TAIWANESE JOURNAL OF MATHEMATICS
Vol. 14, No. 1, pp. 195-211, February 2010
This paper is available online at http://www.tjm.nsysu.edu.tw/

VOLTERRA TYPE OPERATORS ON Q_{K} SPACES

Songxiao Li and Hasi Wulan

Abstract

The boundness of Volterra type operators on Q_{K} space is investigated in this paper. A new generalized Carleson measure and Logarithmic Q_{K} spaces has been introduced and studied. In addition, we give a new characterization of Q_{K} space and $Q_{K, 0}$ space.

1. Introduction

Let $\mathbb{D}=\{z:|z|<1\}$ be the unit disk of complex plane \mathbb{C} and $\partial \mathbb{D}$ be the boundary of \mathbb{D}. Denote by $H(\mathbb{D})$ the class of functions analytic in \mathbb{D}. For $a \in \mathbb{D}$, $g(z, a)=\log \frac{1}{\left|\varphi_{a}(z)\right|}$ is the Green function in \mathbb{D}, where $\varphi_{a}(z)=(a-z) /(1-\bar{a} z)$ is the Möbius map of \mathbb{D}. An $f \in H(\mathbb{D})$ is said to belong to the Bloch space \mathcal{B} if $B(f)=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty$. The expression $B(f)$ defines a seminorm while the natural norm is given by $\|f\|_{\mathcal{B}}=|f(0)|+B(f)$. The norm makes \mathcal{B} into a conformally invariant Banach space.

For any nonnegative, nondecreasing and Lebesgue measurable function K : $(0, \infty) \rightarrow[0, \infty)$, we say that f belongs to the space Q_{K} if

$$
\begin{equation*}
\|f\|_{Q_{K}}^{2}=\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z)<\infty \tag{1}
\end{equation*}
$$

where $d A$ is an area measure on \mathbb{D} normalized so that $A(\mathbb{D})=1$. It is easy to see that Q_{K} is Möbius invariant, that is,

$$
\left\|f \circ \varphi_{a}\right\|_{Q_{K}}=\|f\|_{Q_{K}},
$$

whenever $f \in Q_{K}$ and $a \in \mathbb{D}$.

The space $Q_{K, 0}$ consists of analytic functions f on \mathbb{D} for which

$$
\begin{equation*}
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z)=0 \tag{2}
\end{equation*}
$$

It is easy to see that $Q_{K, 0}$ is a closed subspace in Q_{K}. We know that the Green function $g(a, z)$ in (1) and (2) can be replaced by the expression $1-\left|\varphi_{a}(z)\right|^{2}$ (see [8]).

For $0<p<\infty, K(t)=t^{p}$ gives the space $Q_{p} . K(t)=1$ gives the Dirichlet space \mathcal{D}. For more results on Q_{p} spaces and Q_{K} spaces, see [5, 6, 8, 9, 19-22].

If the function K is only defined on $(0,1]$, then we extend it to $(0, \infty)$ by setting $K(t)=K(1)$ for $t>1$. We define an auxiliary function (see [9] or [21]) as follow:

$$
\begin{equation*}
\varphi_{K}(s)=\sup _{0<t \leq 1} \frac{K(s t)}{K(t)}, 0<s<\infty \tag{3}
\end{equation*}
$$

We assume that K is continuous and nondecreasing on $(0,1]$. This ensures that the function φ_{K} is continuous and nondecreasing on $(0, \infty)$. Moreover we need the following constraints on K : $\varphi_{K}(2)<\infty$ and

$$
\begin{equation*}
\int_{0}^{1} \varphi_{K}(s) \frac{d s}{s}<\infty \tag{4}
\end{equation*}
$$

Suppose that $f, g \in H(\mathbb{D})$. A class of integral operators introduced by Pommerenke in [16] is defined by

$$
\begin{equation*}
J_{g} f(z)=\int_{0}^{z} f(\xi) g^{\prime}(\xi) d \xi, \quad z \in \mathbb{D} \tag{5}
\end{equation*}
$$

We call J_{g} Volterra type operator(see, e.g. [17]), which can be viewed as a generalization of the Cesaro operator(see, e.g. [7]).

Similarly, another integral operator is defined by(see, e.g. [24])

$$
\begin{equation*}
I_{g} f(z)=\int_{0}^{z} f^{\prime}(\xi) g(\xi) d \xi \tag{6}
\end{equation*}
$$

The importance of the operator J_{g} and I_{g} comes from the fact that

$$
J_{g} f+I_{g} f=M_{g} f-f(0) g(0),
$$

where the multiplication operator M_{g} is defined by $\left(M_{g} f\right)(z)=g(z) f(z)$.
In [16] Pommerenke showed that J_{g} is a bounded operator on the Hardy space H^{2} if and only if $g \in$ BMOA. Aleman and Siskakis considered J_{g} on the Hardy space, $1 \leq p<\infty$, and weighted Bergman space in [2, 3]. Recently, the boundedness and compactness of J_{g} and I_{g} between some spaces of analytic functions, as
well as their n-dimensional extensions, were investigated in $[1,7,10-13,17,18$, 23, 24] (see also the related references therein).

The paper is organized as follows. In the first section, we introduce the concept of the Q_{K} space and the Volterra type operators J_{g}, I_{g}. The second section is devoted to study the boundedness of Volterra type operators J_{g} and I_{g} on the Q_{K} space. In the third section, we introduce a new Carleson type measure, i.e. $p-\operatorname{logarithmic}$ K-Carleson measure and characterized it. In the fourth section, we introduce two new spaces, logarithmic Q_{K} space and logarithmic $Q_{K, 0}$ space, denoted by $Q_{K}^{\log }$ and $Q_{K, 0}^{\log }$ respectively. Some characterizations of $Q_{K}^{\log }$ and $Q_{K, 0}^{\log }$ are given. In addition, a new characterization of Q_{K} space is given in the last section. These results can be viewed as a development of our early study on Q_{K} spaces, see [8, 9, 14, 19, 20, 21].

Throughout the paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. $a \preceq b$ means that there is a positive constant C such that $a \leq C b$. Moreover, if both $a \preceq b$ and $b \preceq a$ hold, then one says that $a \asymp b$.

2. The Operators J_{g} AND I_{g} ON Q_{K} Spaces

In this section, we give the characterization of boundedness of the operators J_{g} and I_{g} on the Q_{K} space. We state the first result of this section as follows.

Theorem 2.1. Let K satisfy (4).
(a) If

$$
\begin{equation*}
\sup _{I \subset \partial \mathbb{D}} \int_{S(I)}\left(\log \frac{1}{1-|z|^{2}}\right)^{2}\left|g^{\prime}(z)\right|^{2} K\left(\frac{1-|z|}{|I|}\right) d A(z)<\infty \tag{7}
\end{equation*}
$$

then J_{g} is bounded on Q_{K}.
(b) If J_{g} is bounded on Q_{K}, then

$$
\begin{equation*}
\sup _{I \subset \partial \mathbb{D}}\left(\log \frac{2}{|I|}\right)^{2} \int_{S(I)}\left|g^{\prime}(z)\right|^{2} K\left(\frac{1-|z|}{|I|}\right) d A(z)<\infty . \tag{8}
\end{equation*}
$$

To prove the above theorem, we need the following two results which can be found in [9].

Lemma 2.1. Let K satisfy (4) and $f \in H(\mathbb{D})$. Then the following are equivalent.
(i) $f \in Q_{K}$.
(ii) $\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{\prime}(z)\right|^{2} K\left(1-|z|^{2}\right) d A(z)<\infty$.
(iii) $\left|f^{\prime}(z)\right|^{2} d A(z)$ is a K-Carleson measure on \mathbb{D}, that is

$$
\sup _{I \subset \partial \mathbb{D}} \int_{S(I)}\left|f^{\prime}(z)\right|^{2} K\left(\frac{1-|z|}{|I|}\right) d A(z)<\infty
$$

Lemma 2.2. Let K satisfy (4). Then $\log (1-z)$ belongs to Q_{K}.
Proof of Theorem 2.1. Suppose (7) holds and let $f \in Q_{K}$. By Lemma 2.1, we will show $F=J_{g}(f) \in Q_{K}$ by proving that $\left|F^{\prime}(z)\right|^{2} d A(z)$ is a K-Carleson measure. Let $I \in \partial \mathbb{D}$ be an arc. Using the fact that $f \in \mathcal{B}$ and $\|f\|_{\mathcal{B}} \leq\|f\|_{Q_{K}}$, we have

$$
\begin{align*}
& \int_{S(I)}\left|F^{\prime}(z)\right|^{2} K\left(\frac{1-|z|}{|I|}\right) d A(z) \\
= & \int_{S(I)}|f(z)|^{2}\left|g^{\prime}(z)\right|^{2} K\left(\frac{1-|z|}{|I|}\right) d A(z) \\
\leq & \|f\|_{\mathcal{B}}^{2} \int_{S(I)}\left(\log \frac{1}{1-|z|^{2}}\right)^{2}\left|g^{\prime}(z)\right|^{2} K\left(\frac{1-|z|}{|I|}\right) d A(z) \tag{9}\\
\leq & \|f\|_{Q_{K}}^{2} \int_{S(I)}\left(\log \frac{1}{1-|z|^{2}}\right)^{2}\left|g^{\prime}(z)\right|^{2} K\left(\frac{1-|z|}{|I|}\right) d A(z)<\infty .
\end{align*}
$$

From Lemma 2.1, we get the desired result.
Conversely, suppose that $J_{g}: Q_{K} \rightarrow Q_{K}$ is bounded. For $a \in \mathbb{D}$, set $f_{a}(z)=$ $\log \frac{1}{1-\bar{a} z}$. Since K satisfies (4), by Lemma 2.2 , we see that $f_{a} \in Q_{K}$. For an arc $I \subset \partial \mathbb{D}$, let $a=(1-|I|) e^{i \theta}$ with the midpoint $e^{i \theta}$ of I. Then there is a constant C such that

$$
\begin{equation*}
\frac{1}{C} \log \frac{2}{|I|} \leq\left|f_{a}(z)\right| \leq C \log \frac{2}{|I|} \tag{10}
\end{equation*}
$$

for all $z \in S(I)$. Therefore we get

$$
\begin{align*}
& \left(\log \frac{2}{|I|}\right)^{2} \int_{S(I)}\left|g^{\prime}(z)\right|^{2} K\left(\frac{1-|z|}{|I|}\right) d A(z) \\
\preceq & \int_{S(I)}\left|f_{a}(z)\right|^{2}\left|g^{\prime}(z)\right|^{2} K\left(\frac{1-|z|}{|I|}\right) d A(z) \tag{11}\\
= & \int_{S(I)}\left|\left(J_{g} f_{a}\right)^{\prime}(z)\right|^{2} K\left(\frac{1-|z|}{|I|}\right) d A(z) \\
\preceq & \left\|J_{g}\left(f_{a}\right)\right\|_{Q_{K}}^{2} \preceq\left\|J_{g}\right\|^{2} .
\end{align*}
$$

It follows that (8) holds. This finishes the proof.

Theorem 2.2. Let K satisfy (4). The operator I_{g} is bounded on Q_{K} if and only if $g \in H^{\infty}$. Moreover

$$
\begin{equation*}
\left\|I_{g}\right\| \asymp\|g\|_{\infty} \tag{12}
\end{equation*}
$$

Proof. By the definition of I_{g}, we have that $\left(I_{g} f\right)^{\prime}=f^{\prime}(z) g(z)$ and $I_{g} f(0)=0$. Assume that $g \in H^{\infty}$. For an $f \in Q_{K}$,

$$
\begin{align*}
\left\|I_{g} f\right\|_{Q_{K}}^{2} & =\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|\left(I_{g} f\right)^{\prime}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& =\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}|g(z)|^{2}\left|f^{\prime}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \tag{13}\\
& \preceq\|g\|_{\infty}^{2}\|f\|_{Q_{K}}^{2} .
\end{align*}
$$

It follows that I_{g} is bounded on Q_{K} and $\left\|I_{g}\right\| \preceq\|g\|_{\infty}$.
Conversely, assume that the operator $I_{g}: Q_{K} \rightarrow Q_{K}$ is bounded. For any $a \in \mathbb{D}$ such that $|a|>1 / 2$, taking $f_{a}=\log \frac{1}{1-\bar{a} z}$, then $f_{a} \in Q_{K}$. Hence

$$
\begin{align*}
\left|g(z) \| f_{a}^{\prime}(z)\right|\left(1-|z|^{2}\right) & =\left|\left(I_{g} f_{a}\right)^{\prime}(z)\right|\left(1-|z|^{2}\right) \leq\left\|I_{g} f_{a}\right\|_{\mathcal{B}} \\
& \preceq\left\|I_{g} f_{a}\right\|_{Q_{K}} \tag{14}\\
& \preceq\left\|I_{g}\right\|\left\|f_{a}\right\|_{Q_{K}} .
\end{align*}
$$

Letting $z=a$, we get

$$
\begin{equation*}
|\bar{a}||g(a)| \preceq\left\|I_{g}\right\|\left\|f_{a}\right\|_{Q_{K}} \preceq\left\|I_{g}\right\|\left\|\log \frac{1}{1-z}\right\|_{Q_{K}} \tag{15}
\end{equation*}
$$

Taking supremum in the last inequality over the set $1 / 2 \leq|a|<1$ and noticing that by the maximum modulus principle there is a positive constant C independent of $g \in H(\mathbb{D})$ such that

$$
\begin{equation*}
\sup _{a \in \mathbb{D}}|g(a)| \leq C \sup _{1 / 2 \leq|a|<1}|\bar{a}||g(a)| \tag{16}
\end{equation*}
$$

From (15) and (16), for any $a \in \mathbb{D}$, we have

$$
\begin{equation*}
|g(a)| \preceq\left\|I_{g}\right\| \tag{17}
\end{equation*}
$$

From (13) and (17) we obtain (12). It completes the proof of this theorem.

3. Logarithmic K-Carleson Measure and Characterization

Let μ denote a positive Borel measure on \mathbb{D}. For a subarc $I \in \partial \mathbb{D}$, let

$$
S(I)=\{r \zeta \in \mathbb{D}: 1-|I|<r<1, \zeta \in I\} .
$$

If $|I| \geq 1$, then we set $S(I)=\mathbb{D}$. For $0<p<\infty$, we say that μ is a p-Carleson measure on \mathbb{D} if

$$
\sup _{I \subset \partial \mathbb{D}} \mu(S(I)) /|I|^{p}<\infty
$$

Here and henceforth $\sup _{I \subset \partial \mathbb{D}}$ indicates the supremum taken over all subarcs I of $\partial \mathbb{D}$. Note that $p=1$ gives the classical Carleson measure.

From (8), if we let $d \mu=\left|g^{\prime}(z)\right|^{2} d A(z)$, then we obtain a natural expression

$$
\left(\log \frac{2}{|I|}\right)^{2} \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) d \mu(z)
$$

Motivated by the above formula, we define a new measure and give some characterizations of it.

Definition 3.1. For $0 \leq p<\infty$, a positive Borel measure μ on \mathbb{D} is called a p-logarithmic K-Carleson measure if

$$
\begin{equation*}
\sup _{I \subset \partial \mathbb{D}}\left(\log \frac{2}{|I|}\right)^{p} \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) d \mu(z)<\infty . \tag{18}
\end{equation*}
$$

A positive Borel measure μ on \mathbb{D} is called a vanishing p-logarithmic K-Carleson measure if

$$
\begin{equation*}
\lim _{|I| \rightarrow 0}\left(\log \frac{2}{|I|}\right)^{p} \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) d \mu(z)=0 \tag{19}
\end{equation*}
$$

Remark 1. Note that μ is called K-Carleson measure if $p=0$, see [9] for more results about K-Carleson measures. The related p-logarithmic s-Carleson measure was studied in [15, 25].

Theorem 3.1. Let μ be a positive Borel measure on \mathbb{D} and $0 \leq p<\infty$. Let K satisfy (4). Then μ is a p-logarithmic K-Carleson measure if and only if

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{p} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d \mu(z)<\infty . \tag{20}
\end{equation*}
$$

Proof. Sufficiency. Assume that (20) holds. For a subarc $I \in \partial \mathbb{D}$, suppose that $e^{i \theta}$ is the midpoint of I. Then by taking $a=e^{i \theta}(1-|I|)$, we have

$$
\frac{1}{|I|} \preceq \frac{1-|a|^{2}}{|1-\bar{a} z|^{2}} \preceq \frac{1}{|1-\bar{a} z|}, \quad z \in S(I) .
$$

Consequently,

$$
\begin{aligned}
\left(\log \frac{2}{|I|}\right)^{p} \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) d \mu(z) & =\int_{S(I)}\left(\log \frac{2}{|I|}\right)^{p} K\left(\frac{1-|z|}{|I|}\right) d \mu(z) \\
& \preceq \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{p} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d \mu(z) .
\end{aligned}
$$

Thus μ is a $p-$ logarithmic K-Carleson measure.
Necessity. We suppose that μ is a p-logarithmic K-Carleson measure. Now, for $|a|>3 / 4$, let I be the subarc centered at $a /|a|$ of length $\frac{(1-|a|)}{2 \pi}$. Consider

$$
S_{n}=\left\{z \in \mathbb{D}:\left|z-\frac{a}{|a|}\right| \leq 2^{n}(1-|a|)\right\}, \quad n=1,2, \cdots
$$

We have that

$$
\frac{1-|a|^{2}}{|1-\bar{a} z|^{2}} \preceq \frac{1}{2^{2 n}|I|}, \quad z \in S_{n} \backslash S_{n-1}, \quad n=2, \cdots .
$$

Thus

$$
\begin{aligned}
& \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{p} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d \mu(z) \\
= & \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{p} K\left(\frac{\left(1-|z|^{2}\right)\left(1-|a|^{2}\right)}{|1-\bar{a} z|^{2}}\right) d \mu(z) \\
\preceq & \int_{S_{1}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{p} K\left(\frac{\left(1-|z|^{2}\right)\left(1-|a|^{2}\right)}{|1-\bar{a} z|^{2}}\right) d \mu(z) \\
& +\sum_{n=2}^{\infty} \int_{S_{n} \backslash S_{n-1}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{p} K\left(\frac{\left(1-|z|^{2}\right)\left(1-|a|^{2}\right)}{|1-\bar{a} z|^{2}}\right) d \mu(z) \\
\preceq & C+\sum_{n=2}^{\infty} \int_{S_{n} \backslash S_{n-1}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{p} K\left(\frac{1-|z|}{2^{2 n}|I|}\right) d \mu(z) \\
\preceq & \sum_{n=2}^{\infty}\left(\log \frac{2}{2^{n}|I|}\right)^{p} \sup _{z \in S_{n}} \frac{K\left(\frac{1-|z|}{2^{2 n}|I|}\right)}{K\left(\frac{1-|z|}{2^{n} I I}\right)} \int_{S_{n}} K\left(\frac{1-|z|}{2^{n}|I|}\right) d \mu(z) .
\end{aligned}
$$

Putting $\frac{1-|z|}{2^{n}| |}=t$, we have

$$
\sup _{z \in S_{n}} \frac{K\left(\frac{1-|z|}{2^{2 n}|I|}\right)}{K\left(\frac{1-z \mid}{2^{n}|I|}\right)} \leq \sup _{0 \leq t \leq 1} \frac{K\left(2^{-n} t\right)}{K(t)}=\varphi_{K}\left(2^{-n}\right) .
$$

Since μ is a $p-$ logarithmic $K-$ Carleson measure,

$$
\left(\log \frac{2}{2^{n}|I|}\right)^{p} \int_{S_{n}} K\left(\frac{1-|z|}{2^{n}|I|}\right) d \mu(z) \preceq 1,
$$

for all $n=1,2, \cdots$. Thus

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\log \frac{2}{2^{n}|I|}\right)^{p} \sup _{z \in S_{n}} \frac{K\left(\frac{1-|z|}{2^{2 n}|I|}\right)}{K\left(\frac{1-|z|}{2^{n}|I|}\right)} \int_{S_{n}} K\left(\frac{1-|z|}{2^{n}|I|}\right) d \mu(z) \\
\preceq & \sum_{n=2}^{\infty} \varphi_{K}\left(2^{-n}\right) \preceq \int_{0}^{1} \frac{\varphi_{K}(s)}{s} d s .
\end{aligned}
$$

Therefore

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{p} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d \mu(z) \preceq \int_{0}^{1} \frac{\varphi_{K}(s)}{s} d s<\infty .
$$

The proof is completed.
Carefully check the proof of the above theorem, we have the following result. We omit the details.

Theorem 3.2. Let $0 \leq p<\infty$ and μ be a positive Borel measure on \mathbb{D}. Let K satisfy (4). Then μ is a vanishing p-logarithmic $K-C a r l e s o n ~ m e a s u r e ~ i f ~ a n d ~ o n l y ~$ if

$$
\begin{equation*}
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{p} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d \mu(z)=0 \tag{21}
\end{equation*}
$$

4. The Logarithmic Q_{K} Spaces

From the above section, it is natural to consider the following spaces $Q_{K}^{\log }$ and $Q_{K, 0}^{\log }$ defined as follows.

For any nonnegative, nondecreasing and Lebesgue measurable function K : $(0, \infty) \rightarrow[0, \infty)$, we say that f belongs to the logarithmic Q_{K} space, denoted by $Q_{K}^{\log }$, if

$$
\|f\|_{Q_{K}^{\log }}^{2}=\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z)<\infty
$$

and f belongs to the space $Q_{K, 0}^{\log }$ if

$$
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z)=0
$$

To study the spaces $Q_{K}^{\log }$ and $Q_{K, 0}^{\log }$, we consider the logarithmic Bloch space $\mathcal{B}^{\log }$ and the little logarithmic Bloch space $\mathcal{B}_{0}^{\log }$. We say $f \in \mathcal{B}^{\log }$ if

$$
\|f\|_{\mathcal{B}^{\log }}=\sup _{z \in \mathbb{D}}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \log \frac{2}{1-|z|^{2}}<\infty .
$$

f belongs to the little logarithmic Bloch space $\mathcal{B}_{0}^{\text {log }}$ if

$$
\lim _{|z| \rightarrow 1}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \log \frac{2}{1-|z|^{2}}=0
$$

In [4], Attete proved that if $f \in L_{a}^{1}$ then the Hankel operator $H_{\bar{f}}$ is bounded on L_{a}^{1} if and only if $f \in \mathcal{B}^{\log }$.

The first result concering the relationship between $Q_{K}^{\log }$ and $\mathcal{B}^{\log }$, is follows.
Theorem 4.1. $Q_{K}^{\log } \subset \mathcal{B}^{\log } ; Q_{K, 0}^{\log } \subset \mathcal{B}_{0}^{\log }$.
Proof. For $0<r<1$, let $\mathbb{D}(a, r)=\left\{a \in \mathbb{D}:\left|\varphi_{a}(z)\right|<r\right\}$ be the pseudohyperbolic disk with center $a \in \mathbb{D}$ and radius r. By [27] we see that

$$
\frac{1}{|1-\bar{a} z|^{2}} \asymp \frac{1}{\left(1-|z|^{2}\right)^{2}} \asymp \frac{1}{\left(1-|a|^{2}\right)^{2}} \asymp \frac{1}{|\mathbb{D}(a, r)|}, z \in \mathbb{D}(a, r) .
$$

Choose an $r_{0} \in(0,1)$ such that $g(z, a) \geq \log \frac{1}{r_{0}}$ for $z \in \mathbb{D}(a, r)$. By the subharmonicity, we obtain

$$
\begin{aligned}
& \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
\succeq & K\left(\log \frac{1}{r_{0}}\right) \int_{\mathbb{D}\left(a, r_{0}\right)}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} d A(z) \\
\succeq & K\left(\log \frac{1}{r_{0}}\right)\left(\log \frac{2}{1-|a|^{2}}\right)^{2} \int_{\mathbb{D}\left(a, r_{0}\right)}\left|f^{\prime}(z)\right|^{2} d A(z) \\
\succeq & K\left(\log \frac{1}{r_{0}}\right)\left(\log \frac{2}{1-|a|^{2}}\right)^{2}\left(1-|a|^{2}\right)^{2}\left|f^{\prime}(a)\right|^{2},
\end{aligned}
$$

which means that $Q_{K}^{\log } \subset \mathcal{B}^{\log }$. The proof of the inclusion $Q_{K, 0}^{\log } \subset \mathcal{B}_{0}^{\log }$ is similar to the former.

Theorem 4.2. If

$$
\begin{equation*}
\int_{0}^{1} K(\log (1 / r))\left(1-r^{2}\right)^{-2} r d r<\infty \tag{22}
\end{equation*}
$$

then (i) $Q_{K}^{\log }=\mathcal{B}^{\log }$; (ii) $Q_{K, 0}^{\log }=\mathcal{B}_{0}^{\log }$.
Proof.
(i) From Theorem 4.1, we know that $Q_{K}^{\log } \subset \mathcal{B}^{\log }$. Now we assume that $f \in \mathcal{B}^{\log }$ and observe that

$$
\begin{aligned}
& \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
\preceq & \int_{\mathbb{D}}\left(\log \frac{2}{1-|z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
\preceq & \|f\|_{\mathcal{B}^{\log }}^{2} \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{-2} K(g(z, a)) d A(z) \\
\preceq & \|f\|_{\mathcal{B}^{\log }}^{2} \int_{0}^{1} K(\log (1 / r))\left(1-r^{2}\right)^{-2} r d r<\infty .
\end{aligned}
$$

Hence $f \in Q_{K}^{\mathrm{log}}$.
(ii) From Theorem 4.1, it suffices to prove that $\mathcal{B}_{0}^{\log } \subset Q_{K, 0}^{\log }$. Suppose that $f \in \mathcal{B}_{0}^{\log }$. From the assumption, for given $\varepsilon>0$ there exists an $r, 0<r<1$, such that

$$
\int_{r}^{1} K(\log (1 / r))\left(1-r^{2}\right)^{-2} r d r<\varepsilon
$$

Thus,

$$
\begin{align*}
& \int_{\mathbb{D} \backslash \mathbb{D}(a, r)}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
\preceq & \int_{\mathbb{D} \backslash \mathbb{D}(a, r)}\left(\log \frac{2}{1-|z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
\preceq & \|f\|_{\mathcal{B} \log }^{2} \int_{\mathbb{D} \backslash \mathbb{D}(a, r)}\left(1-|z|^{2}\right)^{-2} K(g(z, a)) d A(z) \tag{23}\\
\preceq & \|f\|_{\mathcal{B}^{\log }}^{2} \int_{r}^{1} K(\log (1 / r))\left(1-r^{2}\right)^{-2} r d r \\
\preceq & \|f\|_{\mathcal{B}^{\log }}^{2} \varepsilon .
\end{align*}
$$

Since $f \in \mathcal{B}_{0}^{\log }$, we see that for given $\varepsilon>0$, there existing $\delta>0$, such that for $\delta<|z|<1$

$$
\log \frac{2}{1-|a|}\left(1-|a|^{2}\right)\left|f^{\prime}(a)\right|<\varepsilon
$$

For $z \in \mathbb{D}(a, r)$, we can choose $\rho, 0<\rho<1$, such that $\rho<|a|<1$ implies $\delta<|z|<1$. Then for $\rho<|a|<1$

$$
\begin{align*}
& \int_{\mathbb{D}(a, r)}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
\preceq & \int_{\mathbb{D}(a, r)}\left(\log \frac{2}{1-|z|^{2}}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \tag{24}\\
\preceq & \varepsilon^{2} \int_{\mathbb{D}(a, r)}\left(1-|z|^{2}\right)^{-2} K(g(z, a)) d A(z) \\
\preceq & \varepsilon^{2} \int_{0}^{r} K(\log (1 / r))\left(1-r^{2}\right)^{-2} r d r .
\end{align*}
$$

Combining (23) and (24), we get

$$
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z)=0
$$

which shows that $f \in Q_{K, 0}^{\log }$. We complete the proof.

Theorem 4.3. Let K satisfy (4) and $f \in H(\mathbb{D})$. Then the following statements are equivalent.
(a) $f \in Q_{K}^{\log }$.
(b) $\left|f^{\prime}(z)\right|^{2} d A(z)$ is a 2-logarithmic K-Carleson measure.

Proof. $(a) \Rightarrow(b)$. Suppose that $f \in Q_{K}^{\log }$, by $1-\left|\varphi_{a}(z)\right|^{2} \leq g(z, a)$, we obtain

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)<\infty . \tag{25}
\end{equation*}
$$

From Theorem 3.1, we see that (b) holds.
Assume that (b) holds, i.e (25) holds. From the proof of Theorem 4.1 we know that (25) implies $f \in \mathcal{B}^{\log }$. Therefore

$$
\begin{align*}
& \int_{|g(z, a)|>1}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
\preceq & \int_{|g(z, a)|>1}\left(\log \frac{2}{1-|z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
\preceq & \|f\|_{\mathcal{B}^{\log }} \int_{|g(z, a)|>1}\left(1-|z|^{2}\right)^{-2} K(g(z, a)) d A(z) \tag{26}\\
\preceq & \|f\|_{\mathcal{B} \log }^{2} \int_{|w|<1 / e}\left(1-|w|^{2}\right)^{-2} K\left(\log \frac{1}{|w|}\right) d A(w) .
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& \int_{|g(z, a)| \leq 1}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
\preceq & \int_{\left|\varphi_{a}(z)\right| \geq \frac{1}{e}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
\preceq & \int_{\mathbb{D}}\left(\log \frac{2}{|1-\bar{a} z|}\right)^{2}\left|f^{\prime}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)
\end{aligned}
$$

which, together with (26), shows that $f \in Q_{K}^{\log }$.
Similarly, we have the following theorem.
Theorem 4.4. Let K satisfy (4) and $f \in H(\mathbb{D})$. Then the following statements are equivalent.
(a) $f \in Q_{K, 0}^{\log }$;
(b) $\left|f^{\prime}(z)\right|^{2} d A(z)$ is a vanishing 2-logarithmic K-Carleson measure.

5. A New Characterization of Q_{K} Space

In [21], the high order derivative characterizations of Q_{K} and $Q_{K, 0}$ spaces were given by the second author and Zhu which can be stated as follows.

Theorem 5.1. Suppose the function K satisfies (4) or that there exists some $p<2$ such that

$$
\int_{1}^{\infty} \frac{\varphi_{K}(s)}{s^{p}} d s<\infty
$$

Then for any positive integer n, an $f \in H(\mathbb{D})$ belongs to Q_{K} if and only if

$$
\begin{equation*}
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)<\infty \tag{27}
\end{equation*}
$$

In this section, we give another characterizations of Q_{K} and $Q_{K, 0}$ as follows.
Theorem 5.2. Suppose the function K satisfies (4) or that there exists some $p<2$ such that

$$
\int_{1}^{\infty} \frac{\varphi_{K}(s)}{s^{p}} d s<\infty
$$

Then for any positive integer n, an $f \in H(\mathbb{D})$ belongs to Q_{K} if and only if (28) $\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} K\left(1-|z|^{2}\right) d A(z)<\infty$.

To prove the Theorem 5.2, we need the following lemma (see [26]).
Lemma 5.1. Suppose f is analytic in $\mathbb{D}, a \in \mathbb{D}$, and n is a positive integer. Then

$$
\left(f \circ \varphi_{a}\right)^{(n)}(z)=\sum_{k=1}^{n} c_{k} f^{(k)}\left(\varphi_{a}(z)\right) \frac{\left(1-|a|^{2}\right)^{k}}{(1-\bar{a} z)^{n+k}},
$$

and

$$
f^{(n)}\left(\varphi_{a}(z)\right) \frac{\left(1-|a|^{2}\right)^{n}}{(1-\bar{a} z)^{2 n}}=\sum_{k=1}^{n} \frac{d_{k}}{(1-\bar{a} z)^{n-k}}\left(f \circ \varphi_{a}\right)^{(k)}(z),
$$

where c_{k} and d_{k} are polynomials of \bar{a}.
Proof of Theorem 5.2. By a change of variables, we get

$$
\begin{aligned}
& \int_{\mathbb{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
= & \int_{\mathbb{D}}\left|f^{(n)}\left(\varphi_{a}(z)\right)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{2 n-2} K\left(1-|z|^{2}\right) \frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} d A(z) \\
= & \int_{\mathbb{D}}\left|f^{(n)}\left(\varphi_{a}(z)\right)\right|^{2} \frac{\left(1-|a|^{2}\right)^{2 n}}{|1-\bar{a} z|^{4 n}}\left(1-|z|^{2}\right)^{2 n-2} K\left(1-|z|^{2}\right) d A(z) \\
= & \int_{\mathbb{D}}\left|\sum_{k=1}^{n} \frac{d_{k}}{(1-\bar{a} z)^{n-k}}\left(f \circ \varphi_{a}\right)^{(k)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} K\left(1-|z|^{2}\right) d A(z) \\
\leq & \sum_{k=1}^{n} n^{2}\left|d_{k}\right|^{2} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{(k)}(z)\right|^{2} \frac{\left(1-|z|^{2}\right)^{2 n-2}}{|1-\bar{a} z|^{2(n-k)}} K\left(1-|z|^{2}\right) d A(z) \\
\leq & \sum_{k=1}^{n} n^{2}\left|d_{k}\right|^{2} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{(k)}(z)\right|^{2} \frac{\left(1-|z|^{2}\right)^{2(n-k)}}{|1-\bar{a} z|^{2(n-k)}}\left(1-|z|^{2}\right)^{2 k-2} K\left(1-|z|^{2}\right) d A(z) \\
\leq & \sum_{k=1}^{n} n^{2}\left|d_{k}\right|^{2} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{(k)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 k-2} K\left(1-|z|^{2}\right) d A(z) .
\end{aligned}
$$

Since for any positive integer $m \geq 2$,

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{(m)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 m-2} K\left(1-|z|^{2}\right) d A(z)<\infty
$$

implies that

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{(m-1)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2(m-1)-2} K\left(1-|z|^{2}\right) d A(z)<\infty
$$

Therefore (28) together with (29) imply

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)<\infty .
$$

From (27), we see that $f \in Q_{K}$.
Conversely, assume that $f \in Q_{K}$. By (27), for any positive integer k,

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{(k)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 k-2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)<\infty
$$

Hence for any positive integer n, by Lemma 5.1, we have

$$
\begin{aligned}
& \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} K\left(1-|z|^{2}\right) d A(z) \\
\leq & \sum_{k=1}^{n} n^{2}\left|c_{k}\right|^{2} \int_{\mathbb{D}}\left|f^{(k)}\left(\varphi_{a}(z)\right)\right|^{2} \frac{\left(1-|a|^{2}\right)^{2 k}\left(1-|z|^{2}\right)^{2 n-2}}{|1-\bar{a} z|^{2(n+k)}} K\left(1-|z|^{2}\right) d A(z) \\
\leq & \sum_{k=1}^{n} n^{2}\left|c_{k}\right|^{2} \int_{\mathbb{D}}\left|f^{(k)}(z)\right|^{2} \frac{\left(1-|a|^{2}\right)^{2 k}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{2 n-2}}{\left|1-\bar{a} \varphi_{a}(z)\right|^{2(n+k)}} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A\left(\varphi_{a}(z)\right) \\
\leq & \sum_{k=1}^{n} n^{2}\left|c_{k}\right|^{2} \int_{\mathbb{D}}\left|f^{(k)}(z)\right|^{2} \frac{\left(1-|z|^{2}\right)^{2(n-k)}}{|1-\bar{a} z|^{2(n-k)}}\left(1-|z|^{2}\right)^{2 k-2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
\leq & \sum_{k=1}^{n} n^{2}\left|c_{k}\right|^{2} \int_{\mathbb{D}}\left|f^{(k)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 k-2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)<\infty .
\end{aligned}
$$

The proof is completed.
Remark 2. Since our estimates are pointwise estimates with respect to $a \in \mathbb{D}$, we have the corresponding little oh version characterizations of $Q_{K, 0}$ spaces as follows.

Theorem 5.3. Suppose the function K satisfies (4) or that there exists some $p<2$ such that

$$
\int_{1}^{\infty} \frac{\varphi_{K}(s)}{s^{p}} d s<\infty
$$

Then for any positive integer n, an $f \in H(\mathbb{D})$ belongs to $Q_{K, 0}$ if and only if

$$
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} K\left(1-|z|^{2}\right) d A(z)=0
$$

As a corollary, we obtain the following new characterizations of Q_{p} and $Q_{p, 0}$ space.

Corollary 5.1. For any positive integer n and $0<p<\infty$, an $f \in H(\mathbb{D})$ belongs to Q_{p} if and only if

$$
\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2+p} d A(z)<\infty
$$

An $f \in H(\mathbb{D})$ belongs to $Q_{p, 0}$ if and only if

$$
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left|\left(f \circ \varphi_{a}\right)^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2+p} d A(z)=0
$$

Acknowledgment

The authors of this paper are supported by the NNSF of China (No. 10671115), the Research Fund for the doctoral program of Higher Education (No. 20060560002) and NSF of Guangdong Province (No. 06105648).

References

1. A. Aleman and J. Cima, An integral operator on H^{p} and Hardy's inequality, J. Anal. Math., 85 (2001), 157-176.
2. A. Aleman and A. Siskakis, An integral operator on H^{p}, Complex Variables, 28 (1995), 140-158.
3. A. Aleman and A. Siskakis, Integral operators on Bergman spaces, Indiana Univ. Math. J., 46 (1997), 337-356.
4. K. Attele, Toeplitz and Hankel operators on Bergman space, Hokkaido Math. J., 211 (1992), 279-293.
5. R. Aulaskari, D. Stegenga and J. Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measure, Rocky Mountain J. Math., 26 (1996), 485-506.
6. R. Aulaskari, J. Xiao and R. Zhao, Some subspaces and subsets of BMOA and UBC, Analysis, 15 (1995), 101-121.
7. D. Chang, S. Li and S. Stević, Om some integral operators on the unit polydisk and the unit ball, Taiwanese J. Math., 11(5) (2007), 1251-1286.
8. M. Essén and H. Wulan, On analytic and meromorphic functions and spaces of Q_{K}-type, Illinois J. Math., 46 (2002), 1233-1258.
9. M. Essén, H. Wulan and J. Xiao, Several function-theoretic characterizations of Möbius invariant Q_{K} spaces, J. Funct. Anal., 230 (2006), 78-115.
10. Z. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc., 131(7) (2003), 2171-2179.
11. Z. Hu, Extended Cesàro operators on the Bloch space in the unit ball of \mathbb{C}^{n}, Acta Math. Sci. Ser. B Engl. Ed., 23(4) (2003), 561-566.
12. S. Li, Riemann-Stieltjes operators from $F(p, q, s)$ to Bloch space on the unit ball, J. Ineq. Appl., Volume 2006, Article ID 27874, Pages 1-14.
13. S. Li and S. Stevic, Riemann-Stieltjes operators on Hardy spaces in the unit ball of \mathbb{C}^{n}, Bull. Belg. Math. Soc. Simon Stevin, 14 (2007), 621-628.
14. $\mathrm{S} . \mathrm{Li}$ and H . Wulan, Composition operators on Q_{K} spaces, J. Math. Anal. Appl., 327 (2007), 948-958.
15. B. MacCluer and R. Zhao, Vanishing logarithmic Carleson measure, Illinois J. Math., 46(2) (2002), 507-518.
16. C. Pommerenke, Schlichte funktionen und analytische funktionen von beschränkter mittlerer oszillation, Comment. Math. Helv., 52 (1977), 591-602.
17. A. Siskakis and R. Zhao, A Volterra type operator on spaces of analytic functions, Contemp. Math., 232 (1999), 299-311.
18. S. Stevic, On an integral operator on the unit ball in \mathbb{C}^{n}, J. Inequal. Appl., 1 (2005), 81-88.
19. H. Wulan and P. Wu, Characterizations of Q_{T} spaces, J. Math. Anal. Appl., 254 (2001), 484-497.
20. H. Wulan and K. Zhu, Derivative-free characterizations of Q_{K} spaces, J. Austra Math., 82 (2007), 283-295.
21. H. Wulan and K. Zhu, Q_{K} spaces via higher order derivatives, Rocky Mountain J. Math., 38(1) (2008), 329-350.
22. J. Xiao, Holomorphic Q classes, Berlin-Heidelberg, New York: Springer-Verlag, 2001.
23. J. Xiao, Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball, J. London. Math. Soc., 70(2) (2004), 199-214.
24. R. Yoneda, Pointwise multipliers from $B M O A^{\alpha}$ to $B M O A^{\beta}$, Complex Variables, 49(14) (2004), 1045-1061.
25. R. Zhao, On logarithmic Carleson measure, Acta Math. (Szego), 69 (2003), 605-618.
26. K. Zhu, A class of Möbius invariant function spaces, Illinois J. Math., 51(3) (2007), 977-1002.
27. K. Zhu, Operator Theory in Function Space, Marcel Dekker, New York, 1990.

Songxiao Li
Department of Mathematics,
JiaYing University,
Meizhou 514015, GuangDong,
P. R. China
E-mail: jyulsx@163.com
lsx@mail.zjxu.edu.cn
Hasi Wulan
Department of Mathematics,
Shantou University,
Shantou 515063, GuangDong,
P. R. China
E-mail: wulan@stu.edu.cn

