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A CHARACTERIZATION OF THE MULTI-CHOICE SHAPLEY VALUE
WITH PARTIALLY CONSISTENT PROPERTY

Wen-Lin Chiou and Chih-Ru Hsiao1

Abstract. Reducing both the number of players and the number of choices, we
define a new reduced game for a multi-choice cooperative game with respect
to a solution of the game and an action vector. Then, we characterize the
multi-choice Shapley value by applying a partially consistent property of the
multi-choice Shapley value.

1. INTRODUCTION

In real-life, a player might work diligently or work lazily in a coalition. But, a
traditional cooperative game can not reflect the above truth. In order to remedy that
weak point of the traditional cooperative games, in [3](1992) and [4](1993), Hsiao
and Raghavan extended the traditional cooperative game to a multi-choice coop-
erative game and extended the traditional Shapley value to a multi-choice Shapley
value. The multi-choice Shapley value is an extension of both the symmetric and the
asymmetric Shapley values. It is symmetric among players and asymmetric among
actions, or say choices. The multi-choice Shapley value is monotonic, dummy free
of dummy player, dummy free of dummy action [4], transferable utility invariant and
independent of non-essential player [6], redundant free [7]. Moreover, in this arti-
cle, we will prove that it has consistent property that allows a player to reduce some
part of his choices instead of all of his choices. Some authors call the multi-choice
Shapley value define by Hsiao and Raghavan, the H&R Shapley value.

In 1989, Hart and Mas-Colell [2] were the first to introduce the potential ap-
proach to traditional TU games. In consequence, they proved that the traditional
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Shapley value [12] can result as the vector of marginal contributions of a potential.
The potential approach is also shown to yield an elegant characterization for the
Shapley value, particularly in terms of an internal consistency property.

Following Shapley’s advice, Hsiao, Yeh and Mo[5](1994) got an explicit formula
for the w-potential function of multi-choice games. They also found the relationship
between the H&R Shapley value and the w-potential function. At the end of [5],
with respect to a solution and an action vector, Hsiao defined a reduced game
which may reduce both the number of players and the number of choices. However,
with that reduced game, Hsiao was not able to extend Hart and Mas-Colell’s [2]
axiomatization of the traditional Shapley value to the multi-choice Shapley value.2

Reducing a multi-choice game with respect to its solution and a subset of players
rather than an action, in [8] (2008 )3 Hwang and Liao extended Hart and Mas-
Colell’s axiomatization to another multi-choice value named the D&P Shapley
value. However, reducing a multi-choice game with respect to a subset of players is
apparently a special case of reducing a multi-choice game with respect to an action
vector in [5].

Fortunately, in this article, we finish more than what Hsiao tried to do at the
end of [5], we will define a new reduced game which may really reduce both the
number of players and the number of choices of a multi-choice game, with respect
to its solution and an action vector. Then, we will define the partially consistent
property to characterize the H&R Shapley value. In Appendix, we give the reasons
why we study the multi-choices games.

2. DEFINITIONS AND NOTATIONS

We believe that all the readers are familiar with the traditional mathematical
symbols. Therefore, from cognitive viewpoint, in this article, we will use the tradi-
tional mathematical symbols and notations to modify the multi-choice game.

Let U be the universal set of players. Without loss of generality, given a finite
set of n players N ⊂ U where N = {1, 2, ..., n}, we have the following definitions
and notations. Any subset S ⊂ N is called a coalition. Other than what we did
in [3, 4, 6], we now allow players to have different numbers of choices. We allow
player j to have (mj +1) actions, say σ0, σ1, σ2, ..., σmj , where σ0 is the action to
do nothing, while σk is the option to work at level k, which has higher level than
σk−1. In this article, we assume that there are finitely many players with finitely
many choices.
2Therefore, Hsiao leave the axiomatization as a conjecture and refused to send [5] for publication.
Also, in 1996, Hsiao gave the problem in [5] to his student Liao [8], [9].
3As a matter of fact, the formula (3) in Theorem 1 in [8] (2008) is essentially the explicit formula of
the potential in [5] (1994).
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For convenience, we will use non-negative integers to denote the players’ actions.
Let I+ denote the set of all finite non-negative integers. Let βββj = {0, 1, . . . , mj},
with mj > 0, be the action space of player j. Given m = (m1, m2, ...,mn )
∈ In+, with mj > 0 for all j, the action space of N is defined by Γ(m) =

∏
j∈N

βββj = {(x1, ..., xn) | xj ≤ mj and xj ∈ I+, for all j ∈ N}. Thus x = (x1, ..., xn)
is called an action vector of N , and xj = k if and only if player j takes action σk.

Definition 2.1. A multi-choice cooperative game in characteristic function
form is the pair (Γ(m), v) defined by v : Γ(m) → R, such that v(000) = 0, where
000 = (0, 0, ..., 0).

Definition 2.2. Given x ∈ In+, we define S(x)={j|xj �= 0}. Moreover, when
S(x) = T , we use the notation xT to denote that S(x) = T .

Note 2.1. (Identify the players). Even in a traditional cooperative game, a player
has at least two choice say, to participate in a coalition or not to participate in a
coalition. Therefore, with no risk of confusion, when mj = 0, we will not regard j
as a “player” in the multi-choice cooperative game (Γ(m), v). In other words, we
do not regard a player who has only one choice σ0 - “doing nothing” in a game as
a player. Therefore the number of players in (Γ(m), v) is the number of players
whose highest action levels are greater than σ0 - “doing nothing”.

Sometimes, for short, we denote (Γ(m), v) by (m, v). Whenever we need to
emphasis who are the players in (m, v), we will denote (m, v) by (N,m, v) if
and only if S(m) = N ( This notation will be used in section 5). Let S(m) =
{k1, k2, ..., k�} = T , since we do not regard j as a player when mj = 0, with
no risk of confusion, when m{k1,k2,...,k�} = (0, . . . , 0, mk1, 0, . . . , 0, mk2, 0, . . . , 0,
. . . , 0, mk�

, 0, . . . , 0) = mT , then we define (m{k1,k2,...,k�}, v) ≡ ((0, . . . , 0, mk1,

0, . . . , 0, mk2, 0, . . . , 0, . . . , 0, mk�
, 0, . . .0), v) ≡ (mT , v) which means that there

are � players, player k1, player k2,..., and player k� in the game.
For (x1, . . . , xn) ∈ Γ((0, . . . , 0, mk1, 0, . . . , 0, mk2, 0, . . . , 0, . . . , 0, mk�

, 0, . . . ,
0) = Γ(m{k1,k2,...,k�}), we identify

(xk1 , xk2, . . . , xk�
) ≡ (0, . . . , 0, xk1, 0, . . . , 0, xk2, 0, . . . , 0, . . . , 0, xk�

, 0, . . . , 0),

and if no confusion may arise we write

v((xk1, xk2, . . . , xk�
))=v((0,. . . ,0, xk1, 0,. . . ,0, xk2, 0,. . . ,0,. . . ,0, xk�

, 0,. . . ,0)).

When mj > 0, for all j ∈ N , we can identify the set of all multi-choice
cooperative games defined on Γ(m) by G(m) � RΠn

j=1(mj+1)−1.
We may consider v(x) as the payoff or the cost for the players whenever the

players take action vector x. Since we allow players to have different numbers of
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actions, from time to time, we will denote v(x) by (Γ(m), v)(x) or (m, v)(x) in
order to identify the domain. To be consistent with traditional mathematical setup,
we allow the existence of the game (Γ(000), v) and call it the null game. Also, we
call the game (Γ(m), v) with v ≡ 0 a zero game.

Given z = (z1, z2, ..., zn), m = (m1, m2, ..., mn) ∈ In+, we define z ≤ m if
and only if zj ≤ mj for all j ∈ N . It is clear that Γ(z) ⊆ Γ(m) whenever z ≤ m.

Given a z ∈ In+ such that z ≤ m, we may obtain a sub-game of (Γ(m), v) by
restricting the domain of v to Γ(z). We denote the sub-game by (Γ(z), v). In other
words, let z ∈ In+ with z ≤ m, we call (Γ(z), v) a sub-game of (Γ(m), v) if and
only if (Γ(z), v)(x) = (Γ(m), v)(x) for all x ∈ Γ(z).

LetG be the set of all multi-choice cooperative games with finitely many players
and finitely many actions. A value, or say a solution, is a function ψ defined on G
that assigns to each game (Γ(m), v) a

∑n
j=1 mj dimensional vector such that

ψ(v) = (ψ11(v), ...ψm11(v), ψ12(v), ...ψm22(v), ...ψ1n(v), ...ψmnn(v))

Sometimes, for a better understanding of the multi-choice value, we would write
the solution in a matrix-type table as follows.



ψ11(v) ψ12(v) · · · ψ1n(v)

ψ21(v) ψ22(v) · · · ψ2n(v)

...
... . . .

...
...

... . . . ψmnn(v)

ψm11(v)
...

ψm22(v)




Please note that, to be consistent with the traditional notation of a matrix, we
use the row index i to denote the action σi and the column index j to denote player
j. Here ψij(v) is the power index or the value of player j when he takes action
σi in game v. Also, please note that we always assign ψ0,j(v) = 0 for the action
σ0-“doing nothing”. When we need to emphasis the action space of v, we denote
the value by ψij(m, v).

From the point of view of a benefit-sharing problem or a cost-allocation problem,
we regard solution ψ as a value, and from the point of view of a multi-choice voting
game where players have more than two choices, we regard solution ψ as a power
index. It is interesting to search for “good” solutions for the multi-choice games,
the idea of the following Remark came from Hart and Mas-Colell [2].

Remark 2.1. (The motivation of this article). Let N={1, 2, 3}, m=(11, 7, 9),
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suppose after a solution ψ of the game (m, v) is given, the following situation
happens.

(i) Player 1 is satisfied with all his value ψi,1(v) for i = 1, . . . , 11. Let z1 = 0.

(ii) Player 2 doubts that his value ψi,2(v) is not fairly calculated for i = 1, . . .5,
but he is satisfied with ψ6,2(v) and ψ7,2(v). Let z2 = 5.

(iii) Player 3 is satisfied with none of his values, he doubts that none of ψi,3(v)
is fairly calculated for i = 1, . . .9. Let z3 = 9 = m3.

Let z = (0, 5, 9), allow players to reconsider, or say revise their values by a
reduced game (z, vψz ). It is crucial for a “good” solution to sweep out the players’
dissatisfaction by satisfying (a) and (b) as follow.

(a) For player 2, ψi,2(m, v) = ψi,2(z, v
ψ
z ), for i = 1, . . . , 5 = z2

(b) For player 3 , ψi,3(m, v) = ψi,3(z, v
ψ
z ), for i = 1, . . . , 9 = z3.

Since z1 = 0, player 1 is not a player in the reduced game (z, vψz ). Next, since
z2 = 5, actions σ6 and σ7 are not choices for player 2 in the reduced game. Finally,
since z3 = 9 = m3, player 3 has the same number of choices in the reduced (z, vψz )
as he does in (m, v). Therefore, the reduced game (z, vψz ) reduces both the players
and the choices.

In this article, we will give (z, vψz ) a suitable new definition in Section 4, and
show that the H&R Shapley value is consistent.

We now consider the H&R Shapley value for a game where different players
may have different number of choices in the game. The H&R Shapley value is
the unique solution for multi-choice games which satisfies four axioms that are
analogous to the axioms of the traditional Shapley value. Please see [4] for details.

Since we do not assume that the difference between σi−1 and σi is the same as
the difference between σi and σi+1, etc., giving weights (discriminations) to actions
is necessary. Furthermore, the fact that different players with the same action might
have different contribution to a coalition should be reflected in the characteristic
function rather than the weights. Therefore, we give weights to the actions instead
of the players.

Let w : I+ → R+ be a non-negative function such that w(0) = 0, w(0) <
w(1) ≤ w(2) ≤ . . . , then w is called a weight function and w(i) is said to be the
weight of σi.

We need the following definitions and notations from [4]. Given x, y ∈ Γ(m),
we define x∨ y = (x1 ∨ y1, ...., xn∨ yn) where xj ∨ yj = max{xj, yj} for each j.
Similarly, we define x ∧ y = (x1 ∧ y1, ...., xn ∧ yn) where xj ∧ yj = min{xj, yj}
for each j. Also, we define x ≤ y if and only if xj ≤ yj for each j.
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Definition 2.3. A vector x̃ ∈ Γ(m) is called a carrier of v, if v(x̃∧x) = v(x)
for all x ∈ Γ(m). We call x0 the minimal carrier of v if

∑
x0
j = min{∑xj | x

is a carrier of v}.
Please note that the minimal carrier is unique.
We denote (x | xj = k) as an action vector with xj = k.

Definition 2.4. Player j is said to be a dummy player if v((x | xj = k)) =
v((x | xj = 0)) for all x ∈ Γ(m) and for all k = 0, 1, 2, ...,mj.

Many solutions of the traditional cooperative games, e.g. cores and the Shapley
value, require efficiency. Here is a similar definition.

Definition 2.5. A solution ψ is said to be efficient for (m, v) if∑
j∈N

ψmj ,j(v) = v(m).

Definition 2.6. Given a set of players N and a coalition S ⊆ N , let eS be the
binary vector with components eSj satisfying

eSj =




1 if j ∈ S

0 otherwise.

For brevity, we denote the standard unit vectors e{j} = ej , for all j ∈ N , and let
|S| be the number of elements of S.

Definition 2.7. Given Γ(m) and w(0) = 0, w(1),..., for any x ∈ Γ(m), we
define

‖x‖w =
n∑
r=1

w(xr)

.
Definition 2.8 Given x ∈ Γ(m) and j ∈ N = {1, 2, . . . , n}, we define

Mj(x; m) = {� | x� �= m�, � �= j}.

Given a weight function, rewrite Theorem 2 in [4], we can slightly extend the
H&R Shapley value as follows.

(�)

φwij(v)=
i∑

k=1

∑
xj=k
x�=000

x∈Γ(m)

[ ∑
T⊆Mj(x;m)

(−1)|T |
w(xj)

‖x‖w +
∑
r∈T

[w(xr + 1) −w(xr)]

]

×[v(x)− v(x− ej)].
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Remark 2.2. For the traditional asymmetric Shapley value, Shapley gives
weights (discriminations) to the players. For the H&R Shapley value, we do not
give weights( discriminations) to the players. However, as we allow players to have
more than two choices, we should expect some differences due to actions. We use
a weight function w to modify the differences due to actions.

It is well-known that the traditional Shapley value has applications in many fields
such as economics, political sciences, accounting, and even military sciences. Of
course, our extended Shapley value also has the same applications as the traditional
Shapley value does.

However, the weight function w has different meanings in different fields. In
military sciences, we may treat w(i)s’ as parameters to modify the differences due to
different levels of military actions. As a matter of fact, we may treat the parameters
w(i)s’ as prior power indices of the choices while simulating (pre-playing) the
multi-choice game. It is an essential assumption that players are allowed to pre-play
the game. Nowadays, computer simulation makes the assumption possible and the
weight w(j)s’ become acceptable in studying a multi-choice game. As a matter of
fact, in the real world, we use the H&R Shapley value to evaluate the power indices
of actions taken by a disease control agent for each pandemic alert level.

To make this article self-contained, we copy some definitions from [7] as fol-
lows.

Definition 2.9. Given a game (m, v), the action σmj is said to be a redundant
action for player j if v((x | xj = mj)) = v((x | xj = mj − 1)) for all x ∈ Γ(m).

Given a solution ψ for (Γ(m), v), suppose we allow player j to have one more
action which is redundant for player j, say σmj+1,

Let m̂ = (m1, m2, · · · , mj−1, (mj + 1), mj+1, · · · , mn), then we have a new
action vector space Γ(m̂) = {(x1, · · · , x�, · · · , xn) | x� ≤ m�, x� ∈ I+ for all � �=
j, and xj = 0, 1, 2, · · · , mj + 1. We may extend (Γ(m), v) to (Γ(m̂), vR)
such that vR(x) = v(x), for all x ∈ Γ(m) and vR((x | xj = mj + 1)) =
v((x | xj = mj)), for all x ∈ Γ(m̂). The solution ψ is said to be redundant
free if and only if ψi,�(vR) = ψi,�(v) for all � ∈ N , and i = 1, 2, ...,m�, and
ψ(mj+1),j(vR) = ψmj ,j(v).

Please note that the definition of redundant free in this article is different from
the definition of dummy free of action and the definition of dummy free of player
in [3].

In [7], we proved

Theorem 2.0. The H&R Shapley value (�) is redundant free.

Therefore, from the H&R Shapley value’s viewpoint, it makes no difference
whether the players have the same number of actions or not.
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3. THE POTENTIAL FOR MULTI-CHOICE GAMES

Following [5], we have definitions and notations as follow. Let G be the set
of all multi-choice cooperative games where there are finitely many players having
finitely many choices. Given a weight function w, we define a function Pw : G → R

which associates each game (x, v) ∈ G a real number Pw(x, v).

Given Pw(x, v), we define the following operators.

Di,jPw(x, v) = w(i) ·
[
Pw( (x|xj = i), v)− Pw( (x|xj = i− 1), v)

]
,

and

Hxj ,j =
r=xj∑
r=1

Dr,j.

Definition 3.1. ([5]). Given a weight function w, a function Pw : G→ R with
Pw(000, v) = 0 is called a w-potential function if it satisfies the following condition:
Given(m, v) ∈ G

(��)
∑

j∈S(m)

Hmj ,jPw(m, v) = (m, v)(m)

We now prove the following lemma which will be used in Theorems 4.1.

Lemma 3.1. Given a weight function w. Suppose there are two real-valued
functions P̄w, Pw : G → R with P̄w( 000, v) = c and Pw( 000, v) = 0 satisfying the
following: Given (m, v) ∈ G

(3.1)
∑

j∈S(m)

Hmj ,jP̄w(m, v) =
∑

j∈S(m)

Hmj ,jPw(m, v)

Then

(3.2) P̄w(m, v) = Pw(m, v) + c

Proof. Let |m| =
∑

j∈S(m)mj . We shall claim that if (3.1) holds for (m, v)
then P̄w(m, v)= Pw(m, v) + c by mathematical induction on |m|.

For |m| = 1, we have S(m) = {j0} for some j0 and mj0 = 1. Then by
equation (3.1)

w(mj0)[P̄w(m, v)− P̄w(000, v)] = w(mj0)[Pw(m, v)− Pw(000, v)].

By the assumptions P̄w(000, v) = c and Pw(000, v) = 0, (3.2) holds for |m| = 1.
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Suppose our claim holds for all m with |m| ≤ k − 1. If m has |m| = k, then
S(m) �= ∅. Now by equation (3.1) we have

(3.3)

∑
j∈S(m)

r=mj∑
r=1

w(r) ·
[
P̄w( (m|mj=r), v)−P̄w( (m|mj=r − 1), v)

]

=
∑
j∈S(m)

r=mj∑
r=1

w(r) ·
[
Pw( (m|mj=r), v)−Pw( (m|mj=r − 1), v)

]

Next for each j ∈ S(m) and for all s with 0 ≤ s ≤ mj − 1, since |(m|mj = s)| ≤
k − 1, by the hypothesis of mathematical induction, we have
P̄w( m|mj = s), v) = Pw( (m|mj = s), v) + c.

In equation (3.3), we replace P̄w( (m|mj = s), v) by Pw( (m|mj = s), v)+ c, for
each j ∈ S(m) and for all s with 0 ≤ s ≤ mj − 1, then equation (3.3) is reduced
to be ∑

j∈S(m)

w(mj) ·
[
P̄w(m, v)−

(
Pw( (m− ej), v) + c

)]

=
∑

j∈S(m)

w(mj) ·
[
Pw(m, v)− Pw( (m − ej), v)

]

⇒

 ∑
j∈S(m)

w(mj)


 ·

(
P̄w(m, v)− c

)
=


 ∑
j∈S(m)

w(mj)


 · Pw(m, v)

⇒P̄w(m, v) = Pw(m, v) + c.

Hence, our claim holds for |m| = k. By mathematical induction, the proof is
completed.

Here, we copy Theorem 3.1 and Theorem 3.2 from [5]. Given j ∈ N and v(x),
we define

djv(x) = v(x)− v(x− ej),

then dj is associative, i.e., dj(d�v(x)) = d�(djv(x)). For convenience, we denote
djd� = dj�, dj1,j2,j3 = dj1dj2dj3 , ..., etc. We also denote dj1,j2,...,j� = dT whenever
{j1, j2, ..., j�} = T . Furthermore, for brevity, we denote dS(x)by dx.

Theorem 3.1. ([5]) The w-potential of multi-choice cooperative games is
unique, and

(3.4) Pw(x, v) =
∑
y≤x
y �=000

1
||y||wdy(x, v)(y)
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Theorem 3.2. ([5]) Given a multi-choice cooperative game (m, v) then the
H&R Shapley value and the w-potential of (m, v) have the following relationship.

(3.5) φwij(m, v) = HijPw(m, v).

In the proof of Theorem 1 in [6], the first formula in page 428 in [6], we see
a reformulation of the H&R Shapley value as follows. To make this article-self
contained, we give a simple proof as follows.

Proposition 3.3. The H&R Shapley value (�) can be reformulated as follows.

(3.6) HijPw(m, v) =
i∑

k=1

w(k) ·


 ∑

yj=k
y∈Γ(x)

1
||y||w

∑
T⊆S(y)

(−1)|T |v(y −
∑
r∈T

er)




Proof. By Theorems 3.1 and 3.2,

Hi,j

( ∑
y≤x
y �=000

1
||y||wdy(x, v)(y)

)

=
i∑

k=1

w(k) ·
[ ∑

y≤(x|xj=k)
y �=000

1
||y||wdyv(y)−

∑
y≤(x|xj=k−1)

y �=000

1
||y||wdyv(y)

]

=
i∑

k=1

w(k) ·
[ ∑

yj=k
y∈Γ(x)

1
||y||wdyv(y)

]

=
i∑

k=1

w(k) ·
[ ∑

yj=k
y∈Γ(x)

1
||y||w

∑
T⊆S(y)

(−1)|T |v(y−
∑
r∈T

er)
]

Remark 3.1. Taking the following part of (3.6) as a value for player j with
action σk, we get the so called weighted consistent value in [9].

w(k) ·
[ ∑

yj=k
y∈Γ(x)

1
||y||w

∑
T⊆S(y)

(−1)|T |v(y−
∑
r∈T

er)
]
.

4. CONSISTENCY PROPERTY OF THE MULTI-CHOICE SHAPLEY VALUE

We now start to prove the main results of this article. Given a multi-choice
cooperative game (m, v) and its solution,
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(ψw11(v), .., ψ
w
m11(v), ψ

w
12(v), .., ψ

w
m22(v), .., ψ

w
1n(v), .., ψ

w
mnn(v))

for each z ∈ Γ(m), we define an action vector z∗ = z∗(m) = (z∗1 , z
∗
2, ..., z

∗
n) where


z∗j = mj if zj < mj

z∗j = 0 if zj = mj.

In [5], Hsiao suggested the following reduced game which reduces both the
number of players and the number of choices.

Definition 4.0. Let ψ be a solution defined on G. Given (m, v) ∈ G and
z ≤ m, the reduced game vψz of (m, v) with respect to z and the solution ψ is
defined by

vψz (y) = v(y ∨ z∗)−
∑
z∗j �=0

[
ψmj ,j((y ∨ z∗), v)

]
,

where y ≤ z.
However, in the above Definition, if 0 < zj < mj , then player j is a dummy

player in (z, vψz ). This oversight kept Hsiao from completing what he tried to do
at the end of [5]. We suggest authors who cited the above Definition in their paper
should revise their results carefully.

Observing the H&R Shapley value in the matrix-type form, we get the following
new definition of a reduced game.

Definition 4.1. Let ψ be a solution defined on G. Given (m, v) ∈ G and
z ≤ m, the reduced function vψz of (m, v) with respect to z and the solution ψ is
defined by

(4.1.1) vψz (y) = v(y ∨ z∗) −
∑
z∗j �=0

[
ψmj ,j((y ∨ z∗), v)− ψyj ,j((y ∨ z∗), v)

]
,

where y ≤ z. Furthermore, if vψz satisfies

vψz (000) = v(z∗) −
∑
z∗j �=0

ψmj ,j(z
∗, v) = 0

then we call vψz a reduced game.

Please note that if zj = 0 then z∗j = mj and yj ≤ zj = 0, hence [ψmj ,j((y ∨
z∗, v)− ψyj ,j((y ∨ z∗, v)] =[ψmj,j((y ∨ z∗, v)− 0] Furthermore, we allow z = m,
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i.e., we allow
(m, vψm)(y) = v(y ∨ 000)− 0 = v(y),

for all y ∈ Γ(m). Therefore, we identify (m, vψm) ≡ (m, v).

Now, we extend the consistency defined in [2](1989) as follows.

Definition 4.2. ψ is said to be partially consistent if the following holds: Let
(m, v) be a game. Whenever a reduced function vψz is a reduced game, we have
that for j ∈ S(z)

(4.2) ψi,j(z, vψz ) = ψi,j(m, v) for each i ≤ zj

If every reduced function vψz is a reduced game for every game (m, v) and every
action vector z, and (4.2) holds for all i ≤ zj and j ∈ N , then ψ is said to be
consistent.

Note 4.1. There are three ways to define a reduced game in order to characterize
the H&R Shapley value.

(i) First, we may assume that ψ is efficient, this will make the characterization
much less desirable.

(ii) Secondly, we may define the reduced game as follows.

(4.1.2)

vψz (y)

=




0 if y=000

v(y∨z∗)−
∑
z∗j �=0

[
ψmj ,j((y ∨ z∗), v)−ψyj ,j((y∨z∗), v)

]
if 000 �=y≤z.

But, then we are actually adding at least [Πn
j=1mj ]−1 additional assumptions

(equations) indexed by z, say vψz (000) = 0 for each z ≤ m with z �= 000, to define
the “consistent property” (4.2). This way is not much less than assuming the
efficiency of ψ.

(iii) We choose the third way to characterize the H&R Shapley value, we will use
partial consistency and simple Pareto optimal property which needs only one
natural simple equation to characterize that value.

Remark 4.1. Without loss of generality, let m1 ≥ 2, m = (m1, m2, m3),
m̃ = (m1 − 1, m2, m3) and let (m̃, v) be a sub-game of (m, v) such that σm1

is a redundant action, i.e., v((m1, m2, m3))=v((m1 − 1, m2, m3)). Suppose ψ is
efficient then it is easy to see that any reduced function with respect to ψ is a
reduced game. Take z = (m1 − 1, 0, 0), we have:
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Case 1. For the reduced game vψz of (m, v) with respect to z and ψ, we have
z∗ = m. Since ψ is efficient, then

(1) (z, vψz )((y1, 0, 0)) = ψy1,1((m1, m2, m3), v) for all y1 ≤ m1 − 1.

Case 2. For the reduced game vψz of (m̃, v) with respect to z and ψ, we have
z∗ = (0, m2, m3). Since ψ is efficient, then

(2) (z, vψz )((y1, 0, 0)) = ψy1,1((y1, m2, m3), v) for all y1 ≤ m1 − 1.

Please note that even when ψ is efficient, the reduced games (1) and (2)
are not necessarily the same. In particular ψm1−1,1(m, v) not necessarily equals
ψm1−1,1(m̃, v).

As a matter of fact, to be more precise, we should denote the reduced game
(1) by(z, vψ

z|m) and denote the reduced game (2) by (z, vψ
z|m̃). However, since in

Definition 4.1 (m, v) is given at the beginning, with no risk of confusion, we leave
the notation as it is in Definition 4.1.

Remark 4.2. More general analogy to Hart and Mas-Colell’s consistency.
Here, we have an interpretation which is analogous to Hart and Mas-Colell’s in-
terpretation for consistency. Given a multi-choice game (m, v) and its solution ψ
and a fixed z ≤ m, we define T = {j |zj = mj}, P = {j |0 < zj < mj} and
F = {j |zj = 0}. It is clear that T , P , F are mutually exclusive andN = T∪P∪F .
Also, in fact, z∗ = mT c.

(i) For each y ≤ z, each player j ∈ P ∪ F = Tc raises his action level from yj
to mj , then a new action vector y ∨ mT c is formed and v(y ∨ mT c) is the
new payoff.

(ii) Then, each player j ∈ T c takes his surplus of the value for arising his action
from σyj to σmj in the game (Γ(y ∨ mT c

), v)), say

(A.3) [ψmj ,j(Γ(y ∨ mT c
), v)− ψyj ,j(Γ(y ∨mT c

), v)],

from the new payoff v(y ∨mT c
) and leave the rest to the players in T ∪ P . Then

a “reduced function” with respect to z and ψ, say

vψz (y) = v(y ∨mT c
) −

∑
j∈T c

[ψmj,j(Γ(y ∨ mT c
), v)− ψyj ,j(Γ(y ∨ mT c

), v)]

is constructed for y ∈ Γ(z).
If every reduced function is a reduced game and (4.2) holds for each j with

zj �= 0, i.e. j ∈ T ∪ P = S(z) and each i ≤ zj , that is, the “new value” of player
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j in the reduced game ψi,j(Γ(z), vψz ) equals the “original value” of player j in the
original game ψi,j(Γ(m), v), then ψ is said to be consistent.

If ψ is not consistent, then the players who have bigger values in the reduced
game won’t respect the value in the original game. We assume that players want the
re-calculation because they are not satisfied with ψi,j(Γ(m), v) where 0 < i ≤ zj ,
or say, they doubt the value is unfair.

Please note that even in Hart and Mas-Colell’s traditional game case, the re-
duced function is not necessarily a reduced game, some authors impose (4.1.2) to
fix the problem.

Intuitively, our reduced game allow a player to recalculate all or part or none
of his values of actions. Our reduced game and consistency are extensions of
the reduced game and the consistency defined in [2], [8] and [9]. A detailed
interpretation is given in Appendix.

The following theorem is one of our main results in this article.

Theorem 4.1. The H&R Shapley value φw is consistent.

Proof. Given a multi-choice cooperative game (m, v) and its Shapley value
φw. Given z ∈ Γ(m), the reduced function of v with respect to z and the Shapley
value φw is :vφ

w

z : Γ(m) → R such that

vφ
w

z (y) = v(y ∨ z∗) −
∑
z∗j �=0

[
φwmj ,j((y ∨ z∗), v)− φwyj ,j((y ∨ z∗), v)

]
.

Suppose S(z∗) = {i1, . . . , is} and notice that z∗j is either 0 or mj . For y ≤ z, we
see that y ∨ z∗ = (y1, ..., mi1, yi1+1, . . . , mis, yis+1, . . . , yn). Write y ∨ z∗ = b =
(b1, ..., bn), then bj = yj for j �= i1, . . . , is and bir = mir for r = 1, . . . , s. Since
the H&R Shapley value is efficiency , we have

(4.3)

vφ
w

z (y) =
∑
bj �=0

φwbj ,j((y ∨ z∗), v)−
∑
z∗j �=0

φwmj ,j
((y ∨ z∗), v)

+
∑
z∗j �=0

φwyj ,j((y ∨ z∗), v)

=
∑
yj �=0

j �∈{i1,...,is}

φwyj ,j((y ∨ z∗), v) +
∑

j∈{i1,...,is}
φwyj ,j((y ∨ z∗), v)

=
∑
yj �=0

φwyj ,j
((y ∨ z∗), v).

Especially
vφ

w

z (000) = 0. (because each yj = 0)
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So every reduced function vφ
w

z is a reduced game.
Now by Theorem 3.2: φwyj ,j

= Hyj ,jPw , for each j, plug into the last expression
in (4.3), we have

vφ
w

z (y) =
∑
yj �=0

Hyj ,jPw( (y ∨ z∗), v).

But vφ
w

z (y) =
∑
yj �=0

Hyj ,jPw( y, vφ
w

z ), where Pw(y, vφ
w

z ) is the w-potential func-

tion. So one obtain

(4.4)
∑
yj �=0

Hyj ,jPw((y ∨ z∗), v) =
∑
yj �=0

Hyj ,jPw(y, vφ
w

z ).

Next we assign to each (y, vφ
w

z ) a value P̄w(y, vφ
w

z ) = Pw( (y∨z∗), v). Therefore
equation (4.4) is equivalent to∑

yj �=0

Hyj ,jP̄w( y, vφ
w

z ) =
∑
yj �=0

Hyj ,jPw( y, vφ
w

z ).

Suppose Pw((000 ∨ z∗), v) = c. Then by Lemma 3.1 we have Pw((y ∨ z∗), v) =
P̄w(y, vφ

w

z ) = Pw(y, vφ
w

z ) + c. Take y = z then y ∨ z∗ = m and hence

(4.5) φwi,j(z, v
φw

z ) = Hi,jPw(z, vφz) = Hi,jPw(m, v) = φwi,j(m, v)

for all i ≤ zj and all j ∈ S(z). This proves (4.2). The proof is complete.

Note 4.2. Let x be the minimal carrier of v. Since the Shapley value φw is
redundant free( see Theorem 2.0), we have

(4.6) φwi,j(m, v) = φwxj ,j
(x, v), for all i ≥ xj

by (4.5)and (4.6), we obtain that for zj ≥ xj

φwi,j(z, v
φw

z ) = φwxj ,j(x, v) for all i with xj ≤ i ≤ zj

Note 4.3. Given (m, v), (m, v̄) ∈ G and two scalars a, b, since

φwyj ,j((y ∨ z∗), av+ bv̄) = a φwyj ,j((y ∨ z∗), v) + b φwyj ,j((y ∨ z∗), v̄),

it follows from (4.3) that

(4.7) φw((av + bv̄)φ
w

z ) = a φw(vφ
w

z ) + b φw(v̄φ
w

z ).

In the proof of Theorem 4.1, the following results are obtained.

Proposition 4.1. If a solution ψ is efficient for a game (m, v) and all its
sub-games, then every reduced function vψz is a reduced game. Furthermore,
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(a) vψz (y) =
∑
yj �=0

ψyj ,j( (y ∨ z∗), v), and

(b) for any z ≤ z0 with z∗ = z∗0, v
ψ
z (y) = vψz0(y), ∀y ≤ z.

Proof. Since ψ is efficient, by repeating the process in (4.3), where φw is
replaced by ψ, one obtain that

vψz (y) =
∑
yj �=0

ψyj ,j( (y ∨ z∗), v).

Especially
vψz (000) = 0. (because each yj = 0)

Hence, vψz is a reduced game. Since y∨ z∗ = y∨ z∗0, (b) follows from the equality
in (a) immediately.

5. www-PROPORTIONAL FOR MULTI-CHOICE TWO-PERSON GAMES

In this section, we will characterize the H&R Shapley value. This general-
ize Hart and Mas-Colell’s Theorem 5.1 in [2]. Given an n-person multi-choice
cooperative game (Γ(m), v).

Let (000|xj = k) be an action vector where player j takes action σk and all the
other players take action σ0. Also, let (000|xj = k, x� = r) be an action vector where
player j takes action σk, player � takes action σr and all the other players take
action σ0.

Following [5], we have the following definition.

Definition 5.1. Given w(0) = 0, w(1), · · · , a solution function ψ is said to be
w-proportional for multi-choice two-person games if for any two-person game
(Γ(m{j,�}), v) with m{j,�} = (0, · · · , mj, 0, · · · , m�, 0, · · · , 0), mj, m� > 0, ψ sat-
isfies the following

(5.1)

ψk,j(m{j,�}, v) =
k∑
t=1

(
djv((000|xj = t, x� = 0))

+
[ m�∑
r=1

[
w(t)

w(t) +w(r)
] · dj�v((000|xj = t, x� = r))

])

As a matter of fact, (5.1) can be written as

ψk,j(m{j,�}, v) = v((000|xj = k))

+
k∑
t=1

[ m�∑
r=1

[
w(t)

w(t) +w(r)
] · dj�v((000|xj = t, x� = r))

]
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For player �, we have a formula of ψr,�(m{j,�}, v) similar to (5.1) which is omitted.
It is easy to see that (5.1) is an extension of the definition of standard for

two-person games in [2].
We are now ready to characterize the H&R Shapley value. As we mention in

Note 4.1, assuming that vψz (000) = 0 for each z ≤ m with z �= 000 is not much less
than assuming the efficiency of ψ. Also, please note that in Definition 5.1, mj > 0
and m� > 0 is required, hence, w-proportional for multi-choice two-person games
does not guarantee the efficiency of ψ of an one-person game, therefore we prefer
to use the following Definition for the characterization.

Definition 5.2. A solution function ψ defined on G is said to be simple Pareto
optimal if and only if for the one-person-one-action game ({h}, (1), v) such that
v(000) = 0 and v((1)) = 1, we have ψ1,h({h}, (1), v) = v((1)) = 1.

When we need to emphasis that player h takes action σ1, we denote the 1-
dimensional vector (1) by (1h).

Definition 5.3. ([6]) Player j in the game (m, v) is called a non-essential player
if

v(x) = v((x | xj = 0)) + v((000 | xj))
for all x ∈ Γ(m) where (000 | xj) = (0, . . . , 0, xj, 0, . . . , 0). Extending a game v to
v̄ by allowing an additional non-essential player to participate in the game v, then
v̄ is called non-essential extension game of v.

The following theorem generalizes proposition 4.5 in [2].

Theorem 5.1. Let ψ be a solution function. If ψ is (i) simple Pareto optimal,
(ii) w-proportional for multi-choice two-person games and (iii) partially consistent,
then ψ is efficient. Furthermore, ψ is consistent,

Proof. We shall prove for all (N,m, v) ∈ G, write N = {1, 2, . . . , n} and
m = (m1, . . . , mn) the following equation holds.

(5.2)
∑

j∈S(m)

ψmj ,j(N,m, v) = v(m)

Given any one-person (m + 1)-choice game ({j}, (m), v) ∈ G, consider its
non-essential extension game with non-essential player h, say ({j, h}, (m, 1), v̄)
such that v̄((0, 0)) = v((0)) = 0, v̄((xj, 0)) = v((xj)). Assign v̄((0, 1)) = 1
and v̄((xj, 1)) = v((xj)) + v̄((0, 1)) = v((xj)) + 1, then ({j, h}, (m, 1), v̄) is
well-defined.
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Then by (ii), w-proportional for multi-choice two-person games, we have for
any fixed 0 < y ≤ m,

(5.3)

ψr,j({j, h}, (y, 1), v̄)

= v̄((r, 0))+
r∑
t=1

[
w(t)

w(t)+w(1)

]
·
[
v̄((t, 1))−v̄((t, 0))−v̄((t−1, 1))+v̄((t−1, 0))

]

= v((r))+
r∑
t=1

[
w(t)

w(t)+w(1)

]
·
[
[v((t))+1]−v((t))−[v((t−1))+1]+v((t−1))

]

= v((r)), r = 1, ..., y,

and

(5.4)

ψ1,h({j, h}, (y, 1), v̄)

= v̄((0, 1))+
y∑
t=1

[
w(1)

w(1)+w(t)

]
·
[
v̄((t, 1))−v̄((t, 0))−v̄((t−1, 1))+v̄((t−1, 0))

]

= 1+
y∑
t=1

[
w(1)

w(1) + w(t)

]
·
[
[v((t))+1]−v((t))−[v((t−1))+1]+v((t−1))

]

= 1,

Let z = (m, 0), then z∗ = (0, 1) and S(z∗) = {h}. For y = (y, yh) ≤ z, we
have 0 ≤ y ≤ m, yh = 0 and y ∨ z∗ = (y, 1).

Consider the reduced function (z, v̄ψz )(y) and notice that the one-person-one-
action sub-game of ({j, h}, (y, 1), v̄), say ({h}, (1h), v̄) satisfies ((1h), v̄)((0)) =
((m, 1), v̄)((0, 0)) = 0 and ((1h), v̄)((1h)) = ((m, 1), v̄)((0, 1)) = 1. Then by (i):
simple Pareto optimal, we have ψ1,h({h}, (1h), v̄) = 1.

For y = 0, we have

((m, 0), v̄ψz )((y, 0)) = ((m, 1), v̄)((0, 0)∨ (0, 1))− ψ1,h((0, 1), v̄)

= 1− ψ1,h({h}, (1h), v̄) = 0.

Therefore, (z, v̄ψz ) is a reduced game. Next, with no risk of confusion, we identify
(y, 0) ≡ (y), then by equation (5.4)

v̄ψz ((y)) = v̄ψz ((y, 0))) = v̄((y, 1))−ψ1,h({j, h}, (y, 1), v̄) = v((y))+1−1 = v((y))

Therefore ({j}, (m), v) ≡ ({j}, (m), v̄ψz ) and hence

(5.5) ψr,j({j}, (m), v) = ψr,j({j}, (m), v̄ψz ), ∀0 ≤ r ≤ m

Next

(5.6)

ψr,j({j}, (m), v̄ψz ) = ψr,j((m, 0), v̄ψz )

=ψr,j({j, h}, (m, 1), v̄) (by partial consistency)

=v((r)) (by (5.3))
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It follows frow (5.5) and (5.6) that

ψr,j({j}, (m), v) = v((r)), ∀1 ≤ r ≤ m

Therefore (5.2) holds for all |N | = 1. Furthermore for any game (m, v) and any
z ∈ Γ(m) with |S(z∗)| = 1, say z∗ = (0, . . . , 0, mj, 0, . . . , 0). We see that

vψz (000) = v(0, . . . , 0, mj, 0, . . . , 0)− ψmj ,j(0, . . . , 0, mj, 0, . . . , 0), v) = 0

because of efficiency of one player games. Therefore any reduced function vψz with
|S(z∗)| = 1 is a well-defined reduced game.

As a matter of fact (5.2) holds for |N | = 2 by (ii), therefore, any reduced function
vψz with |S(z∗)| = 2 is a well-defined reduced game. Let n ≥ 3, and assume (5.2)
holds for all games with less than n players and hence any reduced function vψz with
|S(z∗)| < n is a well-defined reduced game. For a game (N,m, v) with |N | = n.
Consider a special action vector m−j = (m1, . . . , mj−1, mj+1, mj+2, . . . , mn) ≡
(m|mj = 0). And notice that the game (N −{j},m−j, v

ψ
m−j) contains only n− 1

players. Therefore by assumption of efficiency of n−1 players games and by partial
consistency

vψ
(m|mj=0)

((m|mj = 0)) =
∑

�∈N−{j}
ψm�,�((m|mj = 0), vψ

(m|mj=0)
)

=
∑

�∈N−{j}
ψm�,�(m, v)

Also since (m|mj = 0) ∨ (m|mj = 0)∗ = m, we have

vψ(m|mj=0)((m|mj = 0)) = v(m)− ψmj ,j(m, v)

We see that

v(m) =
∑

�∈N−{j}
ψm�,�(m, v)+ ψmj ,j(m, v) =

∑
j∈N

ψmj ,j(m, v).

Therefore efficiency of n players holds. We have proved the efficiency of the
solution for any multi-choice cooperative game.

Finally, since ψ is efficient, by Proposition 4.1 every reduced function vψz is a
reduced game. Then by (iii) partially consistent ψ is consistent, and the proof is
complete.

The following Lemma 5.1 will be used in Theorem 5.2
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Lemma 5.1. Given x = (x1, · · · , xn) with each component > 0 and fixed
k, 1 ≤ k ≤ n. Choose cj� ∈ {0, 1, · · · , xj�}, j� �= k, � = 1, · · · , s. Then, for any

y ≤ x −
s∑
�=1

cj�ej� − ek,

vψ
x−∑s

�=1 cj�
ej�

−ek
(y) = vψx−ek

(y),

where vψ
x−∑s

�=1 cj�
ej�

−ek
is the reduced function of (x−

s∑
�=1

cj�ej� , v) with respect to

(x−
s∑
�=1

cj�ej�)−ek and ψ, and vψx−ek
is the reduced function of (x, v) with respect

to x − ek and ψ.

Proof. For the game (x, v), consider the action vector (x − ek), we have

(x− ek)∗j =

{
xk if j = k

0 if j �= k,

and for any y ≤ x− ek, y∨ (x− ek)∗ = (y1, . . . , yk−1, xk, yk+1, . . . , yn), we have

vψx−ek
(y) = v((y1, ..., yk−1, xk, yk+1, ..., yn))

− ψxk,k((y1, ..., yk−1, xk, yk+1, ..., yn), v)

+ ψyk,k((y1, ..., yk−1, xk, yk+1, ..., yn), v).

Similarly, for the game ((x−
s∑
�=1

cj�ej�), v), since

((x−
s∑
�=1

cj�ej�)− ek)∗j =

{
xk if j = k

0 if j �= k,

and y ∨ ((x −
s∑
�=1

cj�ej�) − ek)∗ = (y1, . . . , yk−1, xk, yk+1, . . . , yn), for all y ≤

x −
s∑
�=1

cj�ej� − ek, again we get

vψ
x−∑s

�=1 cj�
ej�

−ek
(y) = v((y1, ..., yk−1, xk, yk+1, ..., yn))

− ψxk,k((y1, ..., yk−1, xk, yk+1, ..., yn), v)

+ ψyk ,k((y1, ..., yk−1, xk, yk+1, ..., yn), v).
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The result follows.

The above result will be applied for the case cj�∈{0, 1}, s=2 in Theorem 5.2.

The following Proposition plays a key role in the proof of Theorem 5.2.

Proposition 5.1. The weight potential can be expressed recursively as
(5.7)

Pw(x, v) =
1

w(xj)

[
φwxj ,j(x, v)− φwxj−1,j(x− ej, v)

]
+ Pw((x− ej), v), for all j,

where φw is the H&R Shapely value.

Proof. In theorem 3.2 the weight potential satisfies

(5.8) φwxj ,j
(x, v) =

xj∑
r=1

w(r) ·
[
Pw( (x|xj = r), v)− Pw( (x|xj = r − 1), v)

]
,

for all player j.
Apply (5.8) for φwxj ,j

(x, v) and φwxj−1,j(x− ej , v), we have

φwxj ,j(x, v)− φwxj−1,j(x− ej , v)

=
xj∑
r=1

w(r) ·
[
Pw( (x|xj = r), v)− Pw( (x|xj = r − 1), v)

]

−
xj−1∑
r=1

w(r) ·
[
Pw( (x|xj = r), v)− Pw( (x|xj = r − 1), v)

]

=Pw(x, v)− Pw( (x− ej), v).

Hence, Pw(x, v) = 1
w(xj)

[
φwxj ,j

(x, v)− φwxj−1,j(x− ej, v)
]

+Pw( (x− ej), v), for

all j. So the weight potential can be computed recursively by means of solution
φw . The proof is completed.

The following characterization of the H&R Shapley value is an extension of Hart
and Mas-Colell’s [2] axiomatization of the traditional Shapley value. Moreover, it
shows more than what Hsiao tried to do at the end of [5].

Theorem 5.2. Given a weight function w, let ψ be a solution function for G.
Then: (i) ψ is simple Pareto optimal, (ii) ψ is w-proportional for multi-choice two-
person games, and (iii) ψ is partially consistent, if and only if ψ is the multi-choice
Shapley value.
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Proof. One direction is immediate, see Theorem 4.1. For the other direction,
by Theorem 5.1, solution ψ is efficient and consistent. We shall show that ψ admits
a potential.

In views of Proposition 5.1, define a function P : G → R which associated
each game (N, x, v) a real number

(5.9) P (x, v)=
1

w(xj)

[
ψxj ,j(x, v)−ψxj−1,j(x− ej, v)

]
+P (x−ej, v), ∀j∈N.

If |N | = 1, the second term of (5.9) vanishes. We prove that the function P is
well defined and satisfies

(5.10) Hxj ,jP (x, v) = ψxj ,j(x, v)

by mathematical induction on |x|, where |x| =
∑
xj . First notice that for one

person game ({j0}, (r), v),

(5.11) P ((r), v) =
1

w(r)
[ψr,j0((r), v)− ψr−1,j0((r− 1), v)] = Pw( (r), v),

where Pw is the weight potential.

Next since by assumption ψ is w-proportional for two-person multi-choice
games, it is the H&R Shapley value for two-person games. Therefore P (x, v) =
Pw(x, v) for one-player and two-player games which proves (5.9) and (5.10) for
|N | = 1, 2, especially (5.9) and (5.10) hold for |x| = 1, 2. Suppose that (5.9)and
(5.10) hold for all |x| ≤ m − 1, m ≥ 3. Consider a game (x, v), where x =
(x1, . . . , xn) (note: each x� �= 0) with |x| = m. We compute the following

1
w(x�)

[
ψx�,�(x, v) − ψx�−1,�(x − e�, v)

]

− 1
w(xj)

[
ψxj,j(x, v) − ψxj−1,j(x − ej, v)

]

=
1

w(x�)

[
ψx�,�(x− ek, v

ψ
x−ek

) − ψx�−1,�((x − e�) − ek, v
ψ
(x−e�)−ek

)
]

(by consistency)

− 1
w(xj)

[
ψxj,j(x− ek, v

ψ
x−ek

) − ψxj−1,j((x− ej) − ek, v
ψ
(x−ej)−ek

)
]

=
1

w(x�)

[
ψx�,�(x− ek, v

ψ
x−ek

) − ψx�−1,�(x − ek − e�, v
ψ
x−ek

)
]

(by lemma 5.1)

− 1
w(xj)

[
ψxj,j(x− ek, v

ψ
x−ek

) − ψxj−1,j(x− ek − ej, v
ψ
x−ek

)
]



A Characterization of the Multi-Choice Shapley Value with Partially Consistent Property 309

=
[
P (x− ek, v

ψ
x−ek

) − P (x− ek − e�, v
ψ
x−ek

)
]

((5.9) holds for |x− ek| = m− 1)

−
[
P (x− ek, v

ψ
x−ek

) − P (x− ek − ej, v
ψ
x−ek

)
]

=P (x− ek − ej, v
ψ
x−ek

) − P (x− ek − e�, v
ψ
x−ek

)

=
[
P (x− ek − ej, v

ψ
x−ek

) − P (x− ek − ej − e�, v
ψ
x−ek

)
]

(note m ≥ 3)

−
[
P (x− ek − e�, v

ψ
x−ek

) − P (x− ek − e� − ej, v
ψ
x−ek

)
]

=
1

w(x�)

[
ψx�,�(x−ek−ej , v

ψ
x−ek

)−ψx�−1,�(x−ek−ej−e�, v
ψ
x−ek

)
]
((5.9) holds for (m−2))

− 1
w(xj)

[
ψxj ,j(x− ek − e�, v

ψ
x−ek

) − ψxj−1,j(x− ek − e� − ej , v
ψ
x−ek

)
]

=
1

w(x�)

[
ψx�,�

(
(x − ej) − ek, v

ψ
(x−ej)−ek

)
− ψx�−1,�

(
x − ej − ek − e�, v

ψ
(x−ej−e�)−ek

)]
(by Lemma 5.1)

− 1
w(xj)

[
ψxj ,j

(
(x−e�)−ek, v

ψ
(x−e�)−ek

)−ψxj−1,j

(
x−e�−ek−ej , v

ψ
(x−e�−ej)−ek

)]

=
1

w(x�)

[
ψx�,�(x − ej , v) − ψx�−1,�(x − ej − e�, v)

]
(by consistency)

− 1
w(xj)

[
ψxj ,j(x− e�, v) − ψxj−1,j(x − e� − ej, v)

]

=
[
P (x− ej, v) − P

(
(x− ej) − e�, v

)]
((5.9) holds for m− 1)

−
[
P (x− e�, v) − P

(
(x − e�) − ej , v

)]
= P (x− ej, v) − P (x− e�, v).

Therefore, for all j, � in N ,

P (x, v) =
1

w(xj)

[
ψxj,j(x, v)−ψxj−1,j(x−ej , v)

]
+ P ((x−ej ), v)

=
1

w(x�)

[
ψx�,�(x, v)−ψx�−1,�(x−e�, v)

]
+ P ((x−e�), v).

We have proved that P (x, v) defined by (5.9) is well-defined. Next for |x| = m,

Hxj,jP (x, v)

=
xj∑
r=1

w(r) ·
[
P ( (x|xj = r), v) − P ( (x|xj = r − 1), v)

]
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=
xj−1∑
r=1

w(r) ·
[
P ( (x|xj = r), v)−P ( (x|xj = r−1), v)

]

+w(xj)[P (x, v)−P (x−ej , v)]

=Hxj−1,jP (x−ej , v)

+
[
ψxj ,j(x, v)−ψxj−1,j(x−ej , v)

]
(by (5.9))

=ψxj−1,j(x−ej , v) (by mathematical induction, (5.10) holds for |x| = m−1)

+ [ψxj,j(x, v)−ψxj−1,j(x−ej , v)]

=ψxj ,j(x, v).

We have proved that (5.10) holds for |x| = m. Now by efficiency of ψ, we have∑
j∈S(m)

Hmj ,jP (m, v) =
∑

j∈S(m)

ψmj ,j(m, v) = v(m, v).

We see that P is the w-potential, therefore ψ is the H&R Shapely value. The proof
is complete.

As we mentioned in Note 4.1, there are some other ways to characterize the
H&R Shapley value, here we state the following Corollaries. If we define our
reduced game by (4.1.2) instead of (4.1.1), then we have the following corollary.

Corollary 5.1. Given a weight function w, let ψ be a solution function for G.
If the reduced game is defined by (4.1.2), then:
(i) ψ is w-proportional for multi-choice two-person games, and (ii)ψ is partially
consistent, if and only if ψ is the multi-choice Shapley value.

If we allow mj = 0 or m� = 0 in the definition of is w-proportional for
multi-choice two-person games , then we also have the following corollary.

Corollary 5.2. Given a weight function w, let ψ be a solution function for
G. If the definition of w-proportional for multi-choice two-person games allows
mj = 0 or m� = 0, then:

(i) ψ is w-proportional for multi-choice two-person games, and
(ii) ψ is partially consistent, if and only if ψ is the multi-choice Shapley value.

Closing Remark. It seems that Corollary 5.1 and Corollary 5.2 need only two
assumptions to characterize the H&R Shapley value , but, in fact, in Corollary 5.1
the “consistency” combines at least [Πn

j=1mj]− 1 assumptions into one. Moreover,
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if we allow mj = 0 or m� = 0 in the definition of w-proportional for multi-choice
two-person games, then we are, in fact, assuming the efficiency of ψ for all one-
person games and all two-person games. We have no comments on studying the
multi-choice game by combining many assumptions into one. However, we believe
that the explicit formulas of the H&R Shapley value (�), the w-potential function
(3.4) and the reduced games (4.1.1) are essentially enough to study the values
related to H&R Shapley value. Once the formulas are given explicitly, readers with
different culture backgrounds or different cognitive schemas might get different
kinds of properties from the explicit formulas. Then, the proofs of their properties
are simply combinatorial calculations of the explicit formulas.

APPENDIX

Motivations of Investigating the Multi-choice Games

Example 1. (Disease Control Game). Suppose in a small town, the mayor
announces “ the current phase of pandemic alert is 3 for enteroviruses”. Suppose
there are three disease control agents (players) who can make money by helping
a kindergarten in the town to keep away from enteroviruses. The agents may be
cooperative with one another, form a coalition, to work together in order to (a) make
more money, or to (b) do the job more efficiently.

(a) From agents’ viewpoint, they want to make more money and they are concern
with how to share the money. (b) From the owner of the kindergarten’s viewpoint,
he doesn’t care too much about how the agents share the money, he is concern with
how the agents can efficiently fight against enteroviruses.

Idea 1. The traditional cooperative game. From the viewpoint of how the
agents should share the money they make, we may model the above game with the
traditional cooperative game. Let N = {1, 2, 3} be the set of three agents, a subset
T of N is called a coalition, N is called the grand coalition. Since the powerset
2N � Γ(eN ), without risk of confusion, we can use binary vectors to denote the
coalitions, then the traditional cooperative game in characteristic function form is
v : Γ(eN) → R such that v(e∅) = v(000) = 0. Here, v(eS) is the payoff of the
coalition S ⊆ N.

Also, in the above traditional cooperative game, each player has two choices,
namely σ0-“not to participate in a coalition” and σ1-“ to participate in a coalition”.
Player j is in coalition S if and only if eSj = 1.

Idea 2. The traditional solutions. Suppose the grand coalition N is formed
and the three agents together get a payoff v(eN) (money), how should they share the
money (utility) with fairness ? There are many kinds of solutions, in this article, we
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focus on the remarkable solution, the Shapley value which satisfies three axioms,
say symmetric axiom, carrier axiom and additivity axiom. Some authors separate
the carrier axiom into efficient axiom and dummy axiom.

Please note that, from the viewpoint of sharing the payoff (money), the Shapley
value makes sense only when the grand coalition N is formed. Also, please note
that the very original definition of a cooperative game in characteristic function form
was assumed to be super-additive, please see Shapley’s original paper, Chapter 2 in
[10]. The super-additivity makes the formation of the grand coalition reasonable.

We do not know when and which author first took the super-additivity away from
the definition of a traditional cooperative game. Without the super-additivity, it is not
very reasonable to assume that the grand coalition is formed. Some authors assume
that the grand coalition is formed compulsorily by law. However, from political
sciences’ viewpoint, the grand coalition is seldom formed in a voting game. Also,
in studying a voting game, the Shapley value should be regarded as the Shapley
power index. The Shapley value is applicable to political sciences.

For the disease control game, from management sciences’s viewpoint, if we were
employers of the three agents, we will regard the payoff v(eS) as the probability
that S will be success in disease control mission. At least, we will regard it as a
simple game where v(eS) = 0 (or 1) means S fail (or success) in the disease control
mission. We are concerned about how they deal with the disease, rather than how
they share our payments. We will find the Shapley power index of each player and
won’t hire any agent with very low power index. Moreover, since the Shapley value
is transferable utility invariant, it is also easy for us to decide how much we should
pay the players, according to their Shapley power indices. The Shapley value is
applicable to management sciences.

The traditional Shapley value was found to have applications in many fields of
social sciences, even accountings and military sciences. Nevertheless, in a benefit
sharing problem or a cost allocation problem, the Shapley value was found to be
fair or say stable in many sense, for example the traditional Shapley value is also
dummy free of players, one can not get more or pay less by inviting a dummy player
to join the game. If a solution is proposed to share the payoff v(eN) and player
j may get more by inviting a dummy player to join the game, the solution will be
unstable or say controversial.

Idea 3. The weak points of the traditional cooperative games. If an univer-
sity pay a professors according whether he teach more than 6 hours per week or not.
A full professor or an assistant professor gets the same pay as the others’ as long as
he teach more than 6 hours per week. Research performance and teaching perfor-
mance are not taken into account, then why should an assistant professor work hard
to get a promotion? A main weak point of the model of the traditional cooperative
game is that a player might take action σ1-to participate in a coalition, but work
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lazily in the coalition. The coalition S does not distinguish lazy players and diligent
players. Therefore, some authors consider the traditional weighted Shapley value,
they give weights to the players.

Hsiao and Raghavan thought that a player should be paid according to what he
does rather than according to who he is. Therefore, in [3], Hsiao and Raghavan
extended the traditional Shapley value to the multi-choice Shapley value.

A multi-choice game. We now go back to the disease control game, since other
persons may become infected with enteroviruses by direct contact with secretions
from an infected person or by contact with contaminated surfaces or objects, such
as a drinking glass or telephone. Suppose, we can reasonably simplify the choices
of the agents as:

(a) σ0-do nothing,
(b) σ1-take the temperature of anyone who wants to enter the kindergarten, don’t

let him(her) in if s/he has a fever.
(c) σ2-clean up the kindergarten every two hours and don’t let anybody with a

fever get in the kindergarten.

We now can model the disease control game as follows. Let N = {1, 2, 3}
be the set of three agents. Let the action vector 222 = (2, 2, 2), then a multi-choice
cooperative game in characteristic function form is v : Γ(222) → R such that v(000) = 0
which means nobody works and the payoff of the action vector 000 is zero. Also,
v(x) is the payoff of the action vector x ∈ Γ(222).

Idea 4. The solutions of the multi-choice games. Similar to the solution
of the traditional games, now, suppose the agents choose action vector 222 and get a
payoff v(222), how should they share the payoff? Of course, fairness is the players’
main concern. Hsiao and Ragvan suggest the H&R Shapley value which satisfies
four axioms that are analogous to Shapley’s axioms in the traditional game. They
give weights (discriminations) to the choices instead of the players.

As a matter of fact, in this disease control game, the prior value (power index)
of σ0 is assigned to be w(0) = 0, and the prior power indeces w(1) and w(2) are
given by public health professionals. Normally, a prior power index of a profession
action is given by professionals in that field.

Similar to the traditional Shapley value, the H&R Shapley value makes sense
only when the players (jointly) take an action which is a carrier action vector. Please
note that if ccc = (c1, c2, c3) is the minimal carrier action vector in the disease control
game, then x ≥ ccc is also a carrier action vector. Then, from the point of view of
sharing the payoff v(ccc) among the payers, the H&R Shapely value suggests that
player j gets the value φwcj ,j(v) in the disease control game while the minimal
carrier action ccc is taken. Readers might ask then why don’t we just define the H&R
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Shapley value as an n-dimensional vector(φwc1,1(v), φ
w
c2,2

(v), . . . , φwcn,n(v)) for an
n-person multi-choice game? However, we want the H&R Shapley value be used
as not only a value but also a power index. Therefore, we decided to define the
H&R Shapley value as a matrix and slightly extended to the matrix-type table in
this article. ¿From management’s viewpoint, if we were the employer of the three
agents, we do not concern too much about how the players share the payoff. We
want the whole picture of the players’ power indices which stand for their influences
in the disease control game. If we were the commander at the war against viruses
or whatever, we will not hire an agent who has very little influence in the game.

Idea 5. Hart and Mas-Colell’s Consistency. We now go back to the problem
of sharing utility. Given a traditional cooperative game (Γ(eN ), v) and its traditional
Shapley value φ

(i) Suppose a sub-group of players of N , say T are not satisfied with their Shap-
ley values, or say they doubt that their Shapley values φ1,j(Γ(eN ), v) are not
fairly distributed among them(without satisfaction). Conversely, suppose
each player j ∈ T c is satisfied with his Shapley value (with full satisfac-
tion).

(ii) Then, from coalition’ viewpoint (actions’ viewpoints), for each S ⊆ T (for
each action vector eS ∈ Γ(eT )), each player j ∈ Tc(with full satisfaction)
helps the players in S by joining the coalition (by raising his action level from
σ0 to σ1) to form a bigger coalition S ∪Tc (action vector eS ∨eT

c
= eS∪T c)

and get a new payoff v(eS ∨ eT
c
).

(iii) Finally, each player j (with full satisfaction) takes his surplus of the Shapley
value for arising his actions from σ0 to σ1 in the game (Γ(eS ∨eT

c
), v)), say

(A.1) [φ1,j(Γ(eS ∨ eT
c
), v)− φ0,j(Γ(eS ∨ eT

c
), v)] = φ1,j(Γ(eS ∨ eT

c
), v)],

from the new payoff v(eS ∨ eT
c
) and leave the rest to the players in S. Then a

“reduced game” with respect to eT and φ, say

vφ
eT (eS) = v(eS ∨ eT

c
) −

∑
j∈T c

φ1,j(Γ(eS ∨ eT
c
), v)

is constructed for eS ∈ Γ(eT ).
Hart and Mas-Colell found an elegant property that the “new Shapley value”

of player j ∈ T in the reduced game φ1,j(Γ(eT ), vφ
eT ) equals the “original Shapley

value” of player j in the original game φ1,j(Γ(eN), v). They call this property the
consistency. If the new Shapley value for player j were greater than the original
Shapley value, then it is reasonable that he won’t respect the original Shapley value.
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Please note that in Hart and Mas-Colell’s definition of reduced game if we re-
place the Shapley φ by another solutionψ then vψ

eT (000)=v(eT c
)−∑

j∈S ψ1,j(Γ(eT
c
), v)

is not necessary zero, therefore we must impose 2|N | − 1 additional assumptions,
say vψ

eT (000) = 0 for each T ⊆ Nexcept T = ∅, to the definition of Hart and
Mas-Colel1’s consistency.

Idea 6. A straight analogy to Hart and Mas-Colell’s consistency. Only
“without satisfaction” or “with full satisfaction ” is allowed. Suppose the H&R
Shapley value will be used as the solution for a multi-choice cooperative game.

(i) For a multi-choice game (Γ(m), v) and its H&R Shapley value φw , sup-
pose a sub-group of players of N , say T are not satisfied with their Shapley
values, or say they doubt that their Shapley values are not fairly calculated
among them(without satisfaction). Conversely, suppose each player j ∈ Tc

is satisfied with his Shapley value(with full satisfaction).
(ii) Then, from actions’ viewpoints, for each x ≤ mT where mj = 0 if j �∈ T ,

each player in j ∈ T c helps the players in T by raising his action level from
σ0 to σmj , to form an new action vector x ∨ mT c and get a new payoff
v(x ∨mT c

).
(iii) Finally, each player(with full satisfaction) j takes his surplus of the Shapley

value for arising his actions from σ0 to σmj in the game (Γ(x ∨ mT c
), v)),

say
(A.2) [φwmj ,j(Γ(x ∨mT c

), v)− φw0,j(Γ(x ∨mT c
), v)] = φw1,j(Γ(x ∨ mT c

), v)],

from the new payoff v(x ∨ mT c
) and leave the rest to the players in T . Then a

“reduced game” with respect to mT and φw , say

v
φw

mT (x) = v(x ∨ mT c
) −

∑
j∈T c

φwmj ,j(Γ(x ∨mT c
), v)

is constructed for x ∈ Γ(mT ).
If for each i ≤ mj and j ∈ T , the “new Shapley value” of player j ∈ T in the

reduced game φwi,j(Γ(mT ), vφ
w

mT ) equals the “original Shapley value” of player j in
the original game φwi,j(Γ(m), v), then φw is said to be consistent.

Please note that in the above reduced game if we replace the H&R Shapley
value φw by another solution ψ then vψ

eT (000)=v(mT c
) − ∑

j∈T c ψmj ,j(Γ(mT c
), v)

is not necessary zero.
However, since 1994, Hsiao tried to extend the consistency to even more general

definition as the following.

Idea 7. More general analogy to Hart and Mas-Colell’s consistency. A
player “without satisfaction” or “with partial satisfaction ” or “with full satis-
faction ” is allowed.
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(i) For a multi-choice game (Γ(m), v) and its H&R Shapley value φw , suppose
a sub-group of players of N , say T are not satisfied with their Shapley values,
i.e. each player j ∈ T is satisfied with none of φwi,j(Γ(m), v) where 0 < i ≤
zj = mj (without satisfaction). Suppose T c = P ∪F with P ∩F = ∅, such
that player j ∈ P is satisfied with none of his Shapley value φwi,j(Γ(m), v)
where 0 < i ≤ zj and he is satisfied with his Shapley value φwi,j(Γ(m), v)
where zj < i ≤ mj(with partial satisfaction). Also, suppose player j ∈ F

is satisfied with all his Shapley value φwi,j(Γ(m), v) where zj = 0 < i ≤
mj(with full satisfaction). In conclusion, player j ∈ N is not satisfied with
φwi,j(Γ(m), v) where 0 < i ≤ zj . Also, in fact z∗ = mT c.

(ii) Then, from actions’ viewpoints, for each y ∈ Γ(mT ) where mj = 0 if j �∈ T ,
each player in j ∈ T c helps the players in T by raising his action level from
σyj to σmj ), to form a new action vector y ∨ mT c and get a new payoff
v(y ∨mT c

).

(iii) Finally, each player(with partial or full satisfaction) j takes his surplus of the
Shapley value for arising his actions from σyj to σmj in the game (Γ(y ∨
mT c

), v)), say

(A.3) [φwmj ,j(Γ(y ∨mT c
), v)− φwyj ,j(Γ(y ∨ mT c

), v)],

from the new payoff v(y ∨ mT c
) and leave the rest to the players in T ∪ P . Then

a “reduced game” with respect to z and φw, say

vφ
w

z (y) = v(y ∨mT c
) −

∑
j∈T c

[φwmj ,j(Γ(y ∨mT c
), v)− φwyj ,j(Γ(y ∨ mT c

), v)]

is constructed for y ∈ Γ(z).
If for each j with zj �= 0, i.e. j ∈ T ∪ P and each i ≤ zj , the “new Shapley

value” of player j in the reduced game φwi,j(Γ(z), vφ
w

z ) equals the “original Shap-
ley value” of player j in the original game φwi,j(Γ(m), v), then φw is said to be
consistent.

Please note that in the above reduced game if we replace the H&R Shapley
value φw by another solution ψ then vψ

mT (000)=v(mT c
) − ∑

j∈T c ψmj ,j(Γ(mT c
), v)

is not necessary zero. We must impose some additional equations or make a different
definition to characterize the H&R Shapley value.

Idea 8. (The insights of the multi-choice games). After Hsiao and Raghavan
developed the multi-choice games in [3], many authors published their new results
in the field of the multi-choice games such as multi-choice cores, multi-choice stable
sets, multi-choice Weber sets, convex multi-choice games, multi-choice NTU games,
multi-choice voting game, ...,etc.
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However, what interests us more is the following. If we regard the action
vector x as a status of an international coalition to fight against an international
pandemic, each country may take different action according to the WHO (World
Health Organization) phase of pandemic alert and her own pandemic situation.
We regard v(x) as the probability that the international action vector x is able to
overcome the worldwide pandemic. Since a pandemic is a dynamic process, then
v(x) is a fuzzy number. Also, as the pandemic goes better or worse, each nation
may change her action. Therefore, we are studying a dynamic process of action
vector (status) formation with fuzzy payoff. The WHO may observe the dynamic
process (by simulation) and help or warn some countries to raise their action levels
before it is too late and the whole world suffers from the pandemic.
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