LINEAR 2-ARBORICITY OF THE COMPLETE GRAPH

Chih-Hung Yen and Hung-Lin Fu

Abstract

A linear k-forest is a graph whose components are paths with lengths at most k. The minimum number of linear k-forests needed to decompose a graph G is the linear k-arboricity of G and denoted by $l a_{k}(G)$. In this paper, we settle the cases left in determining the linear 2 -arboricity of the complete graph K_{n}. Mainly, we prove that $l a_{2}\left(K_{12 t+10}\right)=l a_{2}\left(K_{12 t+11}\right)=9 t+8$ for any $t \geq 0$.

1. Introduction

Throughout this paper, all graphs considered are finite, undirected, loopless, and without multiple edges.

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list. If a graph G has a decomposition G_{1}, \ldots, G_{d}, then we say that G can be decomposed into G_{1}, \ldots, G_{d} or G_{1}, \ldots, G_{d} decompose G.

A complete graph is a graph whose vertices are pairwise adjacent; the complete graph with n vertices is denoted by K_{n}. A linear k-forest is a graph whose components are paths with lengths at most k. The linear k-arboricity of a graph G, denoted by $l a_{k}(G)$, is the minimum number of linear k-forests needed to decompose G.

The notion of linear k-arboricity was defined by Habib and Peroche in [9]. It is a natural generalization of edge coloring. Clearly, a linear 1-forest is induced by a matching and $l a_{1}(G)=\chi^{\prime}(G)$ which is the chromatic index of a graph G. It is also a refinement of the concept of linear arboricity, introduced earlier by Harary in [11], in which the paths have no length constraints.

In 1982, Habib and Peroche [10] made the following conjecture:

[^0]Conjecture 1.1. If G is a graph with maximum degree $\Delta(G)$ and $k \geq 2$, then

$$
l a_{k}(G) \leq \begin{cases}\left\lceil\left.\frac{\Delta(G) \cdot|V(G)|}{2\left\lfloor\frac{k \cdot|V(G)|}{k+1}\right\rfloor} \right\rvert\,\right. & \text { if } \Delta(G)=|V(G)|-1 \text { and } \\ \left\lceil\frac{\Delta(G) \cdot|V(G)|+1}{2\left\lfloor\frac{k \cdot|V(G)| \mid}{k+1}\right\rfloor}\right\rceil & \text { if } \Delta(G)<|V(G)|-1\end{cases}
$$

So far, quite a few results on the verification of this conjecture have been obtained in the literature, especially for some graphs with particular properties, see [1, 2, 3, 4, 5, 8, 12, 13]. Among them, Bermond et al. [1] determined the linear 2-arboricity of the complete graph K_{n} almost completely. They had the following result:

Theorem 1.2. For $n \not \equiv 10,11(\bmod 12)$, $l a_{2}\left(K_{n}\right)=\left\lceil\frac{n(n-1)}{2\left\lfloor\frac{2 n}{3}\right\rfloor}\right\rceil$.
Later, Chen et al. [4] derived a similar result by using the ideas from latin squares. They claimed that the following theorem is proved.

Theorem 1.3. $l a_{2}\left(K_{3 u}\right)=\left\lceil\frac{3(3 u-1)}{4}\right\rceil, l a_{2}\left(K_{3 u+1}\right)=\left\lceil\frac{3(3 u+1)}{4}\right\rceil$, and $l a_{2}$ $\left(K_{3 u+2}\right)=\left\lceil\frac{(3 u+2)(3 u+1)}{2(2 u+1)}\right\rceil$ except possibly if $3 u+1 \in\{49,52,58\}$.

Unfortunately, their result mentioned in Corollary 4.7 of [4] that $l a_{2}\left(K_{12 t+11}\right)=$ $9 t+9$ is not coherent to the theorem they proved, the expected linear 2 -arboricity of $K_{12 t+11}$ is $9 t+8$.

In this paper, we will prove that $l a_{2}\left(K_{12 t+10}\right)=l a_{2}\left(K_{12 t+11}\right)=9 t+8$ for any $t \geq 0$. Thus, the exact value of $l a_{2}\left(K_{n}\right)$ is completely determined. Furthermore, the results obtained are coherent with the corresponding cases of Conjecture 1.1.

2. Preliminaries

First, we need some definitions. A graph G is m-partite if $V(G)$ can be partitioned into m independent sets called partite sets of G. When $m=2$, we also say that G is bipartite. A complete m-partite graph is an m-partite graph G such that the edge $u v \in E(G)$ if and only if u and v are in different partite sets. When $m \geq 2$, we write $K_{n_{1}, n_{2}, \ldots, n_{m}}$ for the complete m-partite graph with partite sets of sizes $n_{1}, n_{2}, \ldots, n_{m}$.

Let $S=\{1,2, \ldots, \nu\}$ be a set of ν elements. A latin square of order ν is a $\nu \times \nu$ array in which each cell contains a single element from S, such that each
element occurs exactly once in each row and exactly once in each column. A latin square $L=\left[\ell_{i j}\right]$ is idempotent if $\ell_{i i}=i$ for all $1 \leq i \leq \nu$, and commutative if $\ell_{i j}=\ell_{j i}$ for all $1 \leq i, j \leq \nu$. In [6], the following result has been mentioned.

Theorem 2.1. An idempotent commutative latin square of order ν exists if and only if ν is odd.

An incomplete latin square of order ν, denoted by $\operatorname{ILS}\left(\nu ; b_{1}, b_{2}, \ldots, b_{k}\right)$, is a $\nu \times \nu$ array A with entries from a set B of size ν, where $B_{i} \subseteq B$ for $1 \leq i \leq k$ with $\left|B_{i}\right|=b_{i}$, and $B_{i} \cap B_{j}=\emptyset$ for $1 \leq i \neq j \leq k$. Moreover,

1. each cell of A is empty or contains an element of B;
2. the subarrays indexed by $B_{i} \times B_{i}$ are empty (and called holes); and
3. the elements in row or column b are exactly those of $B-B_{i}$ if $b \in B_{i}$, and of B otherwise.

A partitioned incomplete latin square $\operatorname{PILS}\left(\nu ; b_{1}, b_{2}, \ldots, b_{k}\right)$ is an incomplete latin square of order ν with $b_{1}+b_{2}+\cdots+b_{k}=\nu$. Figure 1 is an example of a commutative $\operatorname{PILS}(8 ; 2,2,2,2)$. It is worthy of noting that, Fu and $\mathrm{Fu}[7]$ proved that:

Theorem 2.2. For any $k \geq 3$, a commutative partitioned incomplete latin square $\operatorname{PILS}(2 k ; 2,2, \ldots, 2)$ exists.

Next, we state some properties of $l a_{k}(G)$.

Fig. 1. A commutative $\operatorname{PILS}(8 ; 2,2,2,2)$.
Lemma 2.3. If H is a subgraph of G, then $l a_{k}(H) \leq l a_{k}(G)$.
Lemma 2.4. If a graph G is the edge-disjoint union of two subgraphs G_{1} and G_{2}, then $l a_{k}(G) \leq l a_{k}\left(G_{1}\right)+l a_{k}\left(G_{2}\right)$.

Lemmas 2.3 and 2.4 are evident by the definition of linear k-arboricity. Since any vertex of a linear k-forest in a graph G has degree at most 2 and a linear k-forest in G has at most $\left\lfloor\frac{k|V(G)|}{k+1}\right\rfloor$ edges, we have Lemma 2.5.

3. Main Results

In what follows, for convenience, we use an $n \times n$ array to represent a linear k-forest decomposition of $K_{f} i g .3 n, n$ or K_{n}, which also shows an upper bound of $l a_{k}\left(K_{n, n}\right)$ or $l a_{k}\left(K_{n}\right)$. Figure 2 is an example of $K_{12,12}$ with $l a_{2}\left(K_{12,12}\right) \leq 9$. The entry $w_{i j}$ in row i and column j means that the edge $u_{i} v_{j}$ belongs to the linear 2-forest labelled by $w_{i j}$. In fact, $l a_{2}\left(K_{12,12}\right)=9$ since $l a_{2}\left(K_{12,12}\right) \geq\left\lceil\frac{144}{\left[\frac{2.24}{3}\right\rfloor}\right\rceil=9$ by Lemma 2.5 .

\mathbf{u}_{1}	1	8	4	4	3	3	8	6	9	2	5	7
u_{2}	1	4	6	6	2	2	7	7	9	3	5	8
U_{3}	2	4	7	9	1	1	5	9	5	3	6	8
u_{4}	2	5	7	1	8	4	4	3	3	8	6	9
us_{5}	3	5	8	1	4	6	6	2	2	7	7	9
u_{6}	3	6	8	2	4	7	9	1	1	5	9	5
\mathbf{u}_{7}	8	6	9	2	5	7	1	8	4	4	3	3
U_{8}	7	7	9	3	5	8	1	4	6	6	2	2
U_{9}	5	9	5	3	6	8	2	4	7	9	1	1
${ }_{10} 10$	4	3	3	8	6	9	2	5	7	1	8	4
u_{11}	6	2	2	7	7	9	3	5	8	1	4	6
u_{12}	9	1	1	5	9	5	3	6	8	2	4	7

Fig. 2. The array shows that $l a_{2}\left(K_{12,12}\right) \leq 9$.
As we have seen in $W=\left[w_{i j}\right]$, a number occurs in each row and each column at most twice and furthermore if $w_{i j}=w_{i^{\prime} j^{\prime}}$ where $i \neq i^{\prime}$ and $j \neq j^{\prime}$, then $w_{i j^{\prime}} \neq w_{i j}$ and $w_{i^{\prime} j} \neq w_{i j}$. The condition on K_{n} is similar except the array $W=\left[w_{i j}\right]$ is symmetric, i.e., $w_{i j}=w_{j i}$ for all $i \neq j$, and $w_{i i}$ is empty for each $i \in\{1,2, \ldots, n\}$.

Now, we are ready to obtain the main results.

Proposition 3.1. $l a_{2}\left(K_{11}\right)=8$.
Proof. We construct the array in Figure 3 to show that $l a_{2}\left(K_{11}\right) \leq 8$. On the other hand, by Lemma 2.5, $\left.l a_{2}\left(K_{11}\right) \geq\left\lceil\frac{55}{\left[\frac{2 \cdot 11}{3}\right.}\right\rceil\right\rceil=8$.

Fig. 3. The array shows that $l a_{2}\left(K_{11}\right) \leq 8$.

Proposition 3.2. $l a_{2}\left(K_{23}\right)=17$.
Proof. It is clear that K_{23} is an edge-disjoint union of $K_{12} \cup K_{11}$ and $K_{12,11}$. First, we decompose ($K_{12} \cup K_{11}$) - M into 8 linear 2-forests where M is a matching of size 3 in K_{12}. Then, from the result $l a_{2}\left(K_{12,12}\right)=9$, we find a way to decompose $K_{12,11} \cup G[M]$ into 9 linear 2-forests where $G[M]$ is a subgraph of K_{23} induced by M.

Hence, we obtain the array in Figure 4 which shows that $l a_{2}\left(K_{23}\right) \leq 8+9=17$ by Lemma 2.4. On the other hand, by Lemma 2.5, $l a_{2}\left(K_{23}\right) \geq\left\lceil\frac{253}{\left[\frac{2.23}{3}\right]}\right\rceil=17$.

Proposition 3.3. $l a_{2}\left(K_{n, n, n}\right)=\left\lceil\frac{3 n}{2}\right\rceil$ for any $n \geq 0$.
Proof. Assume that the partite sets of $K_{n, n, n}$ are $V_{1}=\left\{v_{1[1]}, v_{1[2]}, \ldots, v_{1[n]}\right\}$, $V_{2}=\left\{v_{2[1]}, v_{2[2]}, \ldots, v_{2[n]}\right\}$, and $V_{3}=\left\{v_{3[1]}, v_{3[2]}, \ldots, v_{3[n]}\right\}$. First, for all $1 \leq$
$\alpha \neq \beta \leq 3$, we use the notation $G\left(V_{\alpha}, V_{\beta}\right)$ to denote the subgraph of $K_{n, n, n}$ induced by V_{α} and V_{β}. Then $G\left(V_{\alpha}, V_{\beta}\right)$ is a complete bipartite graph $K_{n, n}$ and it is well-known that the edges of $K_{n, n}$ can be partitioned into n perfect matchings.

Fig. 4. The array shows that $l a_{2}\left(K_{23}\right) \leq 17$.
Next, we find that the edges of a union of any two perfect matchings in $G\left(V_{1}, V_{2}\right), G\left(V_{2}, V_{3}\right)$, and $G\left(V_{3}, V_{1}\right)$ respectively can produce 3 linear 2 -forests of $K_{n, n, n}$. Figure 5 shows an example of $K_{7,7,7}$. Hence, $l a_{2}\left(K_{n, n, n}\right) \leq\left\lceil\frac{n}{2} \cdot 3\right\rceil=$ $\left\lceil\frac{3 n}{2}\right\rceil$. On the other hand, by Lemma 2.5, $l a_{2}\left(K_{n, n, n}\right) \geq\left\lceil\frac{3 n}{2}\right\rceil$.

Proposition 3.4. $l a_{2}\left(K_{35}\right)=26$.
Proof. It is clear that K_{35} is an edge-disjoint union of $K_{12} \cup K_{12} \cup K_{11}$ and $K_{12,12,11}$. First, we decompose $\left(K_{12} \cup K_{12} \cup K_{11}\right)-\left(M_{1} \cup M_{2}\right)$ into 8 linear 2-forests where M_{1} and M_{2} are matchings of size 3 in different K_{12} 's. Then, from the result $l a_{2}\left(K_{n, n, n}\right)=\left\lceil\frac{3 n}{2}\right\rceil$ in Proposition 3.3, we find a way to decompose
$K_{12,12,11} \cup\left(G\left[M_{1}\right] \cup G\left[M_{2}\right]\right)$ into 18 linear 2-forests where $G\left[M_{1}\right]$ and $G\left[M_{2}\right]$ are subgraphs of K_{35} induced by M_{1} and M_{2}. Hence, we obtain the array in Figure 6 which shows that $l a_{2}\left(K_{35}\right) \leq 8+18=26$ by Lemma 2.4 . On the other hand, by Lemma 2.5, $l a_{2}\left(K_{35}\right) \geq\left\lceil\frac{595}{\left[\frac{2.35}{3}\right\rfloor}\right\rceil=26$.

Fig. 5. Three linear 2-forests in $K_{7,7,7}$.
Proposition 3.5. $l a_{2}\left(K_{59}\right)=44$.
Proof. Since K_{59} is an edge-disjoint union of $K_{20} \cup K_{19} \cup K_{20}$ and $K_{20,19,20}$, we first decompose $\left(K_{20} \cup K_{19} \cup K_{20}\right)-\left(E_{1} \cup E_{2} \cup E_{3}\right)$ into 14 linear 2-forests where E_{1}, E_{3} are edge subsets of size 8 in different K_{20} 's and E_{2} is an edge subset of size 3 in K_{19}.

Then, from the result $l a_{2}\left(K_{n, n, n}\right)=\left\lceil\frac{3 n}{2}\right\rceil$ in Proposition 3.3, we find a way to decompose $K_{20,19,20} \cup\left(G\left[E_{1}\right] \cup G\left[E_{2}\right] \cup G\left[E_{3}\right]\right)$ into 30 linear 2-forests where $G\left[E_{1}\right]$, $G\left[E_{2}\right]$, and $G\left[E_{3}\right]$ are subgraphs of K_{59} induced by E_{1}, E_{2}, and E_{3} respectively.

Hence, we obtain the array in Figure 7 which shows that $l a_{2}\left(K_{59}\right) \leq 14+30=$ 44 by Lemma 2.4, where B_{1}, B_{2} are the arrays in Figure 8 and C, D_{1}, D_{2}, D_{3} are the arrays in Figure 9. Moreover, the arrays D_{1}^{T}, D_{2}^{T}, and D_{3}^{T} are the transposes of D_{1}, D_{2}, and D_{3} respectively. On the other hand, by Lemma 2.5, $l a_{2}\left(K_{59}\right) \geq\left\lceil\frac{1711}{\left[\frac{2.59}{3}\right\rfloor}\right\rceil=44$.

Fig. 6. The array shows that $l a_{2}\left(K_{35}\right) \leq 26$.

B_{1}	D_{1}	D_{2}
$D_{1}{ }^{T}$	C	D_{3}
$D_{2}{ }^{T}$	$D_{3}{ }^{T}$	B_{2}

Fig. 7. A partition of a 59×59 array into nine subarrays.
B_{1}

Fig. 8. Two subarrays B_{1} and B_{2} of the array in Figure 7.

$\mathrm{v}_{\mathrm{F}}^{\mathrm{m}} \left\lvert\, \begin{array}{llllllllllllllllll}11 & 1 & 1 & 6 & 2 & 9 & 7 & 8 & 14 & 3 & 13 & 12 & 8 & 13 & 5 & 10 & 5 & 4\end{array}\right.$

Fig. 9. Four subarrays C, D_{1}, D_{2} and D_{3} of the array in Figure 7.

Proposition 3.6. $l a_{2}\left(K_{12 t+11}\right)=9 t+8$ for any $t \geq 3$ and $t \neq 4$.
Proof. We prove this proposition by using the techniques from latin squares proposed by Chen et al. [4]. First, assume that t is odd. Then let the 23×23 array in Figure 4 be partitioned into four subarrays P, Q, Q^{T}, R as shown in Figure 10, where P, Q, R are $12 \times 12,12 \times 11,11 \times 11$ arrays respectively, and Q^{T} is the transpose of Q. Moreover, let the 12×12 array in Figure 2 be denoted by W.

Fig. 10. Four subarrays of the array in Figure 4 or Figure 6.
From Theorem 2.1, we can find an idempotent commutative latin square of order t. By using $L=\left[\ell_{i j}\right]$ to denote this idempotent commutative latin square, we can construct a $(12 t+11) \times(12 t+11)$ symmetric array as shown in Figure 11 to show that $l a_{2}\left(K_{12 t+11}\right) \leq 9 t+8$, where, for $1 \leq x \leq t$,

Fig. 11. $\mathrm{A}(12 t+11) \times(12 t+11)$ symmetric array.

1. B_{x} is a 12×12 array;
2. the entry $B_{x}(r, s)$ in B_{x} equals $P(r, s)$ in P if $P(r, s) \in\{1,2, \ldots, 8\}$;
3. $B_{x}(r, s)=P(r, s)+(x-1) \cdot 9$ if $P(r, s) \notin\{1,2, \ldots, 8\}$;
4. the 12×12 array $C_{i j}=W+8+\left(\ell_{i j}-1\right) \cdot 9$, for $1 \leq i, j \leq t$;
5. the 12×11 array $D_{x}=Q+(x-1) \cdot 9$;
6. the 11×11 array $E=R$; and
7. the arrays $C_{i j}{ }^{T}$ and $D_{x}{ }^{T}$ are the transposes of $C_{i j}$ and D_{x} respectively.

Next, if t is even, then let the 35×35 array in Figure 6 be partitioned into four subarrays P, Q, Q^{T}, R as shown in Figure 10 , where P, Q, R are 24×24, $24 \times 11,11 \times 11$ arrays respectively, and Q^{T} is the transpose of Q. From Theorem 2.2 , then we can find a commutative $\operatorname{PILS}(2 k ; 2,2, \ldots, 2)$ such that $t=2 k$. By using $L=\left[\ell_{i j}\right]$ to denote this commutative $\operatorname{PILS}(2 k ; 2,2, \ldots, 2)$, we can construct a $(12 t+11) \times(12 t+11)$ symmetric array as shown in Figure 12 to show that $l a_{2}\left(K_{12 t+11}\right) \leq 9 t+8$, where, for $1 \leq x \leq k$,

Fig. 12. $\mathrm{A}(12 t+11) \times(12 t+11)$ symmetric array.

1. B_{x} is a 24×24 array;
2. the entry $B_{x}(r, s)$ in B_{x} equals $P(r, s)$ in P if $P(r, s) \in\{1,2, \ldots, 8\}$;
3. $B_{x}(r, s)=P(r, s)+(x-1) \cdot 18$ if $P(r, s) \notin\{1,2, \ldots, 8\}$;
4. the 12×12 array $C_{i j}=W+8+\left(\ell_{i j}-1\right) \cdot 9$, for $1 \leq i, j \leq 2 k$;
5. the 24×11 array $D_{x}=Q+(x-1) \cdot 18$;
6. the 11×11 array $E=R$; and
7. the arrays $C_{i j}{ }^{T}$ and $D_{x}{ }^{T}$ are the transposes of $C_{i j}$ and D_{x} respectively.

On the other hand, by Lemma $2.5, l a_{2}\left(K_{12 t+11}\right) \geq\left\lceil\frac{(12 t+11)(12 t+10)}{2\left[\frac{2(12 t+11)}{3}\right]}\right\rceil=9 t+8$. This concludes the proof.

Corollary 3.7. $l a_{2}\left(K_{12 t+10}\right)=l a_{2}\left(K_{12 t+11}\right)=9 t+8$ for any $t \geq 0$.

Proof. By Propositions $3.1 \sim 3.2$ and $3.4 \sim 3.6, l a_{2}\left(K_{12 t+11}\right)=9 t+8$ for any $t \geq 0$. Moreover, from Lemmas 2.3 and 2.5, $9 t+8=l a_{2}\left(K_{12 t+11}\right) \geq$ $l a_{2}\left(K_{12 t+10}\right) \geq\left\lceil\frac{(12 t+10)(12 t+9)}{2\left[\frac{2(12 t+10)}{3}\right\rfloor}\right\rceil=9 t+8$ for any $t \geq 0$.

Finally, we conclude this paper by the following theorem, which provides the answers of the unsolved cases in Theorem 1.2. Furthermore, the results obtained on $l a_{2}\left(K_{n}\right)$ are coherent with the corresponding cases of Conjecture 1.1.

Theorem 3.8. $l a_{2}\left(K_{n}\right)=\left\lceil\frac{n(n-1)}{2\left\lfloor\frac{2 n}{3}\right\rfloor}\right\rceil$ for $n \equiv 10,11(\bmod 12)$.

Proof. We can assume that $n=12 t+10$ or $n=12 t+11$ for any $t \geq 0$. Since $\left\lceil\frac{n(n-1)}{2\left[\frac{2 n}{3}\right\rfloor}\right\rceil=9 t+8$ when $n=12 t+10$ or $n=12 t+11$ for any $t \geq 0$, from Corollary 3.7, then the assertion holds.

References

1. J. C. Bermond, J. L. Fouquet, M. Habib and B. Peroche, On linear k-arboricity, Discrete Math., 52 (1984), 123-132.
2. G.-J. Chang, Algorithmic aspects of linear k-arboricity, Taiwanese J. Math., 3 (1999), 73-81.
3. G.-J. Chang, B.-L. Chen, H.-L. Fu and K.-C. Huang, Linear k-arboricities on trees, Discrete Applied Math., 103 (2000), 281-287.
4. B.-L. Chen, H.-L. Fu and K.-C. Huang, Decomposing graphs into forests of paths with size less than three, Australas. J. Combin., 3 (1991), 55-73.
5. B.-L. Chen and K.-C. Huang, On the linear k-arboricity of K_{n} and $K_{n, n}$, Discrete Math., 254 (2002), 51-61.
6. J. Denes and A. D. Keedwell, Latin squares and their applications, Academic Press Inc., New York.
7. C.-M. Fu and H.-L. Fu, On the intersections of latin squares with holes, Utilitas Mathematica, 35 (1989), 67-74.
8. H.-L. Fu and K.-C. Huang, The linear 2-arboricity of complete bipartite graphs, Ars Combin., 38 (1994), 309-318.
9. M. Habib and B. Peroche, La k-arboricité linéaire des arbres, Ann. Discrete Math., 17 (1983), 307-317.
10. M. Habib and B. Peroche, Some problems about linear aboricity, Discrete Math., 41 (1982), 219-220.
11. F. Harary, Covering and packing in graphs I, Ann. New York Acad. Sci., 175 (1970), 198-205.
12. C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Combin. Theorey, Ser B., 75 (1999), 100-109.
13. Chih-Hung Yen and Hung-Lin Fu, Linear 3-arboricity of the balanced complete multipartite graph, JCMCC, 60 (2007), 33-46.

Chih-Hung Yen
Department of Applied Mathematics, National Chiayi University,
Chiayi 60004, Taiwan
E-mail: chyen@mail.ncyu.edu.tw
Hung-Lin Fu
Department of Applied Mathematics, National Chiao Tung University,
Hsinchu 300, Taiwan

[^0]: Received February 8, 2006, accepted March 13, 2007.
 Communicated by Xuding Zhu.
 2000 Mathematics Subject Classification: 05C38, 05C70.
 Key words and phrases: Linear k-forest, Linear k-arboricity, Complete graph.

