in this case, the sequence (xn) is multi-
convergent to x in E.

3. HYERS-ULAM STABILITY OF THE JENSEN EQUATION

Theorem 1. Let E be a linear space. Also let ((Fn, ‖ · ‖n) : n ∈ N) be a
multi-Banach space. Suppose that α is a nonnegative real number and f : E → F
is a mapping satisfying f(0) = 0 and

(3.1)
sup
k∈N

∥∥∥∥
(
f

(
x1+y1

2

)
− f(x1)+f(y1)

2
, · · · , f

(
xk + yk

2

)
− f(xk)+f(yk)

2

)∥∥∥∥
k

5 α

for all x1, · · · , xk, y1, · · · , yk ∈ E. Then there exists a unique additive mapping

T : E → F such that

sup
k∈N

‖(f(x1) − T (x1), · · · , f(xk) − T (xk))‖k 5 2α(3.2)

for all x1, · · · , xk ∈ E.

Proof. Let x1, · · · , xk ∈ E. Replacing x1, · · · , xk and y1, · · · , yk by

2x1, · · · , 2xk and 0, · · · , 0 in (3.1) and multiplying the resulting inequality by 2,
we obtain

sup
k∈N

‖(f(2x1) − 2f(x1), · · · , f(2xk) − 2f(xk))‖k 5 2α .(3.3)

By using (3.3) and the principle of mathematical induction, we can easily see that

(3.4) sup
k∈N

∥∥∥∥
(

f(2nx1)
2n

− f(2mx1)
2m

, · · · ,
f(2nxk)

2n
− f(2mxk)

2m

)∥∥∥∥
k

52α

n−1∑

i=m

2−i .

We now fix x ∈ E. We thus find that

sup
k∈N

∥∥∥∥
(

f(2nx)
2n

− f(2mx)
2m

, · · · ,
f(2n+k−1x)

2n+k−1
− f(2m+k−1x)

2m+k−1

)∥∥∥∥
k

5 sup
k∈N

∥∥∥∥
(

f(2nx)
2n

− f(2mx)
2m

, · · · ,
1

2k−1

(
f(2n(2k−1x))

2n
− f(2m(2k−1x))

2m

))∥∥∥∥
k

5 sup
k∈N

∥∥∥∥
(

f(2nx)
2n

− f(2mx)
2m

, · · · ,
f(2n(2k−1x))

2n
− f(2m(2k−1x))

2m

)∥∥∥∥
k

5 2α

n−1∑

i=m

2−i ,
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where we have used the axiom (M3) of Definition 1 and also replaced x1, x2, · · · , xn

by x, 2x, · · · , 2k−1x in (3.4). Hence
{

f(2nx)
2n

}
is a Cauchy sequence and so it is

convergent in the multi-complete space F . Set

T (x) := lim
n→∞

f(2nx)
2n

.

Hence, for each ε > 0, there exists n0 such that

sup
k∈N

∥∥∥∥
(

f(2nx)
2n

− T (x), · · · ,
f(2n+k−1x)

2n+k−1
− T (x)

)∥∥∥∥
k

< ε

for all n = n0. In particular, by Property (b) of multi-norms, we have

lim
n→∞

∥∥∥∥
f(2nx)

2n
− T (x)

∥∥∥∥ = 0 (x ∈ E).(3.5)

We next put m = 0 in (3.4) to get

sup
k∈N

∥∥∥∥
(

f(2nx1)
2n

− f(x1), · · · ,
f(2nxk)

2n
− f(xk)

)∥∥∥∥
k

5 2α

n−1∑

i=0

2−i .

Letting n → ∞ and utilizing the Lemma as well as (3.5), we obtain

sup
k∈N

‖(T (x1)− f(x1), · · · , T (xk)− f(xk))‖k 5 2α .

Let x, y ∈ E. Put

x1 = · · · = xk = 2nx and y1 = · · · = yk = 2ny

in (3.1) and divide both sides by 2n. We thus obtain∥∥∥∥2−nf

(
2n (x + y)

2

)
− 2−nf(2nx) + 2−nf(2ny)

2

∥∥∥∥ 5 2−nα,

which, upon taking the limit as n → ∞, yields

T

(
x + y

2

)
− T (x) + T (y)

2
= 0.

Hence T is Jensen and, using the fact that T (0) = 0, we conclude that T is also

additive.

If T ′ is another additive mapping satisfying (3.2), then

‖T ′(x) − T (x)‖ 5
1
2n

‖T ′(2nx)− T (2nx)‖

5
1
2n

‖T ′(2nx)− f(2nx)‖+
1
2n

‖f(2nx)− T (2nx)‖

5
1
2n

(2α + 2α),



458 M. S. Moslehian and H. M. Srivastava

where we have combined (3.2) and Property (a) of multi-norms. Hence T ′ = T .

This proves the uniqueness asserted by Theorem 1. This evidently completes the

proof of Theorem 1.

Applying the method of proof of Theorem 3 of [9] mutatis mutandis, we get the

following result.

Proposition. Let E be a linear space, and let ((Fn, ‖ · ‖n) : n ∈ N) be a multi-
Banach space. Suppose that α, β = 0 and that f : E → F is a mapping satisfying

f(0) = 0 and

(3.6)

∥∥∥∥
(
f

(
x1+y1

2

)
− f(x1)+f(y1)

2
, · · · , f

(
xk+yk

2

)
− f(xk)+f(yk)

2

)∥∥∥∥
k

5α

for all k and for all x1, · · · , xk, y1, · · · , yk ∈ E with

‖(x1, · · · , xk)‖k + ‖(y1, · · · , yk)‖k = β.

Then there exists a unique additive mapping T : E → F such that

sup
k∈N

‖(f(x1) − T (x1), · · · , f(xk) − T (xk))‖k 5 5α

for all x1, · · · , xk ∈ E.

Proof. Let us fix k ∈ N and set

x = (x1, · · · , xk) and y = (y1, · · · , yk).

Assume that

‖x‖k + ‖y‖k < β.

Suppose that, for x = y = 0, z = (z1, · · · , zk) ∈ Ek is an element of E with

‖z‖k = β.

Furthermore, for x 6= 0 or y 6= 0, let

z :=





x +
βx

‖x‖k
(‖x‖k = ‖y‖k)

y +
βy

‖y‖k
(‖x‖k < ‖y‖k) .

Then
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(3.7)

‖x-z‖k + ‖y+z‖k = β

‖2z‖k + ‖x-z‖k = β

‖y‖k + ‖2z‖k = β

‖y+z‖k + ‖z‖k = β

‖x‖k + ‖z‖k = β .

It follows from (3.6) and (3.7) that
∥∥∥∥
(

f

(
x1+y1

2

)
− f(x1)+f(y1)

2
, · · · , f

(
xk+yk

2

)
− f(xk)+f(yk )

2

)∥∥∥∥
k

5
∥∥∥∥
(

f

(
x1+y1

2

)
− f(x1−z1)+f(y1+z1)

2
, · · · , f

(
xk+yk

2

)
− f(xk−zk)+f(yk +zk)

2

)∥∥∥∥
k

+
∥∥∥∥
(

f

(
x1+z1

2

)
−

f(2z1)+f(x1−z1)
2

, · · · , f

(
xk+zk

2

)
−

f(2zk)+f(xk−zk)
2

)∥∥∥∥
k

+
∥∥∥∥
(

f

(
y1+2z1

2

)
− f(y1)+f(2z1)

2
, · · · , f

(
yk+2zk

2

)
− f(yk)+f(2zk)

2

)∥∥∥∥
k

+
∥∥∥∥
(

f

(
y1+2z1

2

)
− f(y1+z1)+f(z1)

2
, · · · , f

(
yk+2zk

2

)
− f(yk +zk)+f(zk)

2

)∥∥∥∥
k

+
∥∥∥∥
(

f

(
x1+z1

2

)
− f(x1)+f(z1)

2
, · · · , f

(
xk+zk

2

)
− f(xk)+f(zk )

2

)∥∥∥∥
k

.

We thus obtain
∥∥∥∥
(

f

(
x1 + y1

2

)
− f(x1) + f(y1)

2
, · · · , f

(
xk + yk

2

)
− f(xk) + f(yk)

2

)∥∥∥∥
k

5 5α

for all x1, · · · , xk, y1, · · · , yk ∈ E. Now the result asserted by the above Proposition

can be deduced fairly easily from Theorem 1.

If

D = {(x, y) ∈ Ek × Ek : ‖x‖k < β, ‖y‖k < β}

for some β > 0, then

{(x, y) ∈ Ek × Ek : ‖x‖k + ‖y‖k = 2β} ⊆ (Ek × Ek)\D.

Hence we have the result asserted by the Corollary below.

Corollary. Let E be a linear space. Also let ((Fn, ‖ · ‖n) : n ∈ N) be a multi-
Banach space. Suppose that α, β = 0 and that f : E → F is a mapping satisfying

f(0) = 0 and
∥∥∥∥
(

f

(
x1+y1

2

)
− f(x1)+f(y1)

2
, · · · , f

(
xk+yk

2

)
− f(xk)+f(yk)

2

)∥∥∥∥
k

5 α
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for all k and for all (x1, · · · , xk), (y1, · · · , yk) ∈ (Ek ×Ek) \D. Then there exists

a unique additive mapping T : E → F such that

sup
k∈N

‖(f(x1) − T (x1), · · · , f(xk) − T (xk))‖k 5 5α ,

for all x1, · · · , xk ∈ E.

Theorem 2. Let E be a linear space. Also let ((Fn, ‖ · ‖n) : n ∈ N) be a
multi-Banach space. Suppose that f : E → F is a mapping satisfying f(0) = 0.
Then f is additive if and only if

(3.8)

∥∥∥∥
(
f

(
x1+y1

2

)
− f(x1)+f(y1)

2
, · · · , f

(
xk+yk

2

)
− f(xk)+f(yk)

2

)∥∥∥∥
k

→0

uniformly on k ∈ N as

‖(x1, · · · , xk)‖k + ‖(y1, · · · , yk)‖k → ∞.

Proof. If f is additive, then (3.8) evidently holds true. Conversely, we use
the uniform limit (3.8) to get a sequence {βn} such that, for each k,

(3.9)

∥∥∥∥
(
f

(
x1+y1

2

)
− f(x1)+f(y1)

2
, · · · , f

(
xk+yk

2

)
− f(xk)+f(yk)

2

)∥∥∥∥
k

5
1
n

for all x1, · · · , xk, y1, · · · , yk ∈ E with

‖(x1, · · · , xk)‖k + ‖(y1, · · · , yk)‖k = βn .

Next, by using the above Proposition, we see that there exists a unique additive

mapping Tn such that

‖f(x)− Tn(x)‖ 5
5
n

(3.10)

for all x ∈ E, so that
‖f(x)− T1(x)‖ 5 5

and

‖f(x)− Tn(x)‖ 5 5

for each n. By the uniqueness of T1, we conclude that Tn = T1 for all n. Now,
letting n → ∞ in (3.10), we deduce that f = T1 is additive.
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