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CLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH

NEW MULTIPLIER TRANSFORMATIONS AND

HYPERGEOMETRIC FUNCTION

Adriana Cǎtaş

Abstract. The purpose of the paper is to derive various properties and char-

acteristics of certain subclass of analytic functions using multiplier transfor-

mations and the method of differential subordination.

1. INTRODUCTION AND DEFINITIONS

Let H be the class of analytic functions in the open unit disc U = {z ∈ C :
|z| < 1} and H[a, n] be the subclass of H consisting of functions of the form

f(z) = a +
∑∞

k=n akz
k . Let A(n) denote the class of functions f(z) normalized

by

(1.1) f(z) = z +
∞∑

k=n+1

akz
k (n ∈ N := {1, 2, 3, . . .})

which are analytic in the open unit disc. In particular, we set A(1) := A.
For f(z) given by (1.1) and g(z) given by g(z) = z +

∑∞
k=n+1 bkz

k the

Hadamard product (or convolution), (f ∗ g)(z) is defined, by (f ∗ g)(z) := z +∑∞
k=n+1 akbkz

k := (g ∗ f)(z).
If f and g are analytic in U , we say that f is subordinate to g, written symbol-

ically as f ≺ g or f(z) ≺ g(z), (z ∈ U) if there exists a Schwarz function
w(z) in U , which is analytic in U with w(0) = 0 and |w(z)| < 1 such that
f(z) = g(w(z)), z ∈ U .
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Lemma 1.1. [6]. Let h be a convex function with h(0) = a and let γ ∈ C∗

be a complex with Re γ ≥ 0. If p ∈ H[a, n] and p(z) + 1
γ zp

′(z) ≺ h(z) then
p(z) ≺ q(z) ≺ h(z), where

(1.2) q(z) =
γ

nzγ/n

∫ z

0
h(t)t(γ/n)−1dt.

The function q is convex and is the best (a, n) dominant.

We denote by P(δ), the class of functions φ which belong to H[1, n] and
satisfy the inequality Re (φ(z)) > δ, (0 ≤ δ < 1, z ∈ U). It is known [7]
that if φi ∈ P(δi), (0 ≤ δi < 1, i = 1, 2), then (φ1 ∗ φ2) ∈ P(δ3) where
δ3 = 1− 2(1− δ1)(1− δ2) and the bound δ3 is the best possible.

Lemma 1.2. [6] Let the function φ ∈ H[1, 1] be in the class P(δ). Then

(1.3) Re (φ(z)) ≥ 2δ − 1 +
2(1− δ)
1 + |z| , (0 ≤ δ < 1, z ∈ U).

Lemma 1.3. [15]. For real or complex numbers a, b and c (c 6∈ Z−
0 :=

{0,−1,−2, . . .}), Re c > Re b > 0 we have

(1.4)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt =

Γ(b)Γ(c− b)
Γ(c)

· 2F1(a, b; c; z),

(1.5) 2F1(a, b, c; z) = (1 − z)−a · 2F1

(
a, c− b; c;

z

z − 1

)
,

(1.6) 2F1(a, b; c; z) = 2F1(b, a; c; z),

(1.7) (b+ 1) 2F1(1, b; b+ 1; z) = (b+ 1) + bz ·2 F1(1, b+ 1; b+ 2; z)

Lemma 1.4. [12]. Let φ be analytic in U with φ(0) = 1 and Re (φ(z)) >
1
2

in U . Then for any function F analytic in U , the function φ ∗F takes values in the
convex hull of the image of U under F .

Lemma 1.5. [6]. Suppose that the function ψ : C2 × C → C satisfies the

condition Re ψ(iρ, σ; z) ≤ δ, for δ > 0 and ρ, σ ≤ −1
2
(1 + ρ2). If ϕ ∈ H[1, 1] is

analytic in U and Re ψ(ϕ(z), zϕ′(z); z) > δ then Re ϕ(z) > 0 in U .
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We propose

Definition 1.1. Let f ∈ A(n). For m ∈ N0 = N∪{0}, λ ≥ 0, l ≥ 0 we define
the multiplier transformations Im(λ, l) on A(n) by the following infinite series

(1.8) Im(λ, l)f(z) := z +
∞∑

k=n+1

[
1 + λ(k− 1) + l

1 + l

]m

akz
k .

It follows from (1.8) that

(1.9) I0(λ, l)f(z) = f(z)

(1.10) (1 + l)I2(λ, l)f(z) = (1 − λ+ l)I1(λ, l)f(z)+ λz(I1(λ, l)f(z))′

(1.11) Im1(λ, l)(Im2(λ, l)f(z)) = Im2(λ, l)(Im1(λ, l)f(z))

for all integers m1 and m2.

Remark 1.1. For l = 0, λ ≥ 0, the operator Dm
λ := Im(λ, 0) was introduced

and studied by Al-Oboudi [1] which reduces to the Salagean differential operator

for λ = 1 [11]. The operator Im
l := Im(1, l) was studied recently by Cho and

Srivastava [2] and Cho and Kim [3]. The operator Im := Im(1, 1) was studied by
Uralegaddi and Somanatha [14].

2. INCLUSION RESULTS

Now we define a new class of analytic functions by using the multiplier trans-

formations Im(λ, l) defined by (1.8) as follows.

Definition 2.2. Let m ∈ N0 = N ∪ {0}, A,B, η, λ, l be arbitrary fixed real
numbers such that −1 ≤ B < A ≤ 1, η ≥ 0, λ ≥ 0 and l ≥ 0. A function f ∈ A
is said to be in the class Rm

λ (η;A,B) if it satisfies the following subordination

(2.12) (Im(λ, l)f(z))′ + ηz(Im(λ, l)f(z))′′ ≺ 1 + Az

1 + Bz
, (z ∈ U).

The class Rm
λ (η;A,B) generalizes a number of function classes studied earlier

by several authors (see, e.g., Mac Gregor [5], Ponnusamy [10], Al-Oboudi [1] and

Patel [8]). We write Rm
λ (0; 1− 2α,−1) ≡ Rm(1− 2α,−1), the class of functions

f ∈ A which satisfy the condition Re (Im(λ, l)f(z))′ > α.
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Theorem 2.1. We have Rm+1
λ (0;A,B)⊂Rm

λ (1−2β,−1) where β is given by

(2.13) β =





A

B
+

(
1−A

B

)
(1−B)−1

2F1

(
1, 1;

1+l
λn

+1;
B

B−1

)
, B 6=0

1− 1+l
1+l+λn

A, B=0

.

The result is the best possible.

Proof. Setting ϕ(z) := (Im(λ, l)f(z))′, we note that ϕ ∈ H[1, n].
Making use the identity

(2.14) (1 + l)Im+1(λ, l)f(z) = (1− λ+ l)Im(λ, l)f(z)+ λz(Im(λ, l)f(z))′

we obtain

(2.15) (Im+1(λ, l)f(z))′ = ϕ(z) +
zϕ′(z)

(1 + l)/λ
≺ 1 + Az

1 +Bz
, (z ∈ U).

Thus, by Lemma 1.1 for γ =
1 + l

λ
, we deduce that

(Im(λ, l)f(z))′ ≺ q(z) =
1 + l

λn
z−

1+l
λn

∫ z

0
t

1+l
λn

−1 · 1 + At

1 + Bt
dt

=





A

B
+

(
1 − A

B

)
(1 +Bz)−1

2F1

(
1, 1;

1 + l

λn
+ 1;

Bz

Bz + 1

)
, B 6= 0

1 +
1 + l

1 + l + λn
Az, B = 0

where we have also made a change of variables followed by the use of the identities

(1.4) and (1.5). Following the same lines as in Theorem 4 [9], we can prove that

infz∈U{Re q(z)} = q(−1). The proof of Theorem 2.1 is thus completed.

Remark 2.2. Theorem 2.1 improves the result obtained by Patel [[8], Theorem

2]. For l = 0, n = 1, A = 1− 2α, (0 ≤ α < 1) and B = −1 in Theorem 2.1, one
obtains a result which also improves the corresponding work of Al-Oboudi [[1],

Theorem 2.4].

3. CONVOLUTION PROPERTIES

Theorem 3.1. Let −1 ≤ Bj < Aj ≤ 1, (j = 1, 2). If the functions fj ∈
Rm

λ (η;Aj, Bj) (j = 1, 2), then the function h ∈ A defined by
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(3.1) h(z) = Im(λ, l)(f1 ∗ f2)(z), (z ∈ U)

belongs to the class Rm
λ (η; 1− 2δ,−1), where

(3.2) δ = σ3 + (1 − η)(1− σ3)
[

2F1

(
1, 2;

1
n

+ 1;
1
2

)
− 1

]

(3.3)

σ3 = 1 − 2(1− σ1)(1 − σ2)

σj =





Aj

Bj
+

(
1 −Aj

Bj

)
(1−Bj )−1 · 2F1

(
1, 1;

1
nη

+1;
Bj

Bj − 1

)
, Bj 6=0

1 − 1
1 + nη

A, Bj =0
.

Proof. Setting ϕj(z) = (Im(λ, l)fj(z))′, (z ∈ U) we note that ϕj(z) belongs
to the classH[1, n] and is analytic in U for each j = 1, 2. Since fj ∈ Rm

λ (η;Aj, Bj)
one obtains that

ϕj(z) + ηzϕ′
j(z) = (Im(λ, l)fj(z))′ + ηz(Im(λ, l)fj(z))′′ ≺

1 +Ajz

1 +Bjz
.

By making use of Lemma 1.1, with γ =
1
η
and following the steps of proof of

Theorem 2.1, we get (Im(λ, l)fj(z))′ ∈ P(σj), for j = 1, 2 where

(3.4) σj =





Aj

Bj
+

(
1− Aj

Bj

)
(1 − Bj)−1 ·2 F1

(
1, 1;

1
nη

+ 1;
Bj

Bj − 1

)
, Bj 6= 0

1 − 1
1 + ηn

A, Bj = 0
.

Thus, for h = Im(λ, l)(f1 ∗ f2)(z) we have

[z(Im(λ, l)h(z))′]′ = (Im(λ, l)f1(z))′ ∗ (Im(λ, l)f2(z))′ ∈ P(σ3),

where σ3 = 1 − 2(1− σ1)(1 − σ2) and

[z(Im(λ, l)h(z))′]′ = (Im(λ, l)h(z))′ + z(Im(λ, l)h(z))′′ ∈ P(σ3),

(Im(λ, l)h(z))′ ∈ P(σ4)

where σ4 = σ3+(1−σ3)
[

2F1

(
1, 1;

1
n

+ 1;
1
2

)
− 1

]
is obtained by using Lemma

1.1 with γ = 1, A = 1 − 2σ3 and B = −1.
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It follows

Re [(Im(λ, l)h(z))′ + ηz(Im(λ, l)h(z))′′]

> (1 − η)σ4 + ησ3 = σ3 + (1− η)(1− σ3)
[

2F1

(
1, 1;

1
n

+ 1;
1
2

)
− 1

]
= δ.

This completes the proof of Theorem 3.1.

Remark 3.3. Putting A1 = A2 = 1 − 2α, (0 ≤ α < 1), B1 = B2 = −1,
m = 0, and η = 2 in Theorem 3.1, one improves a result obtained by Patel [8].

Theorem 3.2. Let −1 ≤ Bj < Aj < 1 (j = 1, 2). If the functions fj ∈
Rm

λ (0;Aj, Bj) (j = 1, 2), then the function h defined by (3.1) belongs to the class
Rm

λ (1− 2ρ,−1) where

(3.5) ρ = 2σ3 − 1 + (1 − σ3) 2F1

(
1, 1;

1
n

+ 1;
1
2

)

(3.6) σ3 = 1 − 2
(A1 −B1)(A2 −B2)
(1 −B1)(1 −B2)

.

The result is the best possible for B1 = B2 = −1.

Proof. For each function ϕj , j = 1, 2 defined by ϕj(z) = (Im(λ, l)fj(z))′, we

have ϕj ∈ P(σj), σj =
1 −Aj

1− Bj
, j = 1, 2 and ϕ1 ∗ ϕ2 ∈ P(σ3) where

(3.7) σ3 = 1 − 2
(A1 −B1)(A2 −B2)
(1 −B1)(1 −B2)

.

After a short computation, we have

(3.8) (Im(λ, l)h(z))′ =
1
n

∫ 1

0

(ϕ1 ∗ ϕ2)(sz)s
1
n
−1ds.

Using Lemma 1.2, one obtains

Re [(Im(λ, l)h(z))′] > 2σ3 − 1 + (1 − σ3) · 2F1

(
1, 1;

1
n

+ 1;
1
2

)

thus the desired result follows at once.

Theorem 3.3. Let −1 ≤ Bj < Aj ≤ 1, j = 1, 2. If the functions fj ∈
Rm

λ (η;Aj, Bj), η ≥ 0, j = 1, 2, then the function ψ ∈ A defined by
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(3.9) Im(λ, l)ψ(z) =
∫ z

0
((Im(λ, l)f1)′ ∗ (Im(λ, l)f2)′)(s)ds

belongs to the class Rm
λ (η; 1− 2δ,−1) where

(3.10) δ=





1− 4
(A1 − B1)(A2 − B2)

(1 − B1)(1 − B2)

[
1 − 1

2
· 2F1

(
1, 1,

1
nη

+ 1;
1
2

)]
, η > 0

1− 2
(A1 − B1)(A2 − B2)

(1 − B1)(1 − B2)
, η = 0

.

The bound δ is the best possible when B1 = B2 = −1.

Proof. Letting

(3.11) gj(z) := (Im(λ, l)fj(z))′ + ηz(Im(λ, l)fj(z))′′, η > 0

we note that gj ∈ P(σj), j = 1, 2 where σj =
1 −Aj

1− Bj
since fj ∈ Rm

λ (η;Aj, Bj).

One obtains that (g1 ∗ g2) ∈ P(σ3) where σ3 is given by (3.7).

From (3.11) we get

(3.12) (Im(λ, l)fj(z))′ =
1
nη
z−

1
nη

∫ z

0

gj(s)s
1

nη
−1ds,

thus by (3.9) and (3.12) after a short computation we have

(Im(λ, l)ψ(z))′ = ((Im(λ, l)f1)′ ∗ (Im(λ, l)f2)′)(z)

=
(

1
nη
z−

1
nη

∫ z

0

g1(s)s
1

nη
−1ds

)
∗
(

1
nη
z−

1
nη

∫ z

0

g2(s)s
1

nη
−1ds

)

=
1
nη

∫ 1

0

u
1

nη
−1v(uz)du

where

(3.13)

v(z) = (Im(λ, l)ψ(z))′ + ηz(Im(λ, l)ψ(z))′′

=
1
nη

∫ 1

0

u
1

nη
−1(g1 ∗ g2)(z)du.

From Lemma 1.2 and (3.13) we obtain

Re (v(z)) ≥ 2σ3 − 1 + (1 − σ3) 2F1

(
1, 1,

1
nη

+ 1;
1
2

)
= δ.

For the case η = 0 the proof is simple and thus we omit the involved details.
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Theorem 3.4. Let −1 ≤ B < A ≤ 1. If f ∈ Rm
λ (η;A,B) and ϕ ∈ K, then

f ∗ ϕ ∈ Rm
λ (η;A,B).

Proof. It is well known that ϕ ∈ K ⇒ Re
(

ϕ(z)
z

)
> 1

2 , (z ∈ U). Setting

h(z) = (Im(λ, l)f(z))′ + ηz(Im(λ, l)f(z))′′, g(z) =
ϕ(z)
z

and using convolution

properties, one obtains

(Im(λ, l)(f ∗ g)(z))′ + ηz(Im(λ, l)(f ∗ ϕ)(z))′′ = (h ∗ ϕ)(z).

Since h is subordinate to the convex univalent function (1 + Az)/(1 + Bz) in
U , our theorem is an immediate consequence of Lemma 1.4.

Theorem 3.5. Let −1 ≤ Bj < Aj ≤ 1, j = 1, 2 such that

(3.14)

(A1−B1)(A2−B2)
(1−B1)(1−B2)

<
3

4

{
1+2

[
1
2
· 2F1

(
1, 1;

1
n

+1;
1
2

)
−1

]2
} .

If the functions fj ∈ Rm
λ (0;Aj, Bj), then the function h defined by (3.1) satisfies

the differential subordination

(3.15)
z(Im(λ, l)h(z))′

Im(λ, l)h(z)
≺ 1 + z

1 − z
.

Proof. One obtains

Re [(Im(λ, l)h(z))′ + z(Im(λ, l)h(z))′′] =

= Re [(Im(λ, l)f1(z))′ ∗ (Im(λ, l)f2(z))′] > 1 − 2
(A1 − B1)(A2 − B2)

(1− B1)(1− B2)
.

From Theorem 3.2 we deduce that

(3.16)

Re (Im(λ, l)h(z))′

> 1− 4
(A1 − B1)(A2 − B2)

(1− B1)(1−B2)

[
1 − 1

2 2F1

(
1, 1;

1
n

+ 1;
1
2

)]
.

From (3.16) and Lemma 1.1 for γ = 1, B = −1 and

A = −1 + 8
(A1 − B1)(A2 −B2)

(1− B1)(1−B2)

[
1 − 1

2
· 2F1

(
1, 1;

1
n

+ 1;
1
2

)]

one obtains
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(3.17) Re (g(z))> 1 − 8
(A1 − B1)(A2 −B2)

(1− B1)(1−B2)

[
1
2 2F1

(
1, 1;

1
n

+ 1;
1
2

)
− 1

]2

where

g(z) =
Im(λ, l)h(z)

z
.

Letting

ϕ(z) :=
z(Im(λ, l)h(z))′

Im(λ, l)h(z)
, (z ∈ U)

we have

(Im(λ, l)h(z))′ + z(Im(λ, l)h(z))′′ = g(z)[ϕ2(z) + zϕ′(z)]

= ψ(ϕ(z), zϕ′(z); z), (z ∈ U).

It follows that

Re (ψ(ϕ(z), zϕ′(z); z))> 1 − 2
(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
.

For all real numbers ρ, σ, σ ≤ −1
2
(1 + ρ2) we have

Re {ψ(iρ, σ; z)}= Re {g(z)(σ− ρ2)} ≤ −1
2
(1 + 3ρ2)Re g(z)

≤ −1
2
Re g(z) ≤ 1 − 2

(A1 −B1)(A2 −B2)
(1−B1)(1−B2)

.

Thus, by an application of Lemma 1.5 we conclude that Re ϕ(z) > 0.

Remark 3.4. Taking m = 0, l = 0, n = 1, Aj = 1 − 2α (0 ≤ αj < 1) and
Bj = −1 for j = 1, 2 in Theorem 3.5 we get the corresponding results obtained by
Lashin [4]. Similarly for n = 1, l = 0 we get the results obtained by Patel [8].
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