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A MONOTONE GRADIENT METHOD VIA WEAK SECANT

EQUATION FOR UNCONSTRAINED OPTIMIZATION

Wah June Leong, Malik Abu Hassan and Mahboubeh Farid

Abstract. In this paper we present a new algorithm of steepest descent type.

A new technique for steplength computation and a monotone strategy are

provided in the framework of the Barzilai and Borwein method. In contrast

with Barzilai and Borwein approach’s in which the steplength is computed by

means of a simple approximation of the Hessian in the form of scalar multiple

of identity and an interpretation of the secant equation, the new proposed

algorithm considers another approximation of the Hessian based on the weak

secant equation. By incorporating a simple monotone strategy, the resulting

algorithm belongs to the class of monotone gradient methods with linearly

convergence. Numerical results suggest that for non-quadratic minimization

problem, the new method clearly outperforms the Barzilai-Borwein method.

1. INTRODUCTION

Consider the problem:

(1.1) minf(x), x ∈ Rn

where f is continuous and twice differentiable.
In this paper we are interested in the gradient method with updating scheme

(1.2) xk+1 = xk − αkgk

where gk = 5f(xk) is the gradient of f(x) at the current iterate xk and αk > 0
is the steplength. The steepest descent (SD) method calculates the steplength by an

exact line search

(1.3) αSD
k = arg minα∈Rf(xk − αgk).
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It is well known that the SD method may converge very slowly, and thus being of

no practical value.

In 1988 Barzilai and Borwein [1] proposed a gradient method (BB method)

that uses a different strategy for choosing the steplength αk. The steplength along

the negative gradient direction is computed from a two point approximation to the

secant equation from quasi-Newton methods. They regard the matrix Dk = γkI as
an approximation to the Hessian of f at xk . In order forDk to have correct curvature

information, they impose some quasi-Newton properties on Dk and choose γk such

that

(1.4) arg minγ∈R‖γksk−1 − yk−1‖2

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Since in quasi-Newton method

we have that

(1.5) xk+1 = xk − B−1
k gk,

and the quasi-Newton matrix Bk satisfies the secant equation

(1.6) Bksk−1 = yk−1.

With these, Barzilai and Borwein [1] suggested

(1.7) γk =
sT
k−1yk−1

sT
k−1sk−1

and the method of BB is given by the following iterative scheme:

(1.8) xk+1 = xk − D−1
k gk,

where D−1
k is given by αBB

k I and αBB
k = 1/γk.

For 2-dimensional convex quadratic function, Barzilai and Borwein [1] proves

that the method (1.8) is R− superlinearly convergent. Having in view its simplicity,
low storage requirement (3n locations for an n−dimensional problems) and numer-
ical efficiency for well-conditioned problems, proved by Raydan [8] and Fletcher

[6], the BB gradient has received a great deal of attention. For example, see [2],

[3], [6], [9]. Despite all these advances, there are a number of reasons that show

the inferior of the BB method (see Fletcher [6]). At first glance is the possibil-

ity of non-monotonic behavior in the sequence {f(xk)} of the BB method, and
the extent of the non-monotonicity depends in some way on the condition of the

objective function. Also there is limited scope for the BB method to improve as

regards with elapsed time. Therefore, it is the purpose of this paper to present a

new algorithm of gradient type to address these drawbacks. Along this line, a new
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gradient method is proposed in the next section. A simple monotone strategy is

derived and the corresponding monotone gradient algorithm is described in Section

3. The new algorithm is globally convergent under some mild assumptions on the

objective function. Numerical results are reported in Section 5, which suggest that

improvements have been achieved.

2. GRADIENT METHODS VIA WEAK SECANT EQUATION

We begin by exploring the properties of the gradient methods for minimizing a

strictly convex quadratic function:

(2.1) f(x) =
1
2
xTAx − bTx,

where A is an n × n symmetric and positive definite matrix.
Let {xk} be the sequence generated by (1.2) from an initial {x0}. By the fact

that gk = Axk − b, it follows that

(2.2) gk+1 = (I − αkA)gk.

Without the loss of generality, we assume that A has distinct eigenvalues

0 < λ1 < λ2 < . . . < λn,

and that the components of the gradient g0,i 6= 0 for all i = 1, 2, . . . , n. By the fact
that any gradient method is invariant under any orthogonal transformations and the

gradient components corresponding to the identical eigenvalues can be combined

(see, for example Fletcher [6]), we can assume that the matrix A is

(2.3) A = diag(λ1, λ2, . . . , λn).

Denoting gk = (gk,1, gk,2, . . . , gk,n)T and by (2.2)-(2.3), we have that

(2.4) gk+1,i = (1 − αkλi)gk,i.

It is clear that from this recurrence that if g0,i = 0 for any i, then this property
will persist for all k > 0. Moreover if there are any eigenvalues of multiplicity
m > 1, then we can choose the corresponding eigenvectors so that g0,i = 0 for at
least m − 1 corresponding indices of g0 (see Fletcher [6] for details).

Any steplength selection such that ‖(I − αkA)‖2 is minimized should give a

good convergence result by the relation

(2.5) ‖gk+1‖2 ≤ ‖(I − αkA)‖2‖gk‖2.
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One of the choice is the steplength (see [5])

(2.6) αk =
2

λ1 + λn
.

Since λ1 and λn are usually unknown to users, it is normal that this steplength is

good only in theory.

Similarly as |gk+1,i| = |1 − αkλi||gk,i|, it should be good for the sake of con-
vergence if we choose the steplength αk such that

(2.7) |1 − αkλi|, i = 1, 2, . . . , n

is minimized.

An obvious choice is letting α = 1/λi. Since A has n distinct eigenvalues, we
will need n difference scalars as steplengths along each component of the negative

gradient direction. Hence, by denoting xk = (xk,1, xk,2, . . . , xk,n)T , we have our

new gradient method with updating scheme:

(2.8) xk+1,i = xk,i − αk,igk,i

where αk,i is a scalar, which acts as steplength along the ith component of the

negative gradient direction. In shorts, we try to update a new iterate by

(2.9) xk+1 = xk − D−1
k gk

where Dk = diag(1/αk,1, 1/αk,2, . . . , 1/αk,n).
Equivalent to the problem of minimizing (2.7) with respect to αk, it seems

reasonable to consider the problem of choosing D−1
k such that

(2.10) D̄−1
k = arg min ‖(I − D−1

k A)‖2; D−1
k is diagonal.

In other words, we seek well-posed metric problems such that the solution

Dk through the diagonal updating is a good approximation of A. Note that any
approximation of A should satisfy the secant equation Ask−1 = yk−1 to ensure the

curvature information is correct. Furthermore, since Dk is diagonal (so is A) and

requires only the storage of an n−dimensional vector, it is fine to let Dk satisfies

only the weak secant equation:

(2.11) sT
k−1Dksk−1 = sT

k−1yk−1.

The weak secant relation was first introduced and studied by Dennis and Wolkowicz

[4]. Now, it is possible to us to obtain Dk iteratively as follows:

Suppose that Dk > 0 is a positive definite diagonal matrix and Dk+1 is the

updated version of Dk which is also diagonal. Since we require the updated Dk+1
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to be a valid approximation for A, thenDk+1 must satisfy the weak secant equation

and that the deviation between Dk+1 and Dk is minimized under some variational

principle, i.e. we seek well-posed metric problems such that the solution Dk+1

through the diagonal updating, incorporates available curvature information from

the step and the gradient changes as well as that contained in Dk. As noted earlier,

a diagonal matrix simply needs the same computer storage as a vector so an algorithm

with O(n) storage will be maintained. We now state the following theorem which
is due to Nazareth et al. [7]:

Theorem 2.1. Let ∆k = Dk+1 − Dk be the deviation between Dk+1 and Dk,

sk = xk+1 − xk and yk = gk+1 − gk. Assume that sk 6= 0 and Dk > 0. Consider
the minimization problem:

(2.12)
min ‖∆k‖F

s.t. sT
k ∆ksk = sT

k yk − sT
k Dksk and ∆k is diagonal,

where ‖.‖F denotes the Frobenius norm. Then the optimal solution of (2.12) is

given by

∆k,i =
(sT

k yk − sT
k DkSk)s2

k,i

tr(E2)
, i = 1, 2, . . . , n

where tr denotes the trace operator, ∆k,i is the ith diagonal element of ∆k, sk,i is

the ith component of sk and E = diag(s2
k,1, s

2
k,2, . . . , s

2
k,n).

It follows from Theorem 2.1 that the optimal updating formula forDk+1 is given

by

(2.13) dk+1,i = dk,i +
(sT

k yk − sT
k DkSk)s2

k,i

tr(E2)
, i = 1, 2, . . . , n

where dk+1,i and dk,i is the ith diagonal element of Dk+1 and Dk, respectively.

(2.13) is used in the quasi-Cauchy algorithm (a kind of quasi Newton algorithm

where the updated matrices are restricted to be diagonal) by Nazareth et al. [7].

However, there is no guarantee that either Dk+1 > 0 or the gradient method with
updating scheme (2.9) is always monotone. Hence some safeguards are needed.

The positive-definiteness of Dk+1 can be easily verified by checking the condition

dk,i > 0, ∀i. When this is violated, we retain the previous diagonal updating

matrix by letting Dk+1 = Dk.

In the following we give our monotone strategy:

Theorem 2.2. Assume that f(x) is a strictly convex quadratic of the form (2.1)
and {xk} be a sequence generated by the updating (2.9) where Dk is assumed
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to be positive-definite, Dk+1 is defined by (2.13) and D0 is any positive-definite

diagonal matrix. Let dk,m, dk,M , dk+1,m and dk+1,M be the smallest and largest

diagonal element of Dk and Dk+1, respectively. If

(2.14) d−1
k,M −

d−2
k,md−1

k+1,m

2
> 0,

and ‖gk‖ 6= 0 for all finite k, then the sequence {f(xk)} is monotonically decreas-
ing.

Proof. Consider the Taylor expansion of (2.1) at xk+1:

(2.15) f(xk+1) = f(xk − D−1
k gk) = f(xk) − gT

k D−1
k gk +

1
2
gT
k D−1

k AD−1
k gk.

Since sk = xk+1 − xk = −D−1
k gk,

sT
k Ask = sT

k Dk+1sk = gT
k D−1

k Dk+1D
−1
k gk,

and

d−1
k,M‖gk‖2 ≤ gT

k D−1
k gk ≤ d−1

k,m‖gk‖2,

(2.15) becomes

f(xk+1) ≤ f(xk) −
(

d−1
k,M −

d−2
k,md−1

k+1,m

2

)
‖gk‖2.

It follows from d−1
k,M − d−2

k,md−1
k+1,m

2 > 0 and ‖gk‖ 6= 0 that f(xk+1) < f(xk).

3. MONOTONE GRADIENT METHOD

We give our algorithm:

MONOGRAD Algorithm

Step 1. Consider an initial point x0 and a positive-definite diagonal matrix D0 (we

set D0 = I). Compute x1 = x0 − g0 where g0 = 5f(x0) and set k = 1.

Step 2. ComputeD−1
k = diag(1/dk,1, 1/dk,2, . . . , 1/dk,n) where dk,i, i = 1, 2, . . . , n

is given by (2.13).

Step 3. If d−1
k−1,M − d−2

k−1,md−1
k,m

2 > 0 or Dk > 0 is violated, set D−1
k = D−1

k−1. Else

retain D−1
k that is computed in Step 2.

Step 4. Update xk+1 = xk − D−1
k gk .
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Step 5. Test a criterion for stopping the iterations. If the test is satisfied, then stop,

else set k := k + 1 and return to Step 2.

Note that MONOGRAD algorithm is different from other monotone gradient

methods in such a way that MONOGRAD algorithm requires neither function eval-

uations nor inexact line search conditions to guarantee monotonity. Moreover, it is

very simple to use. To see just how superior the new method over the BB method

is, a simple numerical example is devised. We consider the quadratic function (2.1)

where

(3.1) n = 50, A = diag(1, 10, 20, . . . , 10(n− 1)) and b = (1, 1, . . . , 1)T .

The initial point x0 = (1, 1, . . . , 1) as well as the following criterion for stopping
the iterations

(3.2) ‖gk‖ < 10−4

are used. The performance of BB and MONOGRAD methods are shown in Fig. 1.

Fig. 1. BB vs MONOGRAD.

Here x∗ denotes the unique minimizer of the objective function and the difference
f(xk)−f(x∗) is plotted on a log scale against the number of iterations. A noticeable
feature of the MONOGRAD method is that monotonically decreasing in function

values is observed in all iterations. On the other hand, there are many occasions on

which a big jump is seen in f(xk) − f(x∗) for the BB method above the slowly
varying part of the graph.
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4. CONVERGENCE ANALYSIS

We shall also establish the convergence of the MONOGRAD algorithm when

applied to the minimization of a strictly convex non-quadratic function. For the

analysis of this section, we assume that the objective function, f is strictly convex
and bounded below on the closed level set S = {x ∈ Domain(f) : f(x) ≤ f(x0)}.

Theorem 4.3. Let {xk} be a sequence generated by the MONOGRAD Algorithm
and x∗ is the unique minimizer of a strictly convex function f . Then either gk = 0
holds for some finite k ≥ 1 or limk→∞‖gk‖ = 0. Moreover, {xk} converges
R−linearly to x∗.

Proof. Denote Ḡ = 52f(xk + θsk) for θ ∈ (0, 1). Again let dk,m, dk,M ,

dk+1,m and dk+1,M be the smallest and largest diagonal element of Dk and Dk+1,

respectively. Consider the Taylor expansion of the strictly convex function, f at
xk+1:

(4.1) f(xk − D−1
k gk) = f(xk) − gT

k D−1
k gk +

1
2
gkD

−1
k ḠD−1

k gk.

Since Ḡsk = yk, it follows that sT
k Ḡsk = gkD

−1
k Dk+1D

−1
k gk. Thus

f(xk+1) ≤ f(xk) − c‖gk‖2,

where c = d−1
k,M−

(
d−2

k,md−1
k+1,m

)
/2. If c < 0 orDk+1 < 0, then we letDk+1 = Dk.

This implies that sT
k Ḡsk = gkD

−1
k DkD

−1
k gk = gkD

−1
k gk. Hence, (4.1) becomes

(4.2) f(xk+1) ≤ f(xk) −
1
2
d−1

k,m‖gk−1‖2.

Therefore in both cases, we have that

(4.3) f(xk+1) ≤ f(xk) − c‖gk−1‖2,

where c > 0 is either equal to d−1
k,M −

(
d−2

k,md−1
k+1,m

)
/2 or (2dk,m)−1.

This implies that f(xk+1) ≤ f(xk) for all k and since f is bounded below, it
follows that

limk→∞f(xk) − f(xk+1) = 0.

As f(xk) − f(xk+1) → 0, and c > 0 then limk→∞‖gk‖ = 0, i.e. xk converges to

x∗. Having in mind that f(xk) is a nonincreasing sequence, it concludes that f(xk)
converges to f(x∗). Furthermore, the strictly convexity of f implies that we can

bound f(x∗):

(4.4) f(x) − 1
2q

‖g(x)‖2 ≤ f(x∗) ≤ f(x) − 1
2Q

‖g(x)‖2,
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where q and Q are positive constants such that q‖z‖2 ≤ zT 52 f(x)z ≤ Q‖z‖2

for all x ∈ S and z ∈ Rn. The existence of such constants is guaranteed by the

convexity of f . It follows that ‖gk‖2 ≥ 2q(f(xk) − f(x∗). Thus, (4.3) becomes

(4.5) f(xk+1) − f(x∗) ≤ h(f(xk) − f(x∗)),

where h = 1 − cq. Note that as cq > 0 and f(xk+1) ≤ f(xk), we must have
0 < h < 1 for all k. Therefore the MONOGRAD algorithm is R-linearly convergent.

5. NUMERICAL RESULTS

In this section we give some numerical results on BB method and MONOGRAD

method for minimization of some convex functions. Our source code is written in

Matlab 7.0. Test functions are the standard unconstrained optimization problems

that are posted at the website: http://www.ici.ro/camo/neculai/SCALCG/testuo.pdf

(accessed on Feb ’08).

The termination criteria for all methods is

(5.1) ‖gk‖ < 10−5 ×max{1, ‖xk‖}.

The numerical comparative results are given in Table 5.1, where the integer

numbers are the number of iterations. The symbol – in the table indicates that the

method fails to converge within 1000 iterations.

Table 5.1. BB vs MONOGRAD

Test Function (Dimension) Initial point x0 BB MONOGRAD

Diagonal2 (10)
(

3
1 , 3

2 , . . . , 3
n

)
- 50

Diagonal2 (50)
(

3
1 , 3

2 , . . . , 3
n

)
- 160

Diagonal2 (100)
(

3
1 , 3

2 , . . . , 3
n

)
- 250

Diagonal2 (500)
(

3
1 , 3

2 , . . . , 3
n

)
- 582

Perturbed Quadratic (10) (0.5, 0.5, . . . , 0.5) 25 10

Perturbed Quadratic (50) (0.5, 0.5, . . . , 0.5) 61 15

Perturbed Quadratic (80) (0.5, 0.5, . . . , 0.5) 70 19

Perturbed Quadratic (100) (0.5, 0.5, . . . , 0.5) 87 23

Diagonal6 (10) (1, 2, . . . , n) 31 28

Diagonal6 (50) (1, 2, . . . , n) 15 10

Diagonal6 (100) (1, 2, . . . , n) 35 8

Diagonal6 (500) (1, 2, . . . , n) 16 9

Almost Perturbed Quadratic (10) (0.5, 0.5, . . . , 0.5) 17 10

Almost Perturbed Quadratic (50) (0.5, 0.5, . . . , 0.5) 48 14

Almost Perturbed Quadratic (100) (0.5, 0.5, . . . , 0.5) 68 17

Almost Perturbed Quadratic (500) (0.5, 0.5, . . . , 0.5) 196 56
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EG2 (20) (1, 1, . . . , 1) 66 16

EG2 (50) (1, 1, . . . , 1) 211 22

EG2 (100) (1, 1, . . . , 1) 59 34

EG2 (500) (1, 1, . . . , 1) 62 51

Quadratic QF1 (10) (1, 1, . . . , 1) 17 8

Quadratic QF1 (50) (1, 1, . . . , 1) 42 13

Quadratic QF1 (100) (1, 1, . . . , 1) 61 16

Quadratic QF1 (500) (1, 1, . . . , 1) 185 27

Raydan2 (10) (1, 1, . . . , 1) 6 5

Raydan2 (50) (1, 1, . . . , 1) 7 5

Raydan2 (100) (1, 1, . . . , 1) 7 5

Raydan2 (500) (1, 1, . . . , 1) 7 5

Quadratic QF2 (10) (1, 1, . . . , 1) 6 6

Quadratic QF2 (50) (1, 1, . . . , 1) 5 5

Quadratic QF2 (100) (1, 1, . . . , 1) 5 5

Quadratic QF2 (500) (1, 1, . . . , 1) 4 4

Diagonal5 (10) (2, 2, . . . , 2) - 20

Diagonal5 (50) (2, 2, . . . , 2) - 22

Diagonal5 (100) (2, 2, . . . , 2) - 22

Diagonal5 (500) (2, 2, . . . , 2) - 24

Extended Tridiagonal2 (10) (0.6, 0.6, . . . , 0.6) 7 6

Extended Tridiagonal2 (50) (0.6, 0.6, . . . , 0.6) 7 6

Extended Tridiagonal2 (100) (0.6, 0.6, . . . , 0.6) 7 6

Extended Tridiagonal2 (500) (0.6, 0.6, . . . , 0.6) 7 6

Extended Three Exponential Terms (10) (−0.1,−0.1, . . . ,−0.1) 14 14

Extended Three Exponential Terms (50) (−0.1,−0.1, . . . ,−0.1) 14 14

Extended Three Exponential Terms (100) (−0.1,−0.1, . . . ,−0.1) 14 14

Extended Three Exponential Terms (500) (−0.1,−0.1, . . . ,−0.1) 14 14

Hager (10) (2, 2, . . . , 2) - 13

Hager (20) (2, 2, . . . , 2) 19 18

Hager (50) (2, 2, . . . , 2) 23 33

From Table 5.1 we see that MONOGRAD method is superior then the BB

method on our set of test problems.

6. CONCLUSION

In this paper we proposed a monotone gradient, MONOGRAD method. The

proposed method uses a diagonal matrix to represent the ”steplengths” in the frame-

work of BB method. Then a monotone strategy is derived and incorporated with the
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proposed method. The MONOGRAD method is appealing for several reasons: it is

simple to implement, it requires no function calls, low storage requirement, globally

converged and possesses linear rate of convergence under very mild conditions.
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