
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 13, No. 5, pp. 1441-1449, October 2009
This paper is available online at http://www.tjm.nsysu.edu.tw/

SUPERCENTRALIZING AUTOMORPHISMS ON PRIME
SUPERALGEBRAS

Yu Wang

Abstract. Let A = A0 ⊕ A1 be a noncommutative prime superalgebra over a
commutative associative ring F with 1

2 ∈ F . Let Zs(A) be the supercenter of
A. If an Z2-preserving automorphism ϕ : A → A satisfies [ϕ(x), x]s ∈ Zs(A)
for all x ∈ A, then ϕ = 1, where 1 denotes the identity map of A. Moreover,
if A1 �= 0, then A is a central order in a quaternion algebra. This gives a
version of Mayne’s theorem for superalgebras.

1. INTRODUCTION

Let R be a ring with center Z, and for x, y ∈ R, by [x, y] we denote the usual
commutator xy − yx. Let S be a subset of R. A map f : S → R is said to be
centralizing if [f(x), x] ∈ Z for all x ∈ S. In the special case where [f(x), x] = 0
for all x ∈ S, f is called commuting. The study of centralizing maps was initiated
by a well-known theorem of Posner in [13] which states that the existence of a
nonzero centralizing derivation in a prime ring R implies that R is commutative.
An analogous result for centralizing automorphisms on prime rings was obtained by
Mayne [10]. He proved that the existence of a nontrivial centralizing automorphism
in a prime ring R implies that R is commutative. In [3] Brešar gave a description
of all centralizing (commuting) additive maps of prime rings. Over the past few
years a considerable part of the theory of associative rings has been extended to
superalgebras by several authors (see, for examples, [1, 4, 5, 6, 7, 8, 9, 11, 12]).

Throughout the article, algebras are over a unital commutative associative ring F .
We shall assume without further mentioning, that 1

2 ∈ F . Although this requirement
is not always needed, it is assumed for the sake of simplicity.
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Let A be an associative algebra. We say that A is Z2-graded if there are two
F -submodules A0 and A1 of A such that A = A0 ⊕ A1 and AiAj ⊆ Ai+j (where
indexes are computed modulo 2). We say that A0 is the even, and A1 is the odd
part of A. In this case, A is called a superalgebra over F . If A1 = 0 then A is
said to be a trivial superalgebra.

Suppose that A = A0 ⊕ A1 is a superalgebra. An element a ∈ Ai (i = 0, 1)
is said to be homogeneous of degree i and this is indicated by |a| = i. For an
F -submodule S of A, we put Si = S

⋂
Ai, i = 0, 1, and say that S is graded

if S = S0 + S1. A graded ideal of A is an ideal of A which is graded when
considered as an F -module. Now, A is said to be prime if the product of any
two nonzero graded ideals is nonzero. Further, A is called semiprime if it has no
nonzero nilpotent graded ideals.

Form now on, let A be a superalgebra with the center Z(A). Define for any
u, v ∈ A0 ∪A1, the super-commutator [u, v]s = uv − (−1)|u||v|vu, and extend this
product to A, additively. Thus,

[a, b]s = [a0, b0]s + [a1, b0]s + [a0, b1]s + [a1, b1]s,

where a = a0 + a1, b = b0 + b1 and ai, bi ∈ Ai, for i = 0, 1. The supercenter,
Zs(A), consists of the elements a ∈ A such that [a, b]s = 0 for all b ∈ A.

Let S be a subset of A and call a mapping f : S → A supercentralizing
(supercommuting) on S if [f(x), x]s ∈ Zs(A) ([f(x), x]s = 0, respectively) for all
x ∈ S. Let i ∈ {0, 1}. An F -linear mapping di : A → A is called a superderivation
of degree |di| = i if it satisfies di(Aj) ⊆ Ai+j , and

di(xy) = di(x)y + (−1)i|x|xdi(y) for all x, y ∈ A0 ∪ A1.

A superderivation is simply the sum of a superderivation of degree zero and
a superderivation of degree 1. In [4] Chen gave a version of Posner’s theorem
for superderivation on graded-prime superalgebras. He proved that the existence
of a nonzero supercentralizing superderivation in a graded-prime superalgebra A

implies that A is commutative. An automorphism ϕ of A (as algebra) is called a
Z2-preserving automorphism of A if it preserves Z2-gradation (i.e., ϕ(Ai) ⊆ Ai,
for i = 0, 1).

The main purpose of this paper is to give a description of all supercentralizing
(supercommuting) Z2-preserving automorphisms in prime superalgebras.

2. THE MAIN RESULTS AND THEIR PROOFS

In this section, let A = A0 ⊕ A1 be a semiprime superalgebra over F with its
Z(A) and its supercenter Zs(A). Clearly, Zs(A) is a subsuperalgebra of A. Note
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that Zs(A) = Z(A)0 (see [4, Lemma 2.4] or [12, Lemma 1.3(1)]). It is well known
that A and A0 are semiprime as algebras [11, Lemma 1.2]. By C we denote the
extended centroid of A and Q the Martindale right ring of quotients of A. All these
notions are explained in detail in the book [2, Chapter 2].

We define σ : A → A by (a0+a1)σ = a0−a1. Note that σ is an automorphism
of A such that σ2 = 1. Conversely, given an algebra A and an automorphism σ of A
with σ2 = 1 , A then becomes a superalgebra by defining A0 = {a ∈ A | σ(a) = a}
and A1 = {a ∈ A | σ(a) = −a}. Since σ can be extended to Q such that σ2 = 1
on Q [2, Proposition 2.5.3]. Thus Q is also a semiprime superalgebra. It is well
known that for any a ∈ Q there exists an essential ideal I of A such that aI ⊆ A.
We may assume that I is graded since otherwise we can replace it by I ∩ Iσ. This
fact will be used in the proof of main results.

We begin with some basic properties of prime superalgebras.

Lemma 2.1. [5, Lemma 2.1, (i) and (vii)]. Let A = A0 ⊕ A1 be a prime
superalgebra. If a ∈ A is such that aA1 = 0 (or A1a = 0), then a = 0 or A is a
trivial superalgebra. If [A0, A1] = 0 then either A is commutative (as an algebra)
or it is a trivial superalgebra.

The following result is a special case of a theorem of Brešar [3, Proposition
3.1].

Lemma 2.2. Let R be a 2-torsion free semiprime ring R, and U a subring
of R. If an additive mapping f of R into itself is centralizing on R, then f is
commuting on U .

The following result is a special case of [11, Lemma 1.8 (i)].

Lemma 2.3. Let A = A0⊕A1 be a prime superalgebra. If [a1, A0] = 0 where
a1 ∈ A1, then a1 ∈ Z(A).

The following important result will be used in the next lemma.

Lemma 2.4. [5, Lemma 3.4]. Let A be a prime superalgebra such that C 1 = 0.
Let k = 0 or k = 1. Suppose that ai0 , bi0 ∈ A0 and aj1, bj1 ∈ A1 are such that

n∑

i0=1

ai0xkbi0 =
m∑

j1=1

aj1xkbj1 for all xk ∈ Ak.

Then
n∑

i0=1

ai0xkbi0 =
m∑

j1=1

aj1xkbj1 = 0 for all xk ∈ Ak.
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We now give a crucial result for the proof of our main results, which is of
independent interest.

Lemma 2.5. Let A = A0 ⊕ A1 be a nontrivial prime superalgebra. If x 2
1 ∈

Z(A)0 for all x1 ∈ A1, then [A0, A0] = 0.

Proof. We may assume without loss of generality that A is not commutative.
Suppose first that C1 = 0. By assumption we have

(1) x2
1 ∈ Z(A)0 for all x1 ∈ A1.

A linearization of (1) gives

(2) x1y1 + y1x1 ∈ Z(A)0 for all x1, y1 ∈ A1.

In particular, [x0, x1y1 + y1x1] = 0 for all x0 ∈ A0, x1, y1 ∈ A1. That is

x0x1y1 + x0y1x1 − x1y1x0 − y1x1x0 = 0.

Rewriting this equation yields

(3) x0y1x1 − y1x1x0 = x1y1x0 − x0x1y1.

Multiplying (3) by an arbitrary t1 ∈ A1 from the right we get

x0y1(x1t1) − y1(x1x0t1) = x1y1(x0t1) − (x0x1)y1t1,

for all y1 ∈ A1. It follows from Lemma 2.4 that

x0y1x1t1 − y1x1x0t1 = 0.

By Lemma 2.1 we get that

x0y1x1 − y1x1x0 = 0 for all x0 ∈ A0, x1 ∈ A1, y1 ∈ A1.

That is [x0, x1y1] = 0 for all x0 ∈ A0, x1, y1 ∈ A1. Thus [x0, y0x1y1] = 0 and so
[x0, y0]x1y1 = 0 for all x0, y0 ∈ A0, x1, y1 ∈ A1. By Lemma 2.1 again we get that
[x0, y0] = 0 for all x0, y0 ∈ A0 as desired.

We next discuss the case when C1 �= 0. Pick a nonzero λ1 ∈ C1 and choose
an essential graded ideal I of A such that λ1I ⊆ A. Since λ1y0 ∈ A1 for every
y0 ∈ I0, it follows from (2) that

(4) x1λ1y0 + λ1y0x1 ∈ Z(A)0 for all x1 ∈ A1, y0 ∈ I0.
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Note that every nonzero homogeneous element in C is invertible [5, Lemma 3.1].
We deduce from (4) that

(5) x1y0 + y0x1 ∈ Z(A) for all x1 ∈ A1, y0 ∈ I0.

It follows from (2) and (5) that

x1y + yx1 ∈ Z(A) for all x1 ∈ A1, y ∈ I.

In view of [2, Proposition 2.1.10 and Theorem 6.4.1] we get

(6) x1y + yx1 ∈ Z(A) for all x1 ∈ A1, y ∈ Q.

Taking y = 1 in (6) we have that 2x1 ∈ Z(A) for all x1 ∈ A1 and so A1 ⊆ Z(A).
Since A1 �= 0 it follows from Lemma 2.1 that A is commutative, a contradiction.
The proof of the lemma is now complete.

The central closure of A is the central associative superalgebra Z(A)−1
0 A =

{z−1a | z ∈ Z(A)0 \ {0}, a ∈ A} over the ring Z(A)−1
0 Z(A)0. We say that A is

a central order in Z(A)−1
0 A.

Lemma 2.6. [11, Lemma 1.9]. Let A = A0 ⊕A1 be a prime superalgebra. If
A0 is commutative, then Z(A)−1

0 A is one of the following superalgebras:

1. the field Ω(A) = Z(A)−1
0 Z(A)0, with trivial gradation;

2. a direct sum Ω(A) ⊕ Ω(A), with the gradation given by the exchange auto-
morphism;

3. a field extension ∆ = Ω + Ωu, with u2 ∈ Ω, ∆0 = Ω and ∆1 = Ωu;
4. a quaternion algebra Q(α, β) having an Ω-basis 1, u, v, uv, with u 2 = α ∈

Ω\{0}, v2 = β ∈ Ω\{0}, uv = −vu, and the gradation given by Q(α, β)0 =
Ω1 + Ωu, Q(α, β)1 = Ωv + Ωuv.

Now we are ready to prove our first main theorem.

Theorem 2.7. Let A = A0 ⊕ A1 be a noncommutative prime superalgebra
over a commutative associative ring F with 1

2 ∈ F . Let Zs(A) be the supercenter
of A. If an Z2-preserving automorphism ϕ : A → A satisfies [ϕ(x), x] s ∈ Zs(A)
for all x ∈ A, then ϕ = 1, where 1 denotes the identity map of A. Moreover, if
A1 �= 0, then A is a central order in a quaternion algebra.

Proof. If [A0, A1] = 0, by Lemma 2.1 we get that A1 = 0. Then the theorem
follows from Mayne’s theorem. Therefore, we may assume that [A0, A1] �= 0. Our
first goal is to show that ϕ = 1 on A, where 1 denotes the identity mapping of A.
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We first show that ϕ(x0) = x0 for all x0 ∈ A0. By assumption we have
[ϕ(x0), x0] ∈ Z(A)0 ⊆ Z(A0), for all x0 ∈ A0. In view of Lemma 2.2 we get

(7) [ϕ(x0), x0] = 0 for all x0 ∈ A0.

A linearization of (7) gives

(8) [ϕ(x0), y0] = [x0, ϕ(y0)] for all x0, y0 ∈ A0.

For any x0 ∈ A0, x1 ∈ A1, we deduce from our assumption that

[ϕ(x0) + x1), x0 + x1]s

= [ϕ(x0), x0]s + [ϕ(x1), x1]s + [ϕ(x0), x1]s + [ϕ(x1), x0]s ∈ Z(A)0.

Since [ϕ(xi), xi]s ∈ Z(A)0 for all xi ∈ Ai, i = 0, 1, it follows from this equation
that

[ϕ(x0), x1]s + [ϕ(x1), x0]s ∈ Z(A)0 ∩ A1 = 0.

That is, [ϕ(x0), x1] + [ϕ(x1), x0] = 0 for all x0 ∈ A0, x1 ∈ A1. Rewriting this
equation we get

(9) [ϕ(x0), x1] = [x0, ϕ(x1)] for all x0 ∈ A0, x1 ∈ A1.

Combining (8) with (9) we deduce that

(10) [ϕ(x0), y] = [x0, ϕ(y)] for all x0 ∈ A0, y ∈ A.

Substituting x0y for y in (10) we get

[ϕ(x0), x0y] = [x0, ϕ(x0)ϕ(y)],

for all x0 ∈ A0, y ∈ A. Expanding this equation we get

[ϕ(x0), x0]y + x0[ϕ(x0), y] = [x0, ϕ(x0)]ϕ(y) + ϕ(x0)[x0, ϕ(y)].

According to (7) and (10) we have

(11) (ϕ(x0)− x0)[ϕ(x0), y] = 0 for all x0 ∈ A0, y ∈ A.

Substituting wy1 for y in (11), where w ∈ A, y1 ∈ A1, we get

(ϕ(x0) − x0)([ϕ(x0), w]y1 + w[ϕ(x0), y1]) = 0.

In view of (11) we obtain

(ϕ(x0)− x0)A[ϕ(x0), y1] = 0 for all x0 ∈ A0, y1 ∈ A1.
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In view of [1, Lemma 2.1] it yields that ϕ(x0) = x0 or [ϕ(x0), A1] = 0 for all
x0 ∈ A0. So A0 is the union of two subgroups I1 and I2, where I1 = {x0 ∈
A0 | ϕ(x0) = x0} and I2 = {x0 ∈ A0 | [ϕ(x0), A1] = 0}. It is impossible
for a group to be the union of two proper subgroups; therefore, either I1 = A0 or
I2 = A0. Thus ϕ(x0) = x0 for all x0 ∈ A0 or [ϕ(A0), A1] = 0. Since ϕ(A0) = A0

and [A0, A1] �= 0, we obtain that ϕ(x0) = x0 for all x0 ∈ A0.
Next, we claim that ϕ(x1) = x1 for all x1 ∈ A1. Since ϕ(x0) = x0 for all

x0 ∈ A0, it follows from (9) that

[x0, x1] = [x0, ϕ(x1)] for all x0 ∈ A0, x1 ∈ A1.

That is, [A0, ϕ(x1) − x1] = 0 for all x1 ∈ A1. By Lemma 2.3 we have

(12) ϕ(x1) − x1 ∈ Z(A) for all x1 ∈ A1.

Substituting x0x1 for x1 (x0 ∈ A0) in (12) yields that ϕ(x0)ϕ(x1)−x0x1 ∈ Z(A).
Since ϕ(x0) = x0 for all x0 ∈ A0, we have

(13) x0(ϕ(x1) − x1) ∈ Z(A).

Suppose that ϕ(x1)−x1 �= 0 for some x1 ∈ A1. Recall that nonzero homogeneous
elements in C are invertible. According to (13), together with (12), we have x0 ∈
Z(A) for all x0 ∈ A0, a contradiction. So ϕ(x1) = x1 for all x1 ∈ A1 as claimed.
Therefore, ϕ = 1 on A.

Since ϕ = 1 on A we have that [x1, x1]s ∈ Z(A)0 for all x1 ∈ A1. That is,
2x2

1 ∈ Z(A)0 and so x2
1 ∈ Z(A)0 for all x1 ∈ A1. Thus, Lemma 2.5 tells us

that [A0, A0] = 0. According to Lemma 2.6, the central closure S = Z(A)−1
0 A

has four possibilities, and in the first three cases S is commutative. Since A is
a subsuperalgebra of S, A is commutative if S is one of the first three cases in
Lemma 2.6. Since [A0, A1] �= 0, we have that S = Q(α, β) and A is a central
order in a quaternion algebra Q(α, β). The proof of the theorem is completed.

Having Theorem 2.7 in hand we can easily prove our second main theorem.

Theorem 2.8. Let A = A0 ⊕A1 be a prime superalgebra over a commutative
associative ring F with 1

2 ∈F . If an Z2-preserving automorphism ϕ :A→A satisfies
[ϕ(x), x]s = 0 for all x ∈ A, then A must be a trivial superalgebra. Moreover, if
A is noncommutative then ϕ = 1, where 1 denotes the identity map of A.

Proof. In view of Mayne’s theorem [10] we only need to prove that A is a
trivial superalgebra. By our assumption we have

(14) ϕ(x1)x1 + x1ϕ(x1) = 0 for all x ∈ A1.
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Suppose that A is commutative. It follows from (14) that 2ϕ(x1)x1 = 0 and so
ϕ(x1)x1 = 0. Since any nonzero homogeneous element in A has no nonzero divisor,
it implies that ϕ(x1) = 0 for all x1 ∈ A1, forcing A1 = 0 as desired.

Suppose next that A is not commutative. Then ϕ = 1 on A in view of Theorem
2.7. It follows from (14) that 2x2

1 = 0 and so x2
1 = 0 for all x1 ∈ A1. Hence

(15) x1y1 + y1x1 = 0 for all x1, y1 ∈ A1.

For any x0 ∈ A0, x1, y1 ∈ A1, we get from (15) that

−y1x1x0 = x1y1x0 = −y1x0x1,

that is, A1[A0, A1] = 0. It follows from Lemma 2.1 that A1 = 0. Thus, in any
case, A is a trivial superalgebra. This proves the theorem.
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