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LINEABILITY, SPACEABILITY, AND ALGEBRABILITY
OF CERTAIN SUBSETS OF FUNCTION SPACES

F. J. Garc ĺa-Pacheco, M. Mart́ ln1 and J. B. Seoane-Sepúlveda2

Abstract. We construct infinite-dimensional Banach spaces and infinitely
generated Banach algebras of functions that, except for 0, satisfy some kind
of special or pathological property. Three of these structures are: a Banach
algebra of everywhere continuous bounded functions which are not Riemann-
integrable ; a Banach space of Lebesgue-integrable functions that are not
Riemann-integrable; an algebra of continuous unbounded functions defined
on an arbitrary non-compact metric space.

1. PRELIMINARIES

In mathematical analysis, many examples of functions with some sort of patho-
logical behavior or enjoying certain special properties have been studied. Moreover,
large structures (dense manifolds, Banach spaces, algebras, etc.) of functions enjoy-
ing such properties have been constructed. Given a property, we say that the subset
L of functions which satisfies it is spaceable if L ∪ {0} contains a closed infinite
dimensional subspace. The set L will be called lineable if L ∪ {0} contains an
infinite dimensional vector space. This terminology of lineable and spaceable was
first introduced in [6] and, later, in [1, 2, 13].

One of the first results in this direction was proved by Gurariy (see [11, 12]), who
proved that the set of nowhere differentiable functions on [0, 1] is lineable. Later,
Fonf, Gurariy, and Kadec ([7]) showed that this set is also spaceable. This last result
was, later, improved ([14]) when Hencl showed that any separable Banach space
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is isometrically isomorphic to a subspace of C[0, 1] whose non-zero elements are
nowhere approximately differentiable and nowhere Hölder. On the other hand, the
set of everywhere differentiable functions on [0, 1] is linear and, therefore, lineable,
but it is not spaceable ([11]). Recently, Enflo and Gurariy have shown ([6]) that
for any infinite dimensional subspace X ⊂ C[0, 1], the set of functions in X having
infinitely many zeros in [0, 1] is spaceable in X. Recently, Aron, Gurariy and the
third author have shown that the set of everywhere surjective functions contains a
vector subspace of the largest possible dimension, 2c, and that the set DNM(R)
of differentiable functions on R which are nowhere monotone is lineable in C(R)
([2]).

Aron, Pérez-Garc ĺa, and the third author showed in [3] that, given any set
E ⊂ T of Lebesgue measure zero, there exists an infinitely generated and dense
algebra every non-zero element of which is a continuous function whose Fourier
series expansion is divergent at any point t ∈ E , introducing the new concept of
algebrability: We say that a set L is algebrable if L ∪ {0} contains an infinitely
generated algebra. The algebrability of certain subsets of functions has been studied,
lately, by several authors (see [4, 5, 9]).

In this paper we continue the search for large vector spaces and algebras of
functions enjoying these special or pathological properties. This paper is divided
in several sections. In each of them we focus on a particular property of a func-
tion. These properties are: almost everywhere continuous functions that are not
Riemann-integrable; Riemann integrable functions that are not Lebesgue-integrable
and viceversa; and continuous unbounded functions on any arbitrary non-compact
metric space.

Let us finish this introduction by fixing some notation. For any set I , B (I) will
denote, as usual, the Banach space of all real bounded functions on I , endowed with
the supremum norm. This space is also a Banach algebra with the usual product
defined pointwise. When I = N, we write, B(N) = �∞. Also, c0 and C(X) denote,
respectively, the set of null sequences and the set of continuous functions on X .
Given an interval I (bounded or not) we denote by R(I) to the set of Riemann-
integrable functions on I , and by L(I) the set of Lebesgue-integrable functions on
I .

2. RIEMANN-INTEGRABLE FUNCTIONS, ALMOST EVERYWHERE CONTINUOS FUNCTIONS,

AND SUBALGEBRAS OF �∞

It is well known the theorem by Lebesgue about Riemann-integrability that states
that if I is a bounded interval and f : I −→ R is a bounded function, then f is
Riemann-integrable if and only if f is almost everywhere continuous (see e.g [19,
Theorem 11.33]). The proof can be easily adapted to show that a Riemann-integrable
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function on an arbitrary interval (bounded or not) is always almost everywhere
continuous. Obviously, the converse to this assertion is not true, since one can
consider any non-zero constant function on any unbounded interval. Here, our
purpose is, given any unbounded interval I , to construct an infinite-dimensional
and infinitely generated closed subalgebra of B(I) every non-zero element of which
is almost everywhere continuous but not Riemann-integrable. In order to do that,
we need a similar result for �∞ \ c0.

Proposition 2.1.
(
�∞ \ c0

)∪{0} contains a closed infinitely generated subal-
gebra. In particular, �∞ \ c0 is spaceable and algebrable.

Proof. Let us denote by P the set of all prime numbers. For every p ∈ P , let
us consider the bounded sequence xp given by

xp (j) =
{

1 j = pk for some k ∈ N,

0 otherwise.

Let us relabel the elements of P by writing P = {p1, p2, . . .} assuming that the
sequence p1, p2, . . . is increasing. Next, let us take the subspace of �∞ given by

V =

{ ∞∑
i=1

λixpi : (λi)i∈N ∈ �∞
}

and write W = V . Now, our aim is to prove that W ∩ c0 = {0} and we will be
done. For this, let us pick a ∈W ∩ c0. Then, for every n ∈ N we can take zn ∈ V

so that ‖zn − a‖ < 1/n, i.e.

|zn(j)− a(j)| � ‖zn − a‖ < 1
n

for every j ∈ N.

Firstly, we can write zn =
∑∞

i=1 λi,nxpi for every n ∈ N. We will now prove that
|λi,n| < 1/n for every i, n ∈ N. Fix i, n ∈ N. We have that, for every k ∈ N,

∣∣∣λi,n − a
(
pk

i

)∣∣∣ =
∣∣∣zn (

pk
i

)
− a

(
pk

i

)∣∣∣ � ‖zn − a‖ < 1
n
.

Since a ∈ c0, taking limit as k goes to ∞, we obtain

(1) |λi,n| < 1
n
.

Finally, let us see that a (j) = 0 for every j ∈ N. If j �= pki for every i, k ∈ N, then
(by construction) zn (j) = 0 for every n ∈ N, and thus a (j) = 0. If j = pki for
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some i, k ∈ N, then zn (j) = λi,n for every n ∈ N, and by equation (1), a (j) = 0.
Thus, a = 0 and W ∩ c0 = {0}, as desired.

To finish the proof, since �∞ with the pointwise product is a Banach algebra, we
observe that V (and thus W ) is a subalgebra with an infinite number of generators.
Indeed, we first observe that for p, q ∈ P , p �= q, the supports of xp and xq are
disjoint. This implies that, on the one hand, the product of two elements of V
remains in V and, on the other hand, that {xp : p ∈ P} is a minimal system of
generators of V .

Remark 2.2.

(a) It is worth mentioning that the spaceability of �∞\c0 was known to H. P. Rosen-
thal from the sixties (see [17, 18]). Indeed, it was shown in [17] that
c0 is quasi-complemented in �∞ (a closed subspace Y of a Banach space
X is quasi-complemented if there is a closed subspace Z of X such that
Y ∩ Z = {0} and Y + Z is dense in X); this clearly implies that �∞ \ c0 is
spaceable. The algebrability of thisset seems to be, to the authors’ knowledge,
a new result.

(b) The proof of Proposition 2.1 can be easily adapted to show that �∞(Γ)\c0(Γ)
is spaceable and algebrable for every infinite set Γ. Let us comment that
it was proved by J. Lindenstrauss [15] that if Γ is uncountable, c 0(Γ) in not
quasi-complemented in �∞(Γ).

Now, we go back to our original set M of almost everywhere continuous func-
tions on I . Let us start by assuming, without loss of generality, that the interval I
contains the interval [1,∞). Now, we consider the function

φ : �∞ −→ B (I)

x 	−→ φ (x) = φx =
∞∑

n=1

x (n)χ(n,n+1).

Some properties enjoyed by this function φ are the following:

1. φ is a linear isometry and an algebra homomorphism.
2. φx is almost everywhere continuous for all x ∈ �∞.
3. φx is Riemann-integrable if and only if

∑∞
n=1 x (n) converges. In that situa-

tion, ∫
I
φx (t) dt =

∞∑
n=1

x (n) .

Next, by Proposition 2.1, there exists an infinite-dimensional and infinitely gen-
erated closed subalgebra W of �∞ such that c0 ∩W = {0}. Then, according to the
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third property above, φ (W ) ⊆ M ∪ {0}, and by the first property above, φ (W )
satisfies the same properties than W . Therefore, we can state the following theorem.

Theorem 2.3. Given an arbitrary unbounded interval I , the set of all almost
everywhere continuous bounded functions on I which are not Riemann-integrable
contains an infinitely generated closed subalgebra. In particular, this set is space-
able and algebrable.

With a very similar argument to the one above, it is also possible to prove the
spaceability of the set of bounded continuous functions which are not Riemann-
integrable. Let us start by assuming, without loss of generality, that the interval
I contains the interval [1,∞), and for every n ∈ N, we consider the bounded
continuous function αn : [1,+∞) −→ R given by

αn(t) =




2(t− n) if n � t � n + 1/2
2 − 2(t− n) if n + 1/2 < t � n+ 1
0 otherwise

i.e. αn is zero outside the interval (n, n + 1), its value at n + 1/2 is 1 and it is
affine in [n, n+ 1/2] and [n+ 1/2, n+ 1]. Now, we consider the linear isometry

ψ : �∞ −→ B (I)

x 	−→ ψ (x) = ψx =
∞∑

n=1

x (n)αn,

and, arguing as above, we obtain that the non-zero elements of ψ(�∞ \ c0) are
continuous functions which are not Riemann-integrable. Unfortunately, the function
ψ is not an algebra homomorphism, so the argument does not give algebrability.

Theorem 2.4. Given an arbitrary unbounded interval I , the set of all contin-
uous bounded functions on I which are not Riemann-integrable is spaceable.

3. RIEMANN-INTEGRABLE FUNCTIONS VERSUS LEBESGUE-INTEGRABLE FUNCTIONS

It is well known that for a bounded interval I , R(I) ⊂ L(I) (see, e.g. [19]).
If I is unbounded, it is also well known that R(I) �⊆ L(I); a representative and
classical example is given by the function f(x) = sin x

x for every x ∈ R. This
function verifies that∫

R

f(x) dx = π and
∫

R

|f(x)| dx = ∞.

Conversely, on any interval I (bounded or unbounded), there is a bounded
Lebesgue-integrable function which is not equivalent to any Riemann-integrable
function. An easy example of this type can be found in [10, Example 8.31]. Let us
present the details for the sake of completeness.
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Example 3.1. In any interval I , we consider a Cantor set A ⊂ I with positive
and finite measure (see, e.g. [10, Example 8.4]); then, the function f = χA is
bounded, Lebesgue-integrable, but it is not equivalent to any Riemann-integrable
function. Indeed, everything is clear but the last statement. To prove it, just observe
that f = 0 in I \A, which is dense in I and, moreover, if we change f in a null-set
B of I , then f = 0 in the still dense subset I \ (A ∪ B), and f = 1 in the set of
positive measure A \B.

Next we will study the lineability of the sets R(I)\ L(I) when I is unbounded
and the spaceability of L(I) \ R(I), where I is both bounded and unbounded.

3.1. Lineability of R(I) \ L(I) for an unbounded interval I

Here, and without loss of generality, we can consider I = R. We will construct
an infinite dimensional vector space of functions, E , withE ⊆ (R(R)\L(R))∪{0}.
In order to do that, let us define the following double sequences of natural numbers:

an,m =
n(n− 1)

2
+ 2m− 3 if m > 1 and n � 1,

bn,m =
n(n+ 1)

2
+m− 2 if m > 1 and n � m− 1

and the sequence of functions (fm)m>1, where fm : R −→ R is given by

fm(x) :=




sin (x− an,mπ)
x− an,mπ

if x ∈ [bn,mπ, (bn,m + 1)π] for some n � m− 1,

0 otherwise.

By construction we have that, for 1 < m ∈ N:

(P1) supp(fm) =
⋃

n�m−1

(bn,mπ, (bn,m + 1)π) .

(P2) supp(fi)
⋂

supp(fj) �= ∅ if and only if i = j.

Property (P1) is clear by definition. Let us see that (P2) also holds. For that,
suppose that supp(fi)

⋂
supp(fj) �= ∅ for some i, j > 1. Then, there exist p, q ∈ N

with p � i− 1 and q � j − 1, such that

(bp,iπ, (bp,i + 1)π)
⋂

(bq,jπ, (bq,j + 1)π) �= ∅.

Since both of the above interval are open, have length π, and their extremes are
integers multiples of π, it follows that

(2) bp,i = bq,j,
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which is equivalent to

(3) p(p+ 1) + 2i = q(q + 1) + 2j.

Suppose that i < j. From (3) and the above conditions, it follows that

(4) p > q � j − 1 > i− 1.

Now we will see that for every p > q it is bp,i > bq,j , which will lead to
a contradiction. Indeed, if p > q, then p = q + k for some 1 � k ∈ N. For
our purpose, it suffices to show that bq+1,i > bq,j, since (bq+k,i)k is an increasing
sequence. Thus, for p = q + 1 we obtain:

(q + 1)(q + 2) + 2i = q(q + 1) + 2q + 2 + 2i = q(q + 1) + 2(q + 1) + 2i
(4)

� q(q + 1) + 2j + 2i > q(q + 1) + 2j,

and, thus, bp,i > bq,j for every p > q, which contradicts (2). A similar contradiction
is reached if we suppose that i > j. Therefore, it must be i = j, and we are done.

Next, let us see that fm ∈ R(R) for every m > 1. Indeed, let us fix any
1 < m ∈ N, then∫

R

fm(x)dx =
∫

supp(fm)
fm(x)dx =

∑
n�m−1

∫ πbn,m+π

πbn,m

sin (x − an,mπ)
x− an,mπ

dx.

Next, making the substitution t = x− an,mπ, and noticing that

πbn,m − πan,m = (n−m+ 1)π,

we obtain that ∫
R

fm(x)dx =
∑

n�m−1

∫ πbn,m−πan,m+π

πbn,m−πan,m

sin t
t

dt

=
∑

n�m−1

∫ (n−m+2)π

(n−m+1)π

sin t
t

dt

=
∑
n�0

∫ (n+1)π

nπ

sin t
t

dt

=
∫ +∞

0

sin t
t

dt =
π

2
.

Similarly, one can see that for every m > 1, fm /∈ L(R). Indeed, repeating the
previous calculations, we obtain that:∫

R

|fm(x)|dx =
∫ +∞

0

∣∣∣∣ sin tt
∣∣∣∣ dt = ∞.
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We claim that
E = span{fm : 1 < m ∈ N}

is an infinite dimensional vector space such that E ⊆ (R(R) \ L(R)
) ∪ {0}. First

of all, by (P2), it is clear that dim(E) = ℵ0. Since R(R) is a vector space, it is
clear than E ⊆ R(R).

Let us see that no f ∈ E \ {0} is Lebesgue-integrable on R. We write

f = α1fm1 + α2fm2 + · · ·+ αkfmk
,

where 0 �= αi ∈ R for every i ∈ {1, 2, . . . , k}, and 1 < mi ∈ N for every
i ∈ {1, 2, . . . , k}. Also, denote Si = supp(fmi) for every i ∈ {1, 2, . . . , k}. Then,∫

R

|f(x)|dx =
∫

⋃k
i=1 Si

|α1fm1(x) + α2fm2(x) + · · ·+ αkfmk
(x)|dx

(P2)
=

k∑
i=1

|αi| ·
∫

Si

|fmi(x)|dx =
k∑

i=1

|αi| ·
∫ +∞

0

∣∣∣∣ sin tt
∣∣∣∣ dt = ∞,

and, therefore f /∈ L(R).
We have proved the following result.

Theorem 3.2. Given any unbounded interval I , the set of Riemann-integrable
functions on I that are not Lebesgue-integrable is lineable.

Remark 3.3. It is not possible to obtain any kind of algebrability of R(I)\L(I).
Indeed, for every f ∈ R(I), either f2 /∈ R(I) or f2 = |f2| ∈ R(I) and, therefore,
f2 ∈ L(I). Therefore,

Proposition 3.4. The set R(I) \ L(I) is not algebrable.

3.2. Spaceability of L(I) \ R(I) for any interval I

The spaceability of L(I) \ R(I) is a consequence of a stronger result from [8,
§4]. For the sake of completeness of this paper, we include here a direct (and
different) proof of this result. In order to do that, let us fix an arbitrary non-trivial
interval I . As we already mentioned, there is a function f ∈ L(I) which is not
equivalent to any Riemann-integrable function. This family of functions will give
us the spaceability. To do so, we write I =

⋃∞
n=1 In, where the In are non-trivial

disjoint intervals. As we did in Example 3.1, for every n ∈ N, we take a Cantor
subset An of In with λ(An) > 0, and notice that the function χAn belongs to L(I)
but it is not equivalent to any Riemann-integrable function. By the disjointness of
their supports, the same is true for any linear combination of the χAn . This proves
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the lineability, but the spaceability is also easy to establish. Let us consider the
function

φ : �1 −→ L (I)

x 	−→ φ (x) = φx =
∞∑

n=1

x (n)
λ(An)

χAn .

Then, φ is an isometric embedding and each of the the functions in φ(�1) \ {0} is
not equivalent to a Riemann-integrable function. Summarizing:

Theorem 3.5. Given any interval I , the set of Lebesgue-integrable functions
that are not Riemann-integrable is spaceable.

Remark 3.6.

(a) In the case when I is unbounded, in the above construction we may choose all
the Cantor sets An with the same positive measure, and then, all the functions
in φ(�1) are bounded.

(b) When I is bounded, it is of course not possible to choose the Cantor sets with
the same positive measure and, therefore, there are unbounded functions in
φ(�1). Even so, the linear span of the functions χAn consists only of bounded
functions. Therefore, the set of bounded Lebesgue-integrable functions that
are not Riemann-integrable is lineable.

4. CONTINUOUS UNBOUNDED FUNCTIONS ON AN ARBITRARY

NON-COMPACT METRIC SPACE

In [10, Example 2.3] it is shown that for every arbitrary non-compact subset
A of R there exists a continuous unbounded function having the subset as domain.
Such an example is given in [10] as follows. If the set A is unbounded, then it
suffices to consider the identity function on A. On the other hand, if A is bounded
and not close it is enough to consider c a limit point of A, and let f(x) = (x−c)−1

for x ∈ A. Moreover, we can consider a more general example: If A is not
bounded, then each non-null polynomial is unbounded on A; if A is bounded and
non-compact, then there is c ∈ A\A and the function x 	−→ 1

|x− c|n is unbounded

for every n ∈ N. It follows easily that the set of all continuous unbounded functions
on any non-compact subset A of R is lineable and, with a little more of effort, it
can be proved that it is algebrable (just change the potentials by exponentials to get
infinitely many algebraic independent functions).

Our purpose in this section is to simplify and extend the above arguments to show
that on any non-compact metric space X one may construct an infinite dimensional
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vector space every non-zero element of which is a continuous unbounded function
defined on X .

Indeed, taking into account that X is not compact we can find a sequence
(xn)n∈N

with no convergent subsequences. Then, the set A = {xn : n ∈ N} is
closed and has the discrete topology. Obviously, we can assume without loss of
generality that xn �= xm if n �= m. Next, for every m ∈ N let us consider the
function

gm : A −→ R

x 	−→ gm (x) = mn if x = xn.

Since A is closed and has the discrete topology then, for every m ∈ N, there exists
a continuous function fm : X −→ R such that fm|A = gm (Tietze Extension
Theorem, see e.g. [16, Theorem 35.1]).

Let us see that the family {fm : m ∈ N} is linearly independent. Take any linear
combination identically 0, i.e.

(5) λ1fm1 + · · ·+ λkfmk
= 0,

where λ1, . . . , λk ∈ R. Then, by evaluating equation (5) at x1, . . . , xk we obtain
the following linear system of equations:


m1 m2 m3 · · · mk

m2
1 m2

2 m2
3 · · · m2

k
...

...
... . . . ...

mk
1 mk

2 mk
3 · · · mk

k


 ·




λ1

λ2
...
λk


 =




0
0
...
0


 .

The matrix of the previous system is non-singular (it is a Van der Monde-type
matrix). Therefore we have that, necessarily, λ1 = λ2 = · · · = λk = 0.

Finally, let us see that every non-zero element in span {fm : m ∈ N} is a con-
tinuous unbounded function. Take a linear combination

λ1fm1 + · · ·+ λkfmk

where k � 2 and λ1, . . . , λk ∈ R \ {0}. It is clear that this linear combination is a
continuous function. Let us see that it is an unbounded function. We can assume
that m1 > mh for 2 � h � k. For every j � 1 we have

|(λ1fm1 + · · ·+ λkfmk
) (xj)|

=
∣∣∣λ1m

j
1 + · · ·+ λkm

j
k

∣∣∣
�

∣∣∣λ1m
j
1

∣∣∣ − ∣∣∣λ2m
j
2

∣∣∣ − · · · −
∣∣∣λkm

j
k

∣∣∣
=

( |λ1|
k − 1

m
j
1 − |λ2|mj

2

)
+ · · ·+

( |λ1|
k − 1

m
j
1 − |λk|mj

k

)
.



Lineability, Spaceability, and Algebrability of Certain Subsets of Function Spaces 1267

Since m1 > mh for 2 � h � k, we obtain that( |λ1|
k − 1

mj
1 − |λh|mj

h

)
−→ ∞ as j → ∞,

therefore
|(λ1fm1 + · · ·+ λkfmk

) (xj)| −→ ∞ as j → ∞,

thus λ1fm1 + · · ·+ λkfmk
is unbounded.

Let us observe that what we have actually proved is that any non-zero linear
combination of gm’s is unbounded, and this fact allows us to obtain algebrability
of the set of unbounded continuous functions on X . Indeed, let us consider the
usual structure of algebra on C(X) given by the pointwise product and let A be
the subalgebra generated by the family {fm : m ∈ N}, i.e. the elements of A are
products of linear combinations of fm’s. Since, clearly,

gm1gm2 = gm1m2

for every m1, m2 ∈ N, we obtain that A is infinitely generated (the functions fp for
p ∈ N prime are algebraically independent since the functions fp|A = gp are) and,
on the other hand, that every element of A is unbounded.

As a consequence of all of this we can state the following theorem.

Theorem 4.1. In every non-compact metric space, the set of all continuous
unbounded functions defined on it is algebrable.
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