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THREE-SPACE PROBLEM FOR SOME APPROXIMATION PROPERTIES

Ju Myung Kim

Abstract. Suppose that M is a closed subspace of a Banach space X such
that M⊥ is complemented in the dual space X∗, where M⊥ = {x∗ ∈ X∗ :
x∗(m) = 0 for all m ∈ M}. Godefroy and Saphar [4] study the three-space
problem for the approximation properties on (X, M). In this paper, we extend
some of their results and solve the three-space problem for the weak bounded
approximation property on (X, M), which was introduced in Lima and Oja
[10].

1. INTRODUCTION AND MAIN RESULTS

Let P be a property defined for Banach spaces and let M be a closed subspace
of a Banach space X . Then we say that P is a three-space property on (X, M) if
two of X , M , and the quotient space X/M have P, then the third must also have P.
The three-space problem for P on (X, M) is whether P is a three-space property
on (X, M). In this paper, we solve the three-space problem for some approximation
properties on (X, M) for the case when M⊥ is complemented in the dual space
X∗. The results extend [4, Theorem 2.4] and solve the three-space problem for the
weak bounded approximation property of Banach spaces on (X, M), which is a
variant of the bounded approximation property (see Section 2), for the case when
M⊥ is complemented in the dual space X ∗.

Throughout this paper, X and Y are Banach spaces. We denote by τ the
topology of compact convergence on B(X, Y ), the space of bounded linear operators
from X into Y , which is strictly weaker than the operator norm topology; for a net
(Tα) and T in B(X, Y ),

Tα
τ−→ T if and only if sup

x∈K
‖Tαx − Tx‖ −→ 0
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for each compact K ⊂ X ; for S ⊂ B(X, Y ) and T ∈ B(X, Y ),

T ∈ Sτ if and only if for each compact K ⊂ X and ε > 0,

there exists a R ∈ S so that sup
x∈K

‖Rx− Tx‖ < ε.

We denote by A(X, Y ) a subspace of B(X, Y ) such that A satisfies the ideal
property and that the adjoint T ∗ ∈ A(Y ∗, X∗) for all T ∈ A(X, Y ). For exam-
ple, B(X, Y ), W(X, Y ), K(X, Y ), F (X, Y ), respectively, the spaces of bounded,
weakly compact, compact, and finite rank linear operators between X and Y satisfy
the above properties. Let A(X, Y ; λ) = {T ∈ A(X, Y ) : ‖T‖ ≤ λ}, A∗(X, Y ) =
{T ∗ : T ∈ A(X, Y )}, and A∗(X, Y ; λ) = {T ∗ ∈ A∗(X, Y ) : ‖T‖ ≤ λ}.

We now define the following; X is said to have the A-approximation property
(A-AP) if for every Banach space Y A(X, Y ) ⊂ F (X, Y )

τ
, for λ ≥ 1 X is said

to have the A-λ-bounded approximation property (A-λ-BAP) if for every Banach
space Y A(X, Y ; 1) ⊂ F (X, Y ; λ)

τ
, X is said to have the A-bounded approxima-

tion property (A-BAP) if for every Banach space Y and T ∈ A(X, Y ) there exists
a λT > 0 so that T ∈ F (X, Y ; λT )

τ
. We clearly have the following implications;

A− λ − BAP =⇒ A− BAP =⇒ A− AP.

In Section 2, we will see that the well known approximation properties (AP,
BAP, λ-BAP) and their recent variants are contained in the above definitions.

If M⊥ is complemented in X∗, then there exists a projection P : X∗ −→ M⊥

onto M⊥. Define a map U : M∗ −→ X∗ by

Um∗ = x∗ − Px∗

where x∗ ∈ X∗ with x∗ = m∗ on M . Then we see that U is a well defined bounded
operator and

(Um∗)m = m∗m

for all m∗ ∈ M∗ and m ∈ M .
We are now ready to state the main results of this paper, which are proved in

Section 4.

Theorem 1.1. Suppose that M is a closed subspace of X and M⊥ is comple-
mented in X∗.

(a) If X has the A-AP, then M has the A-AP.
(b) If X has the A-BAP, then M has the A-BAP.
(c) If X has the A-λ-BAP, then M has the A-λ‖U‖-BAP.
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Theorem 1.2. Suppose that M is a closed subspace of X and M⊥ is comple-
mented in X∗.

(a) If M has the A-BAP and X/M has the AP, then X has the A-AP.
(b) If M has the A-BAP and X/M has the BAP, then X has the A-BAP.
(c) If M has the A-µ-BAP and X/M has the λ-BAP, then X has the A-µ‖U‖+

(µ‖U‖ + 1)λ-BAP.

In Section 4, if A = W in Theorem 1.2, then the assumptions of X/M are
weakened.

Theorem 1.3. There exist a Banach space Y and a closed subspace M of
Y so that M⊥ is complemented in Y ∗, Y has the 1-BAP, M has the BAP, but
K(Y/M, Y/M) �⊂ F (Y/M, Y/M)

τ
.

2. THE APPROXIMATION PROPERTIES AND THE WEAK BOUNDED

APPROXIMATION PROPERTY

X is said to have the approximation property (AP) if IX ∈ F (X, X)
τ
, where

IX is the identity operator on X . For λ ≥ 1, X is said to have the λ-bounded
approximation property (λ-BAP) if IX ∈ F (X, X ;λ)

τ
. We also say that X has

the bounded approximation property (BAP) if X has the λ-BAP for some λ ≥ 1.
Grothendieck [3] systematically investigated the AP and showed the following. For
a concrete proof one may see Casazza [1, Proposition 2.4] or Choi and Kim [2,
Lemma 3.1].

Fact. (B(X, Y ), τ)∗ consists of all functionals f of the form f(T ) =
∑

n y∗n
(Txn), where (xn) ⊂ X, (y∗n) ⊂ Y ∗, and

∑
n ‖xn‖‖y∗n‖ < ∞.

Simple calculations show that X has the AP if and only if X has the B-AP,
and X has the λ-BAP if and only if X has the B-λ-BAP (cf. [1, Theorems 2.5 and
3.14]). Also if X has the BAP, clearly X has the B-BAP, and if X has the B-BAP,
then X has the BAP since for some λIX

> 0 IX ∈ F (X, X ;λIX
)
τ
.

We now introduce the recent variant of the BAP. In [10], the authors introduced
and investigated the following properties; for λ ≥ 1, X is said to have the weak
λ-bounded approximation property (weak λ-BAP) if for every Banach space Y and
T ∈ W(X, Y ), there exists a net (Sα) ⊂ F (X, X) with supα ‖TSα‖ ≤ λ‖T‖ such
that

Sα
τ−→ IX .
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We say that X has the weak bounded approximation property (weak BAP) if X

has the weak λ-BAP for some λ ≥ 1. In [10], interesting criteria of the above
properties are established. Using the criteria, we will show that weak λ-BAP and
W-λ-BAP are equivalent.

Recall that for every Banach space Z and W (Z⊗̂πW )∗ = B(Z, W ∗) and for
a net (Tα) and T in B(Z, W ∗)

Tα
weak∗−→ T if and only if

∑
n

(Tαzn)wn −→
∑
n

(Tzn)wn

for every (zn) ⊂ Z and (wn) ⊂ W with
∑

n ‖zn‖‖wn‖ < ∞ (cf. Ryan [13, p.
24]).

Proposition 2.1. The following are equivalent.

(a) X has the weak λ-BAP.

(b) X has the W-λ-BAP.

(c) For every reflexive Banach space Y , W(X, Y ; 1) ⊂ F (X, Y ; λ)
τ .

(d) For every reflexive Banach space Y , the trace mapping V : X ⊗̂πY ∗ −→
F (X, Y )∗ satisfies ‖u‖π ≤ λ‖V u‖ ≤ λ‖u‖π for every u ∈ X⊗̂πY ∗.

Proof. We show (a)=⇒(b)=⇒(c)=⇒(d) =⇒(a). But (a)=⇒(b) and (b)=⇒(c)
are clear.

(c)=⇒(d) From the definitions of the projective tensor product and the trace
mapping we see ‖V u‖ ≤ ‖u‖π. Let Y be a reflexive Banach space and let
u =

∑
n xn ⊗ y∗n ∈ X⊗̂πY ∗. Since Y is reflexive, (X⊗̂πY ∗)∗ = B(X, Y ∗∗) =

W(X, Y ∗∗) = W(X, QY (Y )), where QY : Y −→ Y ∗∗ is the natural map. Then
there exists T ∈ W(X, QY (Y ); 1) so that

‖u‖π =
∑
n

(Txn)y∗n =
∑
n

y∗n(Q−1
Y Txn).

By the assumption Q−1
Y T ∈ F (X, Y ; λ)

τ
. Let supS∈F(X,Y ;λ) |

∑
n y∗n(Sxn)| = t.

Then for every S ∈ F(X, Y ; λ), |∑n y∗n((1/t)Sxn)| ≤ 1. So for every R ∈
F (X, Y ; (1/t)λ), |∑n y∗n(Rxn)| ≤ 1. Since (1/t)Q−1

Y T ∈ F (X, Y ; (1/t)λ)
τ
, by

Fact

1
t

∑
n

(Txn)y∗n =
1
t

∑
n

y∗n(Q−1
Y Txn) =

∑
n

y∗n(
1
t
Q−1

Y Txn) ≤ 1.
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Hence we have

‖u‖π =
∑
n

(Txn)y∗n

≤ t

= sup
S∈F(X,Y ;λ)

∣∣∣∑
n

y∗n(Sxn)
∣∣∣

= λ sup
R∈F(X,Y ;1)

∣∣∣ ∑
n

y∗n(Rxn)
∣∣∣

= λ sup
R∈F(X,Y ;1)

|(V u)(R)|

= λ‖V u‖.
(d)=⇒(a) See the proof of [10, Theorem 3.2].

If X has the λ-BAP, then X has the weak λ-BAP, and in [10], the authors
conjectured that the converse does not hold in general. Recently, Oja [12, Theorem
3.6] showed that X has the weak λ-BAP if and only if X has the K-λ-BAP. More
recently, Kim [6] showed that X has the K-AP if and only if X has the AP (B-AP).

The following lemma is in Lima, Nygaard, and Oja [9, Theorem 2.2].

Lemma 2.2. If T ∈ W(X, Y ) (resp. K(X, Y )), then there exist a reflexive Ba-
nach space Z, S ∈ W(X, Z) (resp. K(X, Z)), and J ∈ W(Z, Y ) (resp. K(Z, Y ))
such that ‖J‖ = 1, T = JS, and ‖S‖ = ‖T‖.

Proposition 2.3.

(a) X has the W-BAP if and only if for every reflexive Banach space Y and
T ∈ W(X, Y ) there exists λT > 0 so that T ∈ F (X, Y ; λT )

τ .
(b) X has the K-BAP if and only if for every reflexive Banach space Y and

T ∈ K(X, Y ) there exists λT > 0 so that T ∈ F (X, Y ; λT )
τ .

Proof. Since the proofs of (a) and (b) are the same, we only prove (a). Also
we only need to prove the “if” part. Let Y be a Banach space and T ∈ W(X, Y ).
By Lemma 2.2 there exist a reflexive Banach space Z, S ∈ W(X, Z), and J ∈
W(Z, Y ) such that ‖J‖ = 1, T = JS, and ‖S‖ = ‖T‖. Then by the assumption
there exist a λS > 0 and a net (Sα) ⊂ F (X, Z; λS) such that

Sα
τ−→ S.

Consider (JSα) ⊂ F (X, Y ; λS). Then clearly JSα
τ−→ JS = T . Hence X has

the W-BAP.
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Using [8, Proposition 1], in Propositions 2.1(c) and 2.3(a)(b), every reflexive
Banach space Y can be replaced by every separable reflexive Banach space Y .

In [12, Conjecture 3.7], the author conjectured that there exists a Banach space
X which satisfies the K-BAP (the strong approximation property) but fails the K-
λ-BAP (W-λ-BAP) for any λ ≥ 1. But we don’t know whether K-BAP implies
W-BAP.

3. MAIN TOOLS OF PROOFS OF THEOREMS 1.1 AND 1.2

In this section we establish some equivalent conditions and sufficient conditions,
which are main tools of proofs of Theorems 1.1 and 1.2, to have the A-approximation
properties. The following lemma is deduced by [5, Proposition 3.1].

Lemma 3.1. For every Banach space X , Y , and λ > 0, F (Y ∗, X∗; λ)
weak∗

=
F ∗(X, Y ; λ)

weak∗
.

We introduce a topology induced by a subspace of B(X, Y )�, the vector space of
all linear functionals on B(X, Y ). Let Z be the linear span of all linear functionals
ϕ on B(X, Y ) of the form

ϕ(T ) =
∑
n

y∗n(Txn)

for (xn) ⊂ X and (y∗n) ⊂ Y ∗ with
∑

n ‖xn‖‖y∗n‖ < ∞, which is also the form of
elements of Z . Then the summable weak operator topology (swo) on B(X, Y ) is
the topology induced by Z . From Megginson [11, Proposition 2.4.4 and Theorem
2.4.11] we have that

Tα
swo−→ T if and only if

∑
n

y∗n(Tαxn) −→
∑

n

y∗n(Txn)

for every (xn) ⊂ X and (y∗n) ⊂ Y ∗ with
∑

n ‖xn‖‖y∗n‖ < ∞, swo is a locally
convex vector topology, and the dual space of B(X, Y ) with respect to swo is Z .
From [11, Corollary 2.2.29] and Fact in Section 2 we have

Lemma 3.2. For every convex set C in B(X, Y ) Cτ = Cswo.

We now establish simple equivalent conditions of the A-approximation proper-
ties. Since the proofs of Propositions 3.3, 3.4, and 3.5 are the same, we only prove
Proposition 3.4.

Proposition 3.3. The following are equivalent.
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(a) X has the A-AP.
(b) For every Banach space Y , A(X, Y ∗∗) ⊂ F (X, Y ∗∗)

τ .

(c) For every Banach space Y , A(X, Y ∗∗) ⊂ F (X, Y ∗∗)
weak∗

.

(d) For every Banach space Y , A(Y ∗, X∗) ⊂ F ∗(X, Y )
weak∗

.

Proposition 3.4. The following are equivalent.
(a) X has the A-λ-BAP.
(b) For every Banach space Y , A(X, Y ∗∗; 1) ⊂ F (X, Y ∗∗; λ)

τ .

(c) For every Banach space Y , A(X, Y ∗∗; 1) ⊂ F (X, Y ∗∗; λ)
weak∗

.

(d) For every Banach space Y , A(Y ∗, X∗; 1) ⊂ F ∗(X, Y ; λ)
weak∗

.

Proof. We show (a)=⇒(b)=⇒(c)=⇒(d)=⇒(a). But (a)=⇒(b) and (b)=⇒(c)
are clear.

(c)=⇒(d) Let Y be a Banach space and T ∈ A(Y ∗, X∗; 1). Then T ∗QX ∈
A(X, Y ∗∗; 1). By the assumption T ∗QX ∈ F (X, Y ∗∗; λ)

weak∗
. Thus there exists

a net (Sα) ⊂ F (X, Y ∗∗; λ) so that for every (xn) ⊂ X and (y∗n) ⊂ Y ∗ with∑
n ‖xn‖‖y∗n‖ < ∞

∑
n

(S∗
αQY ∗(y∗n))(xn) =

∑
n

(Sαxn)(y∗n) −→
∑
n

(T ∗QXxn)(y∗n) =
∑
n

(Ty∗n)(xn).

Since (S∗
αQY ∗) ⊂ F (Y ∗, X∗; λ), by Lemma 3.1 T ∈ F (Y ∗, X∗; λ)

weak∗
=

F ∗(X, Y ; λ)
weak∗

.
(d)=⇒(a) Let Y be a Banach space and T ∈ A(X, Y ; 1). Then by the as-

sumption T ∗ ∈ F ∗(X, Y ; λ)
weak∗

. From the definitions of swo and weak∗ we see
T ∈ F (X, Y ; λ)

swo
. Hence X has the A-λ-BAP from Lemma 3.2.

Proposition 3.5. The following are equivalent.

(a) X has the A-BAP.
(b) For every Banach space Y and T ∈ A(X, Y ∗∗), there exists a λT > 0 so

that T ∈ F (X, Y ∗∗; λT )
τ
.

(c) For every Banach space Y and T ∈ A(X, Y ∗∗), there exists a λT > 0 so
that T ∈ F (X, Y ∗∗; λT )

weak∗
.

(d) For every Banach space Y and T ∈ A(Y ∗, X∗), there exists a λT > 0 so
that T ∈ F ∗(X, Y ; λT )

weak∗
.
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Next we establish some sufficient conditions to have the A-approximation prop-
erties using Propositions 3.3, 3.4, and 3.5. Since the proofs of Propositions 3.6, 3.8,
and 3.10 are the same, we only prove Proposition 3.8.

Proposition 3.6. Let M be a closed subspace of X . Suppose that X/M has
the B-AP. If for every Banach space Y and T ∈ A(X, Y ) there exist λT > 0 and
a net (Sα) in F (Y ∗, X∗; λT ) so that (Sαy∗)m −→ y∗(Tm) for every m ∈ M and
y∗ ∈ Y ∗, then X has the A-AP.

Corollary 3.7. Let M be a closed subspace of X . Suppose that X/M has the
W-AP. If for every reflexive Banach space Y and T ∈ A(X, Y ) there exist λT > 0
and a net (Sα) in F (Y ∗, X∗; λT ) so that (Sαy∗)m −→ y∗(Tm) for every m ∈ M

and y∗ ∈ Y ∗, then for every reflexive Banach space Y A(X, Y ) ⊂ F (X, Y )
τ .

Proposition 3.8. Let M be a closed subspace of X . Suppose that X/M has
the B-λ-BAP. If for every Banach space Y and T ∈ A(X, Y ; 1) there exists a
net (Sα) in F (Y ∗, X∗; µ) so that (Sαy∗)m −→ y∗(Tm) for every m ∈ M and
y∗ ∈ Y ∗, then X has the A-µ + (µ + 1)λ-BAP.

Proof. Let Y be a Banach space and T ∈ A(X, Y ; 1). Then by the assumption
there exists a net (Sα) in F (Y ∗, X∗; µ) so that (Sαy∗)m −→ y∗(Tm) for every
m ∈ M and y∗ ∈ Y ∗. Since (Sα) is a bounded net in B(Y ∗, X∗), by the Banach-
Alaoglu theorem there exists a subnet (Sβ) of (Sα) such that Sβ

weak∗−→ S for some
S ∈ B(Y ∗, X∗). Therefore ‖S‖ ≤ lim infβ ‖Sβ‖ ≤ µ and

∑
n

(Sβy∗n)xn −→
∑
n

(Sy∗n)(xn)

for every (xn) ⊂ X and (y∗n) ⊂ Y ∗ with
∑

n ‖xn‖‖y∗n‖ < ∞.
In particular, (Sβy∗)m −→ (Sy∗)m for every m ∈ M and y∗ ∈ Y ∗, hence

(Sy∗)m = y∗(Tm). Thus if we let R = S − T ∗, then R : Y ∗ −→ M⊥ is
a well-defined bounded operator. Let ϕM : (X/M)∗ −→ M⊥ be the isome-
try defined by (ϕMz∗)x = z∗π(x) for every z∗ ∈ (X/M)∗ and x ∈ X , where
π : X −→ X/M is the quotient operator (cf. [11, Theorem 1.10.17]). Then
ϕ−1

M R ∈ B(Y ∗, (X/M)∗; µ + 1). Since X/M has the B-λ-BAP, by Proposi-
tion 3.4(d) ϕ−1

M R ∈ F ∗(X/M, Y ; (µ + 1)λ)
weak∗

. So there exists a net (T ∗
γ ) ⊂

F ∗(X/M, Y ; (µ + 1)λ) so that

(†)
∑
n

(T ∗
γ y∗n)(xn + M) −→

∑
n

(ϕ−1
M Ry∗n)(xn + M)

for every (xn + M) ⊂ X/M and (y∗n) ⊂ Y ∗ satisfying
∑

n ‖xn + M‖‖y∗n‖ < ∞.
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Now consider the net (IM⊥ϕMT ∗
γ ) ⊂ F (Y ∗, X∗; (µ+1)λ), where IM⊥ : M⊥ −→

X∗ is the inclusion map, and assume that (xn) ⊂ X and (y∗n) ⊂ Y ∗ satisfy∑
n ‖xn‖‖y∗n‖ < ∞. From (†) we have∑

n

(IM⊥ϕMT ∗
γ y∗n)xn

=
∑
n

(T ∗
γ y∗n)(xn + M) −→

∑
n

(ϕ−1
M Ry∗n)(xn + M) =

∑
n

(Ry∗n)xn.

Let Uγ = IM⊥ϕMT ∗
γ ∈ F(Y ∗, X∗; (µ+1)λ). Then we have shown that Sβ

weak∗−→ S

and Uγ
weak∗−→ R. We can now find a net (Vδ) ⊂ F (Y ∗, X∗; µ+(µ+1)λ) such that

Vδ
weak∗−→ S − R = T ∗.

Therefore from Lemma 3.1

T ∗ ∈ F (Y ∗, X∗; µ + (µ + 1)λ)
weak∗

= F ∗(X, Y ; µ + (µ + 1)λ)
weak∗

.

It from Lemma 3.2 follows that T ∈ F (X, Y ; µ + (µ + 1)λ)
swo

= F (X, Y ; µ
+(µ + 1)λ)

τ
. Hence X has the A-µ + (µ + 1)λ-BAP.

In the proof of Proposition 3.8, if Y is reflexive, then ϕ−1
M R ∈ W(Y ∗, (X/M)∗;

µ + 1). Hence the assumption of X/M can be weakened.

Corollary 3.9. Let M be a closed subspace of X . Suppose that X/M
has the W-λ-BAP. If for every reflexive Banach space Y and T ∈ A(X, Y ; 1)
there exists a net (Sα) in F (Y ∗, X∗; µ) so that (Sαy∗)m −→ y∗(Tm) for every
m ∈ M and y∗ ∈ Y ∗, then for every reflexive Banach space Y , A(X, Y ; 1) ⊂
F (X, Y ; µ + (µ + 1)λ)

τ .

Proposition 3.10. Let M be a closed subspace of X . Suppose that X/M has
the B-BAP. If for every Banach space Y and T ∈ A(X, Y ) there exists λT > 0
and a net (Sα) in F (Y ∗, X∗; λT ) so that (Sαy∗)m −→ y∗(Tm) for every m ∈ M

and y∗ ∈ Y ∗, then X has the A-BAP.

Corollary 3.11. Let M be a closed subspace of X . Suppose that X/M has
the W-BAP. If for every reflexive Banach space Y and T ∈ A(X, Y ) there exists
λT > 0 and a net (Sα) in F (Y ∗, X∗; λT ) so that (Sαy∗)m −→ y∗(Tm) for every
m ∈ M and y∗ ∈ Y ∗, then for every reflexive Banach space Y and T ∈ A(X, Y )
there exists λT > 0 so that T ∈ F (X, Y ; λT )

τ .

4. PROOFS OF MAIN RESULTS

Since the proofs of Theorem 1.1(a), (b), and (c) are the same, we only prove
Theorem 1.1(c).
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Proof of Theorem 1.1(c). Let Y be a Banach space. Since X has the A-
λ-BAP, by Proposition 3.4(d) A(Y ∗, X∗; 1) ⊂ F ∗(X, Y ; λ)

weak∗
. Now let T ∈

A(M, Y ; 1). Then UT ∗ ∈ A(Y ∗, X∗; ‖U‖) ⊂ F ∗(X, Y ; λ‖U‖)weak∗
. Thus there

exists a net (T ∗
α) ⊂ F ∗(X, Y ; λ‖U‖) so that T ∗

α
weak∗−→ UT ∗. That is,

∑
n

y∗n(Tαxn) −→
∑
n

(UT ∗y∗n)xn

for every (xn) ⊂ X and (y∗n) ⊂ Y ∗ satisfying
∑

n ‖xn‖‖y∗n‖ < ∞.
Consider the net (TαIM ) ⊂ F (M, Y ; λ‖U‖), where IM : M −→ X is the

inclusion map, and assume that sequences (mn) ⊂ M and (y∗n) ⊂ Y ∗ satisfy∑
n ‖mn‖‖y∗n‖ < ∞. Then we have

∑
n

y∗n(TαIMmn) =
∑
n

y∗n(Tαmn) −→
∑
n

(UT ∗y∗n)(mn)

=
∑
n

(T ∗y∗n)(mn) =
∑

n

y∗n(Tmn).

Therefore T ∈ F (M, Y ; λ‖U‖)swo
= F (M, Y ; λ‖U‖)τ from Lemma 3.2. Hence

M has the A-λ‖U‖-BAP.

Since the proofs of Theorem 1.2(a), (b), and (c) are the same, we only prove
Theorem 1.2(c).

Proof of Theorem 1.2(c). Let Y be a Banach space and T ∈ A(X, Y ; 1). Since
TIM ∈ A(M, Y ; 1) and M has the A-µ-BAP, there exists a net (Sα) ⊂ F (M, Y ; µ)
so that for every m ∈ M and y∗ ∈ Y ∗

y∗(Sαm) −→ y∗(TIMm) = y∗(Tm).

We consider the net (US∗
α) ⊂ F (Y ∗, X∗; µ‖U‖). Then for every m ∈ M and

y∗ ∈ Y ∗

(US∗
αy∗)m = (S∗

αy∗)m −→ y∗(Tm).

Hence, by Proposition 3.8 X has the A-µ‖U‖ + (µ‖U‖+ 1)λ-BAP.

Proof of Theorem 1.3. Let W be the Willis space [14] which is separable
and reflexive. Then K(W, W ) �⊂ F (W, W )

τ
(cf. [2, Example 2.3]). By a result

of Lindenstrauss [7] (cf. [1, Proposition 1.3]) there exists a Banach space Z with
a basis so that Z∗∗ has a basis and Z∗∗/QZ(Z) is isomorphic to W . Observe
that QZ(Z)⊥ is complemented in Z∗∗∗ (cf. [11, Exercise 3.23]). Then Z has
the BAP and so QZ(Z) has the BAP. Also Z∗∗ has the 1-BAP (cf. [1, Theorem
3.6]) because it is a separable dual space. But K(Z ∗∗/QZ(Z), Z∗∗/QZ(Z)) �⊂
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F (Z∗∗/QZ(Z), Z∗∗/QZ(Z))
τ
. If we let Y = Z∗∗ and M = QZ(Z), then we

complete the proof.

In Theorems 1.1 and 1.2, if we let A = B, then we have [4, Theorem 2.4] and
from Propositions 2.1, 2.3, Corollaries 3.7, 3.9, 3.11, and the proofs of Theorems
1.1 and 1.2, we have

Theorem 4.1. Suppose that M is a closed subspace of X and M ⊥ is comple-
mented in X ∗.

(a) If X has the weak λ-BAP, then M has the weak λ‖U‖-BAP.
(b) If X has the W-BAP, then M has the W-BAP.
(c) If M has the W-BAP and X/M has theW-AP, then X has the W-AP (AP).
(d) If M has the weak µ-BAP and X/M has the weak λ-BAP, then X has the

weak µ‖U‖+ (µ‖U‖ + 1)λ-BAP.
(e) If M has the W-BAP and X/M has the W-BAP, then X has the W-BAP.
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