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THE GENERALIZED ROPER-SUFFRIDGE EXTENSION OPERATOR
ON REINHARDT DOMAIN D,

Yu-Can Zhu* and Ming-Sheng Liu

Abstract. We define the generalized Roper-Suffridge extension operator
D1y By e, Buive (f) On Reinhardt domain D, as

P B2, By (N)(z)

(o () (222) )

for z = (21,22,---,,2,”) S Dp, where Dp = {(21,22,"' ,Zn) e C" :
n
> |zl < 1}, p = (pr,p2,- spn), p; > 0,0 <79 <1-5;,0<
j=1
B; <1, =1,2,---,n, and we choose the branch of the power functions

1

B,
such that (M) co=1and (f'(21)) ¥ |sic0 = 1,j = 2,--- ,n. In the

present paper, we show that the operator @, g, ,.... .3, (f) preserves almost
spirallike mapping of type 3 and order « and spirallike mapping of type 3
and order o on D), for some suitable constants 3;, v;, p;. The results improve
the corresponding results of earlier authors.

1. INTRODUCTION

Let C™ be the vector space of n-complex variables z = (z1, 29, -+, 2)
with the usual inner product (-, -) and norm || - || = \/(:,-). A domain Q C C" is
said to be complete circular if z €  implies £z € Q for all £ € C with [{] < 1. A
domain Q C C" is said to be complete Reinhardt if (z1, 29, - - - , z,) € £ implies
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(&121,&222, -+, &nzy) € Qforall & € C with [ <1,j=1,2,---,n. A domain
Q C C™ is said to be starlike if z €  implies tz € Q for 0 < ¢t < 1. The
Minkowski functional of a bounded complete circular domain €2 in C™ is defined
by

p(z) = inf {t > 0,% € Q},z e C".

Assume p = (p1,p2,- -+ ,pn) With p; >0 (5 =1,2,---,n), and let
n
(L.1) Dy ={(z1,22,+,zn) € C": 3 | < 1.
j=1

Then D, is a bounded complete Reinhardt domain in C”, and the Minkowsk:
functional p(z) of D, satisfies

(1.2) > 1=

Suppose that 2 C C™ is a bounded complete circular domain. The class H (2)
consists of all holomorphic mappings f : 2 — C™. The first Fréchet derivative and
the second Fréchet derivative of a mapping f € H({2) at a point z € 2 are denoted
by Df(2)(-), D?f(z)(b, -) respectively. Their matrix representations are

~ (0f(2) _ (3 24L0)
Di) = <aj72k>1§j,k§n7 DA E):) = (Z 52/:521 bl>1sj‘,k§n7

=1

where f(z) = (f1(2), -+, fu(2)), b= (b1,---,b,) € C™. A mapping f € H(Q)
is said to be locally biholomorphic on €2 if f has a local inverse at each point z € {2
or, equivalently, if det D f(z) # 0 at each point on €.

Let N(Q) denote the class of all locally biholomorphic mappings f : Q — C"
such that f(0) = 0, Df(0) = I, where I is the unit n X n matrix, and let S(12)
be the class of all biholomorphic mappings in N (). If f € S(2), and f(Q2) is a
starlike domain in C™, then we say that f is a biholomorphic starlike mapping on §2.
The class of all biholomorphic starlike mappings on 2 with f(0) = 0,Df(0) =1
is denoted by S*(Q2).

Suppose that 2 C C™ is a bounded complete circular domain, its Minkowski
functional p(z) is a C! function except for a lower dimensional manifold € in €.
Let 0 <a<1,-5 <3< 7. Amapping f € N(Q) is said to be almost spirallike
mapping of type 8 and order « if

Ip(2)
0z

Re [26_w<Df(Z)_1f(Z), >} > p(z)acos B
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for z € O\ Qo, where 8;(;(:) = (85?, agiz), e agz(i)) A mapping f € N(Q) is

said to be spirallike mapping of type 8 and order « if

Ip(2)
0z

17 0a(Df ()7 (2),

> — p(2)(cos B — i2asin ﬂ)' < p(z) cos 3

for z€ Q\Qpand 0 < o < 1, and

Re [Qe—iﬂ <D F(2)L(2), ap(z)ﬂ >0
0z
for z € O\ Qo and a = 0. The class 5,(2, 3) consists of all normalized spirallike
mappings of type § and order o on €2 and the class A:S'\a(Q, () consists of all
normalized almost spirallike mappings of type 3 and order o on €2 for 0 < o < 1.
Then we have

feAS, (U B) < feSU)and Re [e—iﬂ&] > acosf for £ € U,

£f'(€)
and
feSy(U,B) < feSU)and Re [e—zﬂ ,;;(/2)] >0 foréeU,
and -
f€S.(U,pB) < feSU)and
2a(1 — itanﬁ)ggg) —1+i2atang| <1for €U
for 0 < a < 1.

Let S7(Q) = S,(9,0) for 0 < o < 1 and SE(Q) = S*(Q2), and let S(€2, 8) =
ASy(9, 8) = 5(,8). A mapping f € S*(f) is called biholomorphic starlike
mapping of order a on ) for 0 < o < 1. A mapping f € §(Q, () is called spirallike
mapping of type 3 on Q. It is evident that A§0(Q, 0) = §0(Q, 0) = S*(€2). From
Theorem 1.2.1 in [9], we have S (Q2) C S*(Q2) for 0 < o < 1.

In 1995, Roper and Suffridge [19] introduced an extension operator. This oper-
ator is defined for normalized locally biholomorphic function f on the unit disc U
in C by

(13) F(2) = @a(f)(2) = (1), VI G20
where z = (21, z0) belongs to the unit ball B in C", 21 € U, 29 = (22, , 2p) €

C™~1, and we choose the branch of the square root such that /f/(0) = 1.
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Roper and Suffridge [19] proved that: If f € K (U), then F = ®5(f) € K(B?),
where K () is the class of all biholomorphic convex mappings on 2. However, its
proof is very complex, Graham and Kohr [1, 2] gave a simple proof of the theorem
of Roper and Suffridge. After that, the other properties of Roper-Suffridge operator
were studied by Graham, Hamada, Kohr and etc.(see [3, 4, 6, 7, 8]). Moreover,
Sheng Gong and Taishun Liu [10, 11], Xiaosong Liu and Taishun Liu [16, 17]
generalized Roper-Suffridge operator from the unit ball B™ to Reinhardt domain
D, = {(21,22,--- zn) € C™ Z |zj|P1 < 1}, where p1 = 2,ps > 1,p3 >

1,---,p, > 1. We also generahzed Roper-Suffridge operator to Banach spaces
in [12, 13, 22, 23]. All of these papers studied the properties of the generalized
Roper-Suffridge operator on a domain D), with some p; = 2.

Recently, Liu [15] studied the properties of the generalized Roper-Suffridge
operator on Reinhardt domain D, with 0 < p; < 2,p; > 1(j = 2,3,---,n),
which is defined by

(I)nﬂz,’vz,"' ,Bnsn (f) (z)

aH (f(m’ ( M)ﬂ (70) "o ( )

for z = (z1,22,--+,2n) € Dy, where 0 < ; < 1,0 < 7; < 1 —f;, and
we choose the branch of the power functions such that (f )) i|s=0 = 1 and
(f'(21))% |0 = 1,5 = 2,--+,n. We studied some propertles of the generalized
Roper-Suffridge operator on Reinhardt domain D, with p; >0 (j =1,2,---,n).
We proved the following result.

Theorem A. [24]. Suppose thatn > 2, -5 < 3 < 5,0 < a < 1,p; >
0,p; >0,8;+7 <1, 0;€[0,1],v; € [0’«117 1(j=2,---,n), where a = a(p1)
is defined by

17 lf 0<p1327

(1.5) a=a(p1) = (\/§+ 1)pr —
(V2+1)p

and D, is defined by (1.1). The operator O, g, ~, ... 8,y ([) is defined by (1.4).
Then

if p1>27

~

(1) Pr,gyya, s (S(U, B)) € S(Dy, B), and
(2) P oo, Bum (Sa(U)) C Sa(Dp).
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One of the purposes of this paper is to improve Theorem A[14, 24]. Thus we are
able to replace the constant a(p;) in Theorem A by a smaller constant b(p;). We also
shall discuss some properties of the generalized Roper-Suffridge extension operator
P, By vo, By (f) ON the Reinhardt domain D), with p; > 0(j = 1,2,---,n) for
almost spirallike mapping of type 3 and order a.

2. MAIN RESULTS

In order to state and verify our main results, we need the following lemmas.

Lemma 2.1. Let p; > 0, p; > 0,7; € [0, %j](j =2,---,n), where b = b(p1)
is defined by

17 lfo <Dp1 < 27
2.1 b=> =
@D v { c(p1), ifpr > 2,
and
2 _ _ 4P1
(2.2) cp1) = sup (t*+2t—1)(1 —¢P )

V2-1<t<1 p1tPr(1 — %)

Suppose that Dy, is defined by (1.1), and p(z) is the Minkowski functional of Dy,

If the function p(z) is differentiable at z = (21, 22, - - , 2,) € Dy, then we have
Op(2)  1=2[a] |z ¢~ 9p(2)

2.3 ; ;> 0.

23) 021 at 1—z1)? ;% 0z %=

Proof. By Lemma 2.5 in [24], we only need to prove that Lemma 2.1 holds
for p; > 2.
Suppose that the function p(z) is differentiable at z = (21,22, -+, 2n) € Dp.
From Lemma 1.1 in [21], we have
S| Zi_|pj—2
(2.4) 8§i%) - pjzjlf(z)‘ =12, n.
J 2p(2) kzlpk‘ p’?lz) |Pk

This implies that

(2.5)
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and

(2.6) Z 82
=1 J

Now we split inequality (2.3) into two cases to prove.

Case 1. If 0 < [z] < V2 — 1, then we have 2zl < 1. Noting that

v; > 0(j =2,---,n), from (2.5), we obtain et
e 00,
j=2 J
n
= agif)m + (1 7 mTjﬂQ) jz;%agijz) ;>0
Case 2. If V2 —1 < |z] < 1, we let wj = %’Z'),j =1,2,---,nA =

n

>~ pr|wg|Pk. By the definition of p(z), we have p(z) < 1 for z € D,. Hence we
k=1
have v2 — 1 < |z| < |w;| < 1 and

(2.7) 1 —2|w;| — Jwy > <0.

n

Since ;p; < o> % 2 0 (=2, ,n) andj; lwj|Pi = 1, from (2.2), (2.4),
(2.5),(2.7), we obtain

Ip(2) ) 1—2z1| = |z1]* <~ _ 9p(2)
821 1-— ‘21‘2 Z J z

d 2 °
- s (- ) S

dp(2) ( 2lwi| <~ 9p(2)
> 1- ) » »
- On 2t 1-— \w1\2 ;Py] 8zj “
p(z) Q\wl\ \wl\
= 2t + waﬂ s
S P2 prlwn Pt + 1—2fwy| —Jun* 1 Z‘w"pj
— 24 1 — |wq|? c(p1) = J
_ p(@)pi|un | e(p1) — (lwi]* + 2fws| — 1) (1 — |wi|™)
24c(p) | prfwiP (1= e %)
> 0.
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This completes the proof.

Lemma 2.2. ([1, 24]).
(1) Suppose that g € H(U) satisfies g(U) C U. Then

! 1- ‘9(5)‘2
(€)1 < g
foreach £ € U.

(2) Suppose that p € H(U) satisfies Rep(§) > 0 for & € U with p(0) = 1. Then

1—2[¢] — |¢]?

Re[p(€) + &p'(€)] > 1|2

Rep(€)

forallE €U.

Theorem 2.1. Suppose thatn > 2, -5 < < 5, 0<a<1,p; >0,p; >
0, Bj+~; <1, B;€[0,1], v; € [0, ﬁj] (j=2,-+-,n), where b= b(p1) is defined
by (2.1), and D, is defined by (1.1). The operator @y, g, v, ... 3,.~,(f) is defined
by (14). Then @5, .. 6, (f) € ASa(Dy, B) if and only if f € ASo(U, ).

Proof.  Firstly, we prove that ®,, 3, ~, ... 38, 4. (f) € A:S'\a(Dp,ﬁ) when [ €
AS, (U, B).

Let F(2) = Py 8,49, 809m (f)(2). Suppose that p(z) is the Minkowski
functional of D,,. From (1.2), we may obtain that p(z) is a C' function except for
a lower dimensional manifold g in D_p. By computing the Fréchet derivative of
F(z) directly, we have

(=) fe) gO 0
T I e A
a 0 o (B e
where
(g (S 1Y S (PN v i
o= B2 - 1) e (K s s=2en

Noting f € AS,(U, B) with £(0) = 0, f'(0) = 1, we have F(0) = 0, DF(0) = I
and det DF'(z) # 0, where [ is the unit n x n matrix. Hence we obtain F' € N (Q)
and
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F(z1) o 0 N 0
“1 —B2 /Z
prt=| ( 2 ) Ut 1>) 0
. ’ (Ledysuiren)
where
_ A 1 B 1 - ‘f//(zl) y S
%= [ﬁj<zlf/(21) f(zl)> Vj(f/(zl))2] gs R
Therefore we get
f(Zl)
feh ™ prensien
21 Z1 21
prere = | TRy T e )

f(=1) | f"(z21)f(=1)
(1 - ﬁn + ﬁnzlf/(zl) — In (f/(zl))2 )zn

It follows that

DF(2)"'F(2), 8’5(;)>

(2.8)

) 0p) N[ G0 fE0I(0100()
“ufz) 0m 1+j2[1 GO ey e | oy

Since f € Aga(U, 3), we let

A f(z1)f"(21)
29) N
= (1—a)cosB- [p(21) + z1p'(21)] + a.cos B—i sin 3.




The Generalized Roper-Suffridge Extension Operator 367

From (2.5), (2.8), (2.9), and Lemma 2.2(2), noting the fact that 0 < 3; < 1,0 <
v <1—=034,7=2,---,n, we obtain

Re [ae—w@ﬂz)—lm),@ﬂ

[ Z oz, zj]acosﬁ—f—Q(l—a cosﬁz 1-06;5— ’yj)agij)
+2(1 — «) cos BRe[p(z1)] Z; Bj gzjz)zj +2(1—«)cosp gif)leep(zl)
+2(1 — «) cos BRe[p(z1) + z1p'(21) Z’yj 8,552)
> p(z)acos f+2(1 — ) cosﬁRep(zl)
Op(z) — 1=2a]- \21\2 -
{ on z1 1= |22 Y }

> p(z)acos B, z € Dy \ Qo,

where Lemma 2.1 is used in the last inequality. Hence Py, 3,45, 8,4n (f) €
AS,(D,, B). )

Conversely, if F\(z) = @y, 8, v5,- B (f) € ASa(Dp, ), then we prove that
f € AS.(U, B).

In fact, let Z = (21,0, ---,0) € D, with z; # 0, from (2.4) and (2.8), we obtain

rele 5| = sirel (R R )] 2 acss

for 0 < |z1| < 1. This completes the proof. |

Theorem 2.2. Suppose that n > 2, -5 < < 5,0 < a <1,p; >0,p; >
0, Bj+~; <1, B;€[0,1], v; € [0, ﬁj] (j=2,---,n), where b = b(p1) is defined
by (2.1), and D,, is defined by (1.1). Let the operator ®, g, ~, ... 8, ~, (f) be defined
by (1.4). Then ®, 5, ... g (f) € Su(Dy, B) if and only if f € So(U, B).

Proof. We first prove that ®,, g, v, ... 8.4, (f) € §a(Dp, 3) when f € S, (U, 3).

Let F(2) = ®n 8,40, 809m (f)(2). Suppose that p(z) is the Minkowski
functional of D,,. From (1.2), we may obtain that p(z) is a C' function except for
a lower dimensional manifold €2y in D_p. From the proof of Theorem 2.1, we have
F e N(Q).
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Case 1. When o = 0, noting that §0(U, B) = A§0(U, B8) = §(U, 3), from
Theorem 2.1, we obtain that F' € ASy(Dp, 3) = So(Dy, ).

Case 2. When 0 < o < 1, we set g(z1) = 2a(1 — ztanﬁ) )
i2atan (3, then we have ¢ € H(U) and |g(z1)| < 1 for z; € U and

f"(z21)f(z1) _ 1—i20tan B+ q(21) + 214'(21)

(f"(z1))? 2a(1 —itan f3) )
From (2.5), (2.6), (2.10), and Lemma 2.2(1), noting the fact that [2a — 1| < 1,0 <
B; <1,0<v;+B; <1,7>0,5=2,---,n, we obtain

do(1 — itanﬁ)<DF(z)_1F(z), 8g_(zz)> —p(2)(1 — i2atan ﬂ)‘

20 %

(2.10) 1—

21+2 Zl—ﬁj az - %5
—9 J

) n
+2q(z1 Z Bj —1—’)/] —2 + 2214 (= Z’yj o,
—92 J

( 8/)(Z)
< 2|q(z1) 21—1—22 8zj —Zj

dp(2) 21|(1—1q 21 S
2= 308, +) 8; zj+2‘ = Z el
=2 J i

8p()
0z;

a0l Y +w>8§§)zj 2l laal) 5 ),
j=2 J j=

1-— ‘21‘2

< 2lg(a1) 222 zl+2z 1- ;-7 222

—2) 2 o - ot >\>{8g§f>21+j§;<ﬁj+w>a—zjzj

j=1

2|2
1—\21\22 J 8zj }
n

z — 4|21 — |® 2
< o) 201 et {0+ R S )

1-— ‘21‘2

< p(z)v S Dp \ QOv

where we have used Lemma 2.1 in the last inequality. This implies that I €
Sa(Dy, B) for 0 < a < 1.
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Conversely, if F((2) = ®p 8y 49, B (f)(2) € :S'\a(Dp, (), then we prove that
€ Sa(U,B).

In fact, letting z = (21,0,---,0) € D, with z; # 0, from (2.4) and (2.8), we
obtain

e[ LS| = Sigrele (PR, %52) 0

z

for 0 < |z1] < 1 and a = 0, and
f(z1)

z1f'(21)
4a(1 —itan 3) A-1E(s Ip(z)
PR CUCIICR =

for 0 < |z1] < 1 and 0 < a < 1. This completes the proof.

2a(1 —itanf) —1+142atanpf

- (1—1’2atanﬂ)| <1

Z=Zz

Remark 2.1. Setting 0 < p; < 2 and p; > 1(j = 2,---,n) in Theorem 2.2,
we get Corollary 2.1 and Theorem 3.1 in [15]. From Theorem 11 in [20], we have
§(Dp,ﬁ) C S(Dp) for pj > 1(j = 1,2,---,n). Setting p; = 2,p; > 1(j =
2,---,n) in Theorem 2.2, we obtain Theorem 2.1 and Theorem 2.2 in [16] for
0 < a < 1 and Theorem 2.1 in [17]. The proof of Theorem 2.2 is different from
Theorem 2.1 in [16, 17].

Remark 2.2. Suppose that a = a(p;) is defined by

1, if 0<p <2,
Q1) a=a(p) = (V2+DP -1
(V2+1)p

if p; > 2,

1—

Let p > 2 and g(t) = 1=

L for t > 1. Direct computation yields

(1) = —ptr (1 =)+ (1—P)2t )2 — ptP~2 + (p— 2)t7]
g'(t) = (1—2)2 - (1—12)2

Let h(t) = 2 — ptP=2 + (p — 2)tP for t > 1. Then we have
R'(t) = —p(p — 2)tP3(1 = 12) > 0

for t > 1. Hence we obtain h(t) > h(1) = 0 for ¢ > 1. This implies that ¢'(t) > 0
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for ¢ > 1. Hence we have

t2+2t—1)(1 -t 142t —t2)(tPr — 1
oy = sp EHA-VA—E) QA2 -1
Viasi<r (1 —t%) 1<t<VEH pi(t? — 1)
p1 __
< (v2+1) 5 L sup (1 +2t —t%)
pi((V2+1)2 1) 1<c vz
p1 __
= w sup (2—(1—15)2)
p1(2v2 +2) 1<t<v/2+1
(V24 1)Pr —1
LA P
p1(2v2 +2) (1)

for p; > 2. In particular, from (2.11) and (2.1), direct computation yields

242t—1)(1+¢2 242t—1)(1+¢2
(@)= max F 4)( +) _ (4 4)( +t) ~ 1.469328.
V2—1<t<1 4t 4t =0.59607

Hence we have

1
11—

a(4)

Setting 3 = 0 or & = 0 in Theorem 2.2, we get a result which improves Theorem
2.3 in [14, 24] for p; > 2.

1
~0.292893, —— ~ 0.680583.
c(4)

[
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