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OSCILLATION AND NONOSCILLATION OF SOLUTIONS
OF PDE WITH p−LAPLACIAN

Zhiting Xu

Abstract. Some necessary conditions are established for the nonoscillation of
the following PDE with p−Laplacian

div(‖∇y‖p−2∇y) + c(x)|y|p−2y = 0.

Using these results, we obtain some oscillation criteria for the above equation.

1. INTRODUCTION

We are here concerned with the oscillatory behavior of solutions of the following
partial differential equation (PDE) with p−Laplacian

(1.1) div(‖∇y‖p−2∇y) + c(x)|y|p−2y = 0,

where p > 1 is the p−Laplacian, x = (x1, · · · , xN) ∈ R
N , ‖ · ‖ is the usual

Euclidean norm in R, ∇ denotes the usual nabla operator, c ∈ Cµ
loc(Ω(1), R),

µ ∈ (0, 1), and the set Ω(a) := {x ∈ R
N : ‖x‖ ≥ a} for some a > 0.

The PDEs with p−Laplacian have applications in various physical and biolog-
ical problems–in the study of non–Newtonian fluids, in the glaciology and slow
diffusion problems. For more detailed discussion about applications of PDEs with
p−Laplacian, see [1] and references therein.

By a solution of (1.1) we mean a function y ∈ C1+µ
loc (Ω(1), R) with the property

‖∇y‖p−1∇y ∈ C1+µ
loc (Ω(1), R) satisfies (1.1) for all Ω(1). Regarding the question

of existence of solutions to (1.1) we refer the reader to the monograph [1]. A
nontrivial solution y(x) of (1.1) is called oscillatory if y(x) has zero on Ω(a) for
every a ≥ 1; otherwise it is said to be nonoscillatory. (1.1) is oscillatory if all its
solutions are oscillatory.
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The literature on the oscillation/or nonoscillation of (1.1) is voluminous, cf, [2,
5, 7-9, 11, 14-16]. Among these we would like to mention Usami’s work, which
seems to be the first paper to study the oscillation of (1.1) in some sense and gives
the following Leighton-type oscillation criteria [6] for (1.1) [11, Theorem 4].

Theorem 1.1. Equation (1.1) is oscillatory if there exists a positive C 1− func-
tion � satisfying

∞∫
rN−1|�′(r)|

�p−1(r)
dr < ∞,

∞∫
dr

[rN−1�(r)]1/(p−1)
= ∞,

and ∫
Ω(1)

�(‖x‖)c(x)dx = ∞.

However, when the case that
∫

Ω(1)

�(‖x‖)c(x)dx < ∞

holds, the results in [11] do not provide any information concerning the oscillation/or
nonoscillation of (1.1).

In this paper, by using the generalized Riccati transformation and following the
ideas of Wong [13], we establish some necessary conditions for the nonoscillation
of (1.1). Using these results, we obtain some oscillation criteria for (1.1).

For simplicity to state our theorems, the following notations to be used through-
out this paper. For any given function ρ ∈ C1([1,∞), R

+) and constant l > 1.
Define

Cρ, l(r) := ρ(r)
∫
Sr

c(x)dσ − 1
l

( l

p

)p
ωNrN−1ρ1−p(r)|ρ′(r)|p,

and
h(r) :=

p − 1
l∗

(ωNrN−1ρ(r))1/(1−p),

where Sr = {x ∈ R
N : ‖x‖ = r}, dσ and ωN denote the spherical integral element

in R
N and the surface measure of unit sphere, respectively, and l∗ is the conjugate

number to l, i.e., 1/l + 1/l∗ = 1.
The main tool used for study of the nonoscillation of (1.1) is the generalized

Riccati transformation. The special case of this transformation has been first intro-
duced in [10]. A simple version of it, convenient for (1.1), has been developed in
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[11]. The transformation is based on the fact that if y = y(x) is a nonoscillatory
solution of (1.1) then the vector function

W (x) =
‖∇y‖p−2∇y

|y|p−1

satisfies the Riccati-type equation

(1.2) divW + c(x) + (p − 1)‖W‖q = 0,

where q is the conjugate number of p, i.e., 1/p + 1/q = 1.
To prove our main results, the following two well-known inequalities [3, The-

orems 27 and 41] are need.

Lemma 1.1. If X and Y are nonnegative, then

(1) (X + Y )λ ≥ Xλ + Y λ, λ > 1;
(2) (X + Y )λ ≥ Xλ + λXλ−1Y, λ > 1.

2. NECESSARY CONDITIONS OF THE NONOSCILLATION

In this section, we will establish some necessary conditions for the nonoscillation
of (1.1).

Theorem 2.1. If (1.1) is nonoscillatory, then there exist a constant r 0 > 1 and
a function Z ∈ C1([r0,∞), R) satisfy

(2.1) Z′(r) + Cρ, l(r) + h(r)|Z(r)|q ≤ 0, r ≥ r0.

Proof. Let y(x) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that y(x) > 0 on Ω(r0) for some r0 ≥ 1. Put

(2.2) Z(r) = ρ(r)
∫
Sr

〈W (x), ν(x)〉dσ for r ≥ r0,

where ν(x) = x/|x|, x 	= 0, denotes the outward unit normal, and 〈·, ·〉 denotes the
scalar product. Then, by Green’s formula in (2.2), and in view of (1.2), we have

(2.3) Z ′(r) =
ρ′(r)
ρ(r)

Z(r)− ρ(r)
∫
Sr

c(x)dσ − (p− 1)ρ(r)
∫
Sr

‖W (x)‖qdσ.

The Hölder inequality gives that
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|Z(r)| ≤ ρ(r)
(∫

Sr

‖W (x)‖qdσ
)1/q(∫

Sr

‖ν‖pdσ
)1/p

= ρ(r)(ωNrN−1)1/p
( ∫

Sr

‖W (x)‖qdσ
)1/q

,

or equivalently,

(2.4)
∫
Sr

‖W (x)‖qdσ ≥ ρ−q(r)(ωNrN−1)1/(1−p)|Z(r)|q.

Combining (2.3) and (2.4), we get

(2.5)

Z ′(r)

≤ −ρ(r)
∫
Sr

c(x)dσ+
|ρ′(r)|
ρ(r)

|Z(r)|−(p−1)(ωNrN−1ρ(r))1/(1−p)|Z(r)|q

= −ρ(r)
∫
Sr

c(x)dσ+
|ρ′(r)|
ρ(r)

|Z(r)|− p−1
l

(ωNrN−1ρ(r))1/(1−p)|Z(r)|q

−p − 1
l∗

(ωNrN−1ρ(r))1/(1−p)|Z(r)|q.

The Young inequality implies that

(2.6)

|ρ′(r)|
ρ(r)

|Z(r)|− p−1
l

(
ωNrN−1ρ(r)

)1/(1−p) |Z(r)|q

≤ 1
l

(
l

p

)p

ωNrN−1ρ1−p(r)|ρ′(r)|p.

From (2.5) and (2.6) we find

Z ′(r) ≤− ρ(r)
∫
Sr

c(x)dσ +
1
l
(
l

p
)pωNrN−1ρ1−p(r)|ρ′(r)|p

− p − 1
l∗

(ωNrN−1ρ(r))1/(1−p)|Z(r)|q

= − Cρ, l(r)− h(r)|Z(r)|q.
This inequality is equivalent to (2.1).

The following Theorem 2.1 is an extension of Leghton’s Theorem [6] to (1.1)
and improves Theorem 1.1 [11, Theorem 4].
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Theorem 2.2. If

(2.7)
∞∫

Cρ, l(s)ds = ∞

and

(2.8)
∞∫

h(s) ds = ∞,

then (1.1) is oscillatory.

Proof. Assume to the contrary, that (1.1) is nonoscillatory. It follows from
Theorem 2.1 that there exist a constant r0 > 1 and a function Z ∈ C1([r0,∞), R)
satisfy (2.1). Integrating (2.1) over [r, b], b ≥ r ≥ r1, we obtain

(2.9) Z(b) ≤ Z(r)−
b∫

r

Cρ, l(s)ds −
b∫

r

h(s)|Z(s)|q ds.

It follows from (2.7) that there exists a r1 ≥ r ≥ 1 such that

Z(r)−
b∫

r

Cρ, l(s)ds ≤ 0 for b ≥ r1.

Hence

Z(b) ≤ −H(b) =:

b∫
r

h(s)|Z(s)|qds for b ≥ r1.

Thus
H ′(b) = −h(b)|Z(b)|q ≥ h(b)|H(b)|q,

which follows that

H−q(b)H ′(b) ≥ h(b) for b ≥ r1.

Integrating the above inequality over the interval [r1,∞) gives a convergent integral
on the left-hand side and a divergent integral on the right-hand side of this inequality,
by virtue of (2.8). This contradiction completes the proof.

Corollary 2.1. [Leighton-type Theorem]. Let p ≥ N . If

(2.10)
∫

Ω(1)

c(x)dx = ∞,

then (1.1) is oscillatory.
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Proof. Follows from Theorem 2.2 for ρ(r) ≡ 1.

Corollary 2.2. If there exists m > 1 such that

(2.11)
∫

Ω(1)

[
‖x‖p−Nc(x)− m

∣∣∣∣p − N

p

∣∣∣∣
p

‖x‖−N

]
dx = ∞,

then (1.1) is oscillatory.

Proof. Follows from Theorem 2.2 for ρ(r) ≡ rp−N and m = lp−1.

It is clear that Theorem 2.2 cannot be applied in the following case:

(2.12)
∞∫

Cρ, l(s) ds < ∞.

Next, we will discuss the behavior of solutions of Eq.(1.1) satisfying (2.12). For
this case, we shall start with a useful theorem which is similar to Hartman’s Lemma
[4, p. 365] for second order linear ordinary differential equation.

Theorem 2.3. Let (2.8) and (2.12) hold, and define

(2.13) Θ(r) :=

∞∫
r

Cρ, l(s)ds < ∞, r ≥ 1.

If (1.1) is nonoscillatory, then there exist a constant r 0 > 1 and a function Z ∈
C([r0,∞), R) such that

(2.14) Z(r) ≥ Θ(r) +

∞∫
r

h(s)|Z(s)|qds, r ≥ r0.

Proof. As in the proof Theorem 2.2, there exist a constant r0 > 1 and a
function Z ∈ C1([r0,∞), R) satisfy (2.9) for b ≥ r ≥ r0. Now, we claim that

(2.15)
∞∫
r

h(s)|Z(s)|qds < ∞.

Otherwise,

(2.16)
∞∫
r

h(s)|Z(s)|qds = ∞.
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Note that (2.9), (2.13) and (2.16), there is a r1 ≥ 1 such that

Z(b) ≤ −
b∫

r1

h(s)|Z(s)|qds, b ≥ r1.

As in the proof of Theorem 2.2, we obtain
∞∫
r1

h(s)ds < ∞, which contradicts (2.8).

Thus (2.15) holds. It follows from (2.9), (2.13) and (2.15) that

(2.17) Z(r) ≥ lim sup
b→∞

Z(b) +

∞∫
r

Cρ, l(s)ds +

∞∫
r

h(s)|Z(s)|qds, r ≥ 1.

If lim supb→∞ Z(b) < 0, then there exist two numbers δ < 0 and r2 ≥ r1 such that
Z(b) < δ for b ≥ r2. It follows from (2.8) that

∞∫
r

h(s)|Z(s)|qds ≥ δq

∞∫
r

h(s)ds = ∞,

which contradicts (2.15). Thus, lim supb→∞ Z(b) ≥ 0. It follows from (2.17) that
(2.14) holds for r ≥ r1. This completes the proof.

In what follows, we assume further the following condition holds.

(2.18) Θ(r) ≥ 0 for all sufficient large r ≥ 1.

Following the ideas of Wong [13], we may establish the following two theorems.

Theorem 2.4. Let (2.8) and (2.18) hold. If (1.1) is nonoscillatory, then there
exist a constant r0 ≥ 1 and a function u ∈ C([r0,∞), R) such that

(2.19) u(r) ≥ Θ1(r) +

∞∫
r

h(s)uq(s) ds, r ≥ r0,

where Θ1(r) =
∞∫
r

h(s)Θq(s)ds.

Proof. Since (1.1) is nonoscillatory, it follows from Theorem 2.3 that there
exist a constant r0 > 1 and a function Z ∈ C([r0,∞), R) satisfy (2.14) for r ≥ r0.
Note that (2.18), one find that Z(r) ≥ 0 and Z(r) ≥ Θ(r) + u(r) for r ≥ r0, here
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u(r) :=
∞∫
r

h(s)Zq(s)ds, which satisfies u′(r) = −h(r)Zq(r). Then, by Lemma

1.1(1), we have

(2.20) u′(r) ≤ −h(r)[Θ(r) + u(r)]q ≤ −h(r)[Θq(r) + uq(r)].

Integrating (2.20) follows that

u(r) ≥ u(b) +

b∫
r

h(s)Θq(s)ds +

b∫
r

h(s)uq(s)ds.

Now, we may replace b in the above inequality by ∞ and readily obtain (2.19).

Applying the technique to (2.19) instead of (2.14), we may obtain the analogue
of Theorem 2.4 as following, whose proof is omitted.

Theorem 2.5. Let (2.8) and (2.18) hold. If (1.1) is nonoscillatory, then there
exists a number r0 > 1 and a function v ∈ C([r0,∞), R) such that

(2.21) v(r) ≥ Θ2(r) +
∫ ∞

r
h(s)vq(s)ds, r ≥ r0,

where Θ2(r) =
∫ ∞
r h(s)Θ2

1(s)ds, and Θ1(r) is as in Theorem 2.4.

It is clear from the proofs of Theorems 2.4 and 2.5 that the process of generating
higher-order iterated Riccati integral equations may be continued if we assume
further that iterated integrals Θ(r), Θ1(r), · · · , are integrable.

As the immediate consequences of Theorem 2.4 and 2.5, we have

Corollary 2.3. Let (2.8) and (2.18) hold. If one of the following conditions
holds, then (1.1) is oscillatory.

(2.22) (1)

∞∫
1

h(r)Θq(r)dr = ∞;

(2.23) (2)

∞∫
1

h(r)Θq
1(r)dr = ∞.

Example 2.1. Consider the equation

(2.24) div(‖∇y‖∇y) +
γ

‖x‖3
|y|y = 0,
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where x ∈ Ω(1), p = 3, N = 2, c(x) = γ/‖x||3, and γ > 0.
Here no matter how we choose �, it is impossible to ensure that the conditions

of Theorem 1.1 [11, Theorem 4] are satisfied. Thus, the results in [11] cannot apply
to (2.24). But, by Corollary 2.2, it is easy to show that if there exists a constant
m > 1 such that γ > m/27 then (2.24) is oscillatory.

Example 2.2. Consider the equation

(2.25) div(‖∇y‖2∇y) +
1

‖x‖7/4
|y|2y = 0,

where x ∈ Ω(1), p = 4, N = 2, c(x) = 1/‖x||7/4. Let l = 2, ρ(r) = r−1. By a
direct calculation, we get

Cρ, l(r) =
2π

r7/4

(
1 − 1

32r9/4

)
, h(r) =

3
2
(2π)−1/3.

Then

Θ(r) =

∞∫
r

Cρ, l(s)ds =
8π

3
1

r3/4

(
1 − 1

128r9/4

)
.

So ∞∫
r

h(s)Θq(s)ds = 4π(
4
3
)1/3

∞∫
1

1
s

(
1 − 1

128s9/4

)4/3
ds = ∞.

Hence, by Corollary 2.3(1), (2.25) is oscillatory.

3. OSCILLATION CRITERIA

In this section, under the assumptions (2.8) and (2.18), we will obtain some
oscillation criteria for (1.1) based upon the necessary conditions of the nonoscillation
established in section 2, which extend Wong’s theorems [13, Theorems 7, 8, 9] to
(1.1).

Theorem 3.1. If there exists a nonnegative function g(r) 	≡ 0 such that

(3.1)
∞∫
r

h(s)Θq(s)ds ≥ αΘ(r) + g(r),

and

(3.2)
∫ ∞

r
h(s)g(s)Θq−1(s)ds ≥ βg(r),

where α = (q − 1)q−q, and β ≥ q−q, then (1.1) is oscillatory.
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Proof. Assume that (1.1) is nonoscillatory, then by Theorem 2.3 that there exist
a constant r0 > 1 and a function Z ∈ C([r0,∞), R) satisfy (2.14), which follows
Z(r) ≥ a0Θ(r) ≥ 0 with a0 = 1. Substituting this into (2.14), we find

(3.3) Z(r) ≥ a1Θ(r) + b1g(r) a1 = 1 + α, b1 = 1.

Substituting (3.3) again into (2.14), and in view of Lemma 1.1(2) and (3.2), we
obtain

(3.4)

Z(r) ≥ Θ(r) +

∞∫
r

h(s)[a1Θ(s) + b1g(s)]qds

≥ Θ(r) +

∞∫
r

h(s)[aq
1Θ

q(s) + qb1a
q−1
1 Θq−1(s)g(s)]ds

≥ (1 + α a
q
1)Θ(r) + [aq

1 + b1qβa
q−1
1 ]g(r)

= a2Θ(r) + b2g(r), a2 = 1 + αaq
1, b2 = aq

1 + b1qβaq−1
1 .

Using (3.4) and an easy induction, we can show in general that

(3.5) Z(r) ≥ anΘ(r)+bnF (r), an = 1+ααq
n−1, bn = aq

n−1+bn−1qβaq−1
n−1.

From the recurrence relation given by (3.5) and the fact that a2 ≥ a1, b2 ≥ b1. One
readily has that an ≥ an−1 and bn ≥ bn−1 hold. Furthermore, it is easy to show
from (3.5) that limn→∞ an = q. Now, if limn→∞ bn is finite, then we can show
from (3.5) that qqβ < 1, contrary to the given hypothesis. Since g(r) 	≡ 0, and
bn → ∞ as n → ∞, the desired contradiction follows from (3.5). This completes
the proof.

Applying the same argument to inequalities (2.19) and (2.21), we obtain respec-
tively.

Theorem 3.2. If there exists a nonnegative function g 1(r) 	≡ 0 such that

(3.6)
∞∫
r

h(s)Θq
1(s) ds ≥ αΘ1(r) + g1(r),

and

(3.7)
∞∫
r

h(s)g(s)Θq−1
1 (s)ds ≥ βg1(r),

where Θ1(r), and α, β are the same as in Theorem 2.4 and Theorem 3.1, respec-
tively, then (1.1) is oscillatory.
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Theorem 3.3. If there exists a nonnegative function g 2(r) 	≡ 0 such that

(3.8)
∞∫
r

h(s)Θq
2(s)ds ≥ αΘ2(r) + g2(r),

and

(3.9)
∞∫
r

h(s)g(s)Θq−1
2 (s)ds ≥ βg2(r),

where Θ2(r), and α, β are the same as in Theorem 2.5 and Theorem 3.1, respec-
tively, then (1.1) is oscillatory.

Let ε > max{1, q − 1} be some constant. Taking

g(r) = (ε + 1 − q)q−qΘ(r) and gi(r) = (ε + 1 − q)q−qΘi(r), i = 1, 2,

in Theorems 3.1-3.3, we obtain the following corollary.

Corollary 3.4. Let ε > max{1, q−1} be some constant. If one of the following
conditions holds, then (1.1) is oscillatory.

(3.10) (1)

∞∫
r

h(s)Θq(s)ds ≥ εq−qΘ(r);

(3.11) (2)

∞∫
r

h(s)Θq
1(s)ds ≥ εq−qΘ1(r);

(3.12) (3)

∞∫
r

h(s)Θq
2(s)ds ≥ εq−qΘ2(r).

The following corollary extend Willett’s oscillation criterion [12, Theorem 1.5]
to (1.1).

Corollary 3.5. Let ε > max{1, q−1} be some constant. If one of the following
conditions holds, then (1.1) is oscillatory.

(3.13) (1) Θ1(s) ≥ ε

q
Θ(r);

(3.14) (2) Θ2(s) ≥ ε

q
Θ1(r).
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Proof. The proofs of (1) and (2) are similar, we only show the first one. Indeed,
by (3.13), we have

∞∫
r

h(s)Θq
1(s)ds ≥

(ε

q

)q
∞∫
r

h(s)Θq(s)ds =
(ε

q

)q
Θ1(r) ≥ εq−qΘ1(r).

It follows from Corollary 3.1 (2) that (1.1) is oscillatory.

Example 3.1. Consider the equation

(3.15) div(‖∇y‖2∇y) +
γ[ 2(2− cos ‖x‖)− ‖x‖ sin‖x‖ ]

‖x‖4
|y|2y = 0,

where x ∈ Ω(1), p = 4, N = 2, c(x) = γ[ (2− cos ‖x‖)−‖x‖ sin‖x‖ ]/‖x‖4, and
γ > 37/25. Let ρ(r) = 1 and l∗ = 3. By a direct calculation, for r > 1, we get

Cρ, l(r) =
2πγ[2(2− cos r) − r sin r]

r3
, h(r) = (2π r)−1/3.

Then

Θ(r) =

∞∫
r

Cρ, l(s)ds =
2πγ(2− cos r)

r2
.

So
2πγ

r2
≤ Θ(r) ≤ 6πγ

r2
,

and
∞∫
r

h(s)Θq(s)ds ≥ 2πγ4/3

∞∫
r

1
s3

ds =
πγ4/3

r2
≥ ε q−qΘ(r) for some ε > 1.

Hence, by Corollary 3.1(1), (3.15) is oscillatory.
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