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HAUSDORFF NORMS OF RETRACTIONS IN BANACH SPACES
OF CONTINUOUS FUNCTIONS

Vittorio Colao, Alessandro Trombetta and Giulio Trombetta

Abstract. We construct retractions with positive lower Hausdorff norms and
small Hausdorff norms in Banach spaces of real continuous functions which
domains are not necessarily bounded or finite dimensional. Moreover, we give
precise formulas for the lower Hausdorff norms and the Hausdorff norms of
such maps.

1. INTRODUCTION

Let X be a Banach space, and let

B(X) = {x ∈ X : ‖x‖ ≤ 1} and S(X) = {x ∈ X : ‖x‖ = 1}.

It is well known that there exists a continuous mapping (retraction) R : B(X) →
S(X) satisfying Rx = x for all x ∈ S(X) if and only if the space X has infinite
dimension.

Recall that the Hausdorff measure of noncompactness γX(A) of a bounded
subset A of X is the infimum of all ε > 0 such that A has a finite ε-net in X (see
[2]).
Assume X is infinite dimensional and set inf φ = ∞. Throughout this paper
whenever X is a Banach space of real continuous function we meant it endowed
with the sup norm ‖ · ‖∞. Given a retraction R : B(X) → S(X) the quantitative
characteristics

γ
X

(R) = sup {0 ≤ k ≤ 1 : γX(RA) ≥ kγX(A) for every A ⊆ B(X)} ,
γX(R) = inf {k ≥ 1 : γX(RA) ≤ kγX(A) for every A ⊆ B(X)}
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are the lower Hausdorff norm (γ
X

-norm, for short) and the Hausdorff norm (γX-
norm, for short) of R, respectively. It is of interest in problems of nonlinear analysis
(see, for example, [1, 5, 7]) the estimate of γ

X
(R) for a given retraction R and,

in connection with the Hausdorff norm, the evaluation of the following quantitative
characteristic

W (X) = inf{k ≥ 1 : ∃ a retraction R : B(X) → S(X) with γX(R) ≤ k},

called the Wośko constant of the space X . The constant W (X) was introduced by
Wośko in [11], where it is proved that W (C[0, 1]) = 1. The same result has been
extended in [3] and [9] to other Banach spaces of real continuous functions. On the
other hand we observe that there is not a unified method to evaluate W (X), most
of the evaluations have required individual constructions in each space X (see, for
example, [1, 4, 10]).

Let K be a set in a normed space E containing the closed unit ball B(E)
and denote by BCB(E)(K) the Banach space of all real bounded functions that are
continuous on K and uniformly continuous on B(E). In the first section we prove
that in the space BCB(E)(K) for any u > 0 there exists a retraction Ru of the
closed unit ball onto its boundary with lower Hausdorff norm

γBCB(E)(K)
(Ru) =




1
2
, if u ≤ 4

2
u
, if u > 4

and Hausdorff norm γBCB(E)(K)(Ru) = u+8
u . The latter equality gives that the

Wośko constant W (BCB(E)(K)) = 1.
In the second section we deal with the Hilbert cube P . We show that in the

Banach space C(P ), of all real valued continuous functions defined on P , for any
u > 0 there exists a retraction Ru of the closed unit ball onto its boundary with
lower Hausdorff norm

γC(P )
(Ru) =




1, if u ≤ 4

4
u
, if u > 4

and Hausdorff norm γC(P )(Ru) = u+8
u . Hence W (C(P )) = 1.

We observe that a retraction R which has positive γ
X

-norm is a proper map, i.e.,
the preimage R−1M of any compact set M ⊆ X is compact. Thus all retraction
Ru we construct are proper maps.
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2. RETRACTIONS IN THE SPACE BCB(E)(K)

Let A and S, with A ⊆ S, be nonempty sets of a topological space. In the
following we will denote by BC(S) and BCU(S) the Banach spaces of all real
functions defined on S which are, respectively, bounded and continuous, bounded
and uniformly continuous. Moreover we denote by BCA(S) the Banach space of all
real bounded functions that are continuous on S and uniformly continuous on A.

Let (E, ‖ · ‖) be a normed space and K a subset of E containing the closed unit
ball B(E). Now for each a ∈ [0, 1] we introduce the maps λa, λ

a : E → E by

λa (x) =




2
1 + a

x, if ‖x‖ ≤ 1 + a

2
x

‖x‖ , if
1 + a

2
< ‖x‖ ≤ 1

x, if ‖x‖ > 1

and

λa (x) =




1 + a

2
x, if ‖x‖ ≤ 1

x, if ‖x‖ > 1.

Moreover for f ∈ BCB(E)(K), we set

Af :=
{
f ◦ (λa)|K : a ∈ [0, 1]

}
,

Af :=
{
f ◦ (λa)|K : a ∈ [0, 1]

}
.

Observe that Af ⊆ BCB(E)(K) and Af ⊆ L∞(K), where L∞ (K) is the space of
all real essentially bounded functions defined on K.

We begin with the following two lemmas.

Lemma 2.1. Let a ∈ [0, 1].

(i) ‖λa (x) − λa (y)‖ ≤ 4
1+a ‖x− y‖, for all x, y ∈ E

(ii) Let (am) be a sequence in [0, 1] converging to a. Then ‖λam − λa‖∞ → 0
and ‖λam − λa‖∞ → 0.

Proof. (a) Let x, y ∈ E . Observe that

(1)
∥∥∥∥xα − y

β

∥∥∥∥ ≤ 2
β
‖x− y‖ ,

for α, β ∈ (0,∞) with ‖x‖ ≤ α ≤ β ≤ ‖y‖.
Now if ‖x‖, ‖y‖ ≤ 1+a

2 then ‖λa (x)− λa (y)‖ = 2
1+a ‖x− y‖. If ‖x‖, ‖y‖ >
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1 then ‖λa (x) − λa (y)‖ = ‖x− y‖. Moreover, using (1) it is easy to get the
following implications:

‖x‖ ≤ 1 + a

2
,

1 + a

2
≤ ‖y‖ ≤ 1 ⇒ ‖λa (x) − λa (y)‖ ≤ 4

1 + a
‖x− y‖ ,

‖x‖ ≤ 1 + a

2
, ‖y‖ > 1 ⇒ ‖λa (x) − λa (y)‖ ≤ 2 ‖x− y‖ ,

1 + a

2
≤ ‖x‖ ≤ 1, ‖y‖ > 1 ⇒ ‖λa (x) − λa (y)‖ ≤ 2 ‖x− y‖ ,

1 + a

2
≤ ‖x‖ ≤ 1,

1 + a

2
≤ ‖y‖ ≤ 1 ⇒ ‖λa (x) − λa (y)‖ ≤ 4

1 + a
‖x− y‖ .

(b) Enough to check that ‖λa (x) − λb (x)‖ ≤ |a− b| and
∥∥λa (x) − λb (x)

∥∥ ≤
1
2 |a− b|.

Lemma 2.2. For all f ∈ BCB(E)(K), the sets Af and Af are compact in
BCB(E)(K) and in L∞(K), respectively.

Proof. Let (am) be a sequence of elements of [0, 1] converging to a. In order
to prove the compactness of the set Af we will show that∥∥∥f ◦ (λam)|K − f ◦ (λa)|K

∥∥∥
∞

→ 0.

Let ε > 0. Since f is uniformly continuous on B(E), there is δ > 0 such that

(2) |f(y)− f(z)| ≤ ε,

for all y, z ∈ B(E) with ‖y − z‖ ≤ δ. By Lemma 2.1 (b) there is m ∈ N such
that

(3) ‖λam (x)− λa (x)‖ ≤ δ,

for all m ≥ m and x ∈ B(E). By (2) and (3) we have∥∥∥f ◦ (λam)|K − f ◦ (λa)|K
∥∥∥
∞

= max
x∈B(E)

|f(λam(x))− f(λa(x))| ≤ ε,

for all m ≥ m. Hence the thesis. The proof of the compactness of the set Af in
L∞(K) is similar.

In virtue of (a) of Lemma 2.1 we can define the map Q : B(BCB(E)(K)) →
B(BCB(E)(K)) as follows

Qf(x) :=




f

(
2

1 + ‖f‖∞x

)
, if ‖x‖ ≤ 1 + ‖f‖∞

2

f

(
x

‖x‖
)
, if

1 + ‖f‖∞
2

< ‖x‖ ≤ 1

f(x), if ‖x‖ > 1
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Then ‖Qf‖∞ = ‖f‖∞ for all f ∈ B(BCB(E)(K)) and Qf = f for all f ∈
S(BCB(E)(K)). Observe that the mapping Q can be written as

(4) Qf = f ◦ (λ‖f‖∞)|K .

Proposition 2.3. The map Q is continuous.

Proof. Let (fm) be a sequence in B(BCB(E)(K)) such that ‖fm − f‖∞ → 0.
Let ε > 0. Then there exists m1 ∈ N such that ‖fm − f‖∞ ≤ ε

2 for all m ≥ m1.
By the uniform continuity of f on B(E) there is δ > 0 such that if x, y ∈ B(E)
with ‖x− y‖ ≤ δ then

|f(x) − f(y)| ≤ ε

2
.

Since ‖fm‖∞ → ‖f‖∞, Lemma 2.1(b) implies
∥∥∥λ‖fm‖∞ − λ‖f‖∞

∥∥∥
∞

→ 0. Hence
there is m2 ∈ N such that ∥∥∥λ‖fm‖∞ − λ‖f‖∞

∥∥∥
∞

≤ δ,

for all m ≥ m2. Therefore∣∣∣∣f (
λ‖fm‖∞

)
|K

(x)− f
(
λ‖f‖∞

)
|K

(x)
∣∣∣∣ ≤ ε

2
,

for all x ∈ K and m ≥ m2. Then, for any x ∈ K and m ≥ max {m1, m2}, we
have∣∣∣∣fm

(
λ‖fm‖∞

)
|K

(x) − f
(
λ‖f‖∞

)
(x)

∣∣∣∣
≤

∣∣∣∣fm

(
λ‖fm‖∞

)
|K

(x)−f
(
λ‖fm‖∞

)
|K

(x)
∣∣∣∣+

∣∣∣∣f (
λ‖fm‖∞

)
|K

(x)−f
(
λ‖f‖∞

)
|K

(x)
∣∣∣∣

≤ ‖fm − f‖∞ +
ε

2
≤ ε.

So we obtain ‖Qfm −Qf‖∞ → 0.

By the following proposition we give lower and upper estimates of the Hausdorff
measure of noncompactness of QA for a set A in B(BCB(E)(K)).

Proposition 2.4. Let A be a subset of B(BCB(E)(K)). Then

1
2
γBCB(E)(K)(A) ≤ γBCB(E)(K)(QA) ≤ γBCB(E)(K)(A).
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Proof. LetA ⊆ B(BCB(E)(K)). First we prove γBCB(E)(K)(QA) ≤ γBCB(E)(K)
(A).

Fix α > γBCB(E)(K)(A) and let {f1, ..., fn} be an α-net of A in BCB(E)(K). By
Lemma 2.2 the set ∪n

i=1Afi is compact in BCB(E)(K). Hence given δ > 0 we can
choose a δ-net {g1, ..., gm} of ∪n

i=1Afi in BCB(E)(K).
We show that {g1, ..., gm} is a (α + δ)-net of QA in BCB(E)(K). To this end
for g ∈ QA let f ∈ A such that Qf = g and fix i ∈ {1, ..., n} such that
‖f − fi‖∞ ≤ α. Since fi ◦

(
λ‖f‖∞

)
|K

∈ Afi we can find j ∈ {1, ..., m} such that∥∥∥∥(
(fi ◦ λ‖f‖∞

)
|K

− gj

∥∥∥∥
∞

≤ δ. Then

‖gj −Qf‖∞
≤

∥∥∥∥gj − fi ◦
(
λ‖f‖∞

)
|K

∥∥∥∥
∞

+
∥∥∥∥fi ◦

(
λ‖f‖∞

)
|K

− f ◦
(
λ‖f‖∞

)
|K

∥∥∥∥
∞

≤ δ +
∥∥∥∥(fi − f) ◦

(
λ‖f‖∞

)
|K

∥∥∥∥
∞

≤ δ + α.

Therefore γBCB(E)(K)(K)(QA) ≤ α+δ, so γBCB(E)(K)(QA) ≤ γBCB(E)(K)(A). We
now prove γBCB(E)(K)(QA) ≥ 1

2γBCB(E)(K)(A). Fix β > γBCB(E)(K)(QA) and let
{h1, ..., hs} be a β-net for QA in BCB(E)(K). By Lemma 2.2 the set ∪s

i=1A
hi is

compact in L∞(K). Therefore given δ > 0 we can choose a δ-net {p1, ..., pk} for
∪s

i=1A
hi in L∞(K). We now show that {p1, ..., pk} is a (β+δ)-net forA in L∞(K).

Let f ∈ A. Fix l ∈ {1, ..., s} such that ‖Qfl − hl‖∞ ≤ β. Since hl ◦ (λ‖f‖∞)|K ∈
Ahl we can find m ∈ {1, ..., k} such that

∥∥hl ◦ (λ‖f‖∞)|K − pm

∥∥
∞ ≤ δ. Then

‖f − pm‖∞
≤

∥∥∥∥f − hl ◦
(
λ‖f‖∞

)
|K

∥∥∥∥
∞

+
∥∥∥∥hl ◦

(
λ‖f‖∞

)
|K

− pm

∥∥∥∥
∞

≤
∥∥∥∥
(
f − hl ◦

(
λ‖f‖∞

)
|K

)
◦

(
ϕ‖f‖∞

)
|K

∥∥∥∥
∞

+ δ

= sup{
x∈K:‖x‖∈

[
0,

1+‖f‖∞
2

]
∪(1,∞)

}
∣∣∣∣
((

f−hl ◦
(
λ‖f‖∞

)
|K

)
◦

(
λ‖f‖∞

)
|K

)
(x)

∣∣∣∣+δ
= sup{

x∈K:‖x‖∈
[
0,

1+‖f‖∞
2

]
∪(1,∞)

}
∣∣∣∣
(
f ◦

(
λ‖f‖∞

)
|K

)
(x)− hl(x)

∣∣∣∣ + δ

≤ ‖Qf − hl‖∞ + δ ≤ β + δ.

Therefore γL∞(K)(A) ≤ β + δ, so we obtain γBCB(E)(K)(A) ≤ 2 (β + δ) and
consequently 1

2γBCB(E)(K)(A) ≤ γBCB(E)(K)(QA).
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Remark 2.5. Observe that for all f ∈ BCU(B(E)) the set Af is compact in
BCU(B(E)). Therefore

γBCU(B(E))(QA) = γBCU(B(E))(A),

for all A ⊆ B(BCU(B(E))).

Next, for a given u ∈ (0,+∞), we define a map Pu : B(BCB(E)(K)) →
BCB(E)(K) by

(Puf) (x) =




0, if ‖x‖ ≤ 1 + ‖f‖∞
2

or ‖x‖ > 1,

u

(
‖x‖ − 1 + ‖f‖∞

2

)
, if

1 + ‖f‖∞
2

≤ ‖x‖ ≤ 3 + ‖f‖∞
4

,

−u(‖x‖ − 1), if
3 + ‖f‖∞

4
≤ ‖x‖ ≤ 1.

Proposition 2.6. The map Pu is compact, i.e., Pu is continuous and PuB(BCB(E)(K))
is relatively compact.

Proof. First we prove that the map Pu is continuous. Observe that if f, g ∈
B(BCB(E)(K)) with ‖f‖∞ ≤ ‖g‖∞ and 1+‖g‖∞

2 ≤ 3+‖f‖∞
4 we have

(5) ‖Puf − Pug‖∞ = u
‖g‖∞ − ‖f‖∞

2
.

Let now (fm) be a sequence in B(BCB(E)(K)) converging to f. Then ‖fm‖∞ →
‖f‖∞. Moreover if ‖f‖∞ = 1 we have

(6) ‖Pufm − Puf‖∞ =
u

4
(1− ‖fm‖).

On the other hand, if ‖f‖∞ �= 1 there is m ∈ N such that for all m ≥ m

‖fm‖∞ ≤ ‖f‖∞ =⇒ 1 + ‖f‖∞
2

≤ 3 + ‖fm‖∞
4

,

and
‖f‖∞ ≤ ‖fm‖∞ =⇒ 1 + ‖fm‖∞

2
≤ 3 + ‖f‖∞

4
.

Thus by (5), if ‖f‖∞ �= 1, it follows that

(7) ‖Pufm − Puf‖∞ =
u

2
|‖fm‖∞ − ‖f‖∞| .
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for all m ≥ m. By (6) and (7) it follows ‖Pufm − Puf‖∞ → 0. To complete
the proof it remains to show that PuB(BCB(E)(K)) is compact. Let (gm) be a
sequence in PuB(BCB(E)(K)) and let (fm) be a sequence in B(BCB(E)(K)) with
Pufm = gm. Without loss of generality we can assume that ‖fm‖∞ → ‖f‖∞ where
f ∈ B(BCB(E)(K)) and that (7) holds for all m. Then

‖gm − Puf‖∞ = ‖Pufm − Puf‖∞ =
u

2
|‖fm‖∞ − ‖f‖∞| → 0,

which completes the proof.

Now we are in the position to prove the main result of this Section.

Theorem 2.7. Let K be a set in a normed space E such that B(E) ⊆ K . For
any u > 0 there is a retraction Ru : B

(BCB(E)(K)
) → S

(BCB(E)(K)
)

such that

γBCB(E)(K)
(Ru) =




1
2
, if u ≤ 4

2
u
, if u > 4.

and
γBCB(E)(K)(Ru) =

u+ 8
u

.

In particular we have that W (BCB(E)(K)) = 1.

Proof. Let u ∈ (0,+∞). Define a map Tu : B(BCB(E)(K)) → BCB(E)(K)
by Tuf = Qf + Puf . Since Pu is compact, Proposition 2.4 implies

(8)
1
2
γBCB(E)(K)(A) ≤ γBCB(E)(K)(TuA) ≤ γBCB(E)(K)(A),

for any A ⊆ B(BCB(E)(K)). We have Tuf = f for all f ∈ S(BCB(E)(K)) and
for any f ∈ B(BCB(E)(K)) we find

‖Tuf‖∞ ≥ min
f∈B(BCB(E)(K))

max
{
‖f‖∞ ,

u

4
(1 − ‖f‖∞) − ‖f‖∞

}
≥ u

u+ 8
.

We define a retraction Ru : B(BCB(E)(K)) → S(BCB(E)(K)) by setting

Ruf =
Tuf

‖Tuf‖∞
.

Then
RuA ⊆

[
0,
u+ 8
u

]
· TuA,
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therefore using the monotonicity property of the Hausdorff measure of noncompact-
ness and (8) we get

γBCB(E)(K)(RuA) ≤ γBCB(E)(K)

([
0,
u+ 8
u

]
· TuA

)
≤ u+ 8

u
γBCB(E)(K)(A).

The latter inequality together with (12) of the Example 2.13 implies

(9) γBCB(E)(K)(Ru) =
u+ 8
u

.

On the other hand,

‖Tuf‖∞ ≤ max
{

1,
u

4

}
=




1, if u ≤ 4,
u

4
, if u > 4.

Fix u > 4. We have TuA ⊆ [
0, u

4

] · RuA. Again by the monotonicity property of
the Hausdorff measure of noncompactness, and using the left hand-side of (8), we
obtain

γBCB(E)(K)(A) ≤ 2γBCB(E)(K)

([
0,
u

4

]
· RuA

)
=
u

2
γBCB(E)(K)(RuA).

Then for all u > 4 we have

(10) γBCB(E)(K)
(Ru) ≥ 2

u
.

If u ≤ 4, we have TuA ⊆ [0, 1] · RuA. So γBCB(E)(K)(A) ≤ 2 γBCB(E)(K)(RuA)
hence

(11) γBCB(E)(K)
(Ru) ≥ 1

2
.

By Example 2.14 we obtain

γBCB(E)(K)
(Ru) =




1
2
, if u ≤ 4

2
u
, if u > 4.

Finally by (9), since limu→∞ u+8
u = 1, we infer W (BCB(E)(K)) = 1.

The following example shows that, given a set K in an infinite dimensional
normed space E with B(E) ⊆ K, the map Q is not anymore continuous when
considered from B(BC(K)) into itself. Therefore our construction does not work
in the case of the Banach space BC(K).
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Example 2.8. Let (xk) be a sequence of elements of B(BC(K)) such that
‖xk‖ = 1

2 (k = 1, 2, ...) and ‖xi − xj‖ ≥ 1
4 for all i, j ∈ N with i �= j. Moreover

let (ak) be a monotone increasing sequence of elements of (0, 1) such that ak → 1.
Set yk = 2

1+ak
xk (k = 1, 2, ...). We have that ‖yk‖ = 1

1+ak
< 1 and ‖xk‖ =

1
2 <

1
1+ak

(k = 1, 2, ...). Set S = {xk : k = 1, 2, ...} ∪ {yk : k = 1, 2, ...}. Then
S is a closed subset of K and the map f : S → R defined by f(xk) = 1 and
f(yk) = 0 (k = 1, 2, ...) is continuous. By the Dugundji’s theorem there is a
continuous extension f̃ : K → [0, 1] of f . We have that ‖f‖∞ =

∥∥∥f̃∥∥∥
∞

= 1 and f̃
is not uniformly continuous on K. In fact, fixed ε ∈ (0, 1), since ‖xk − yk‖ → 0,
for all δ > 0 there is k such that

∥∥xk − yk

∥∥ ≤ δ and
∣∣f(xk) − f(yk)

∣∣ = 1 > ε.
Now we show that the map Q is not continuous. Put f̃k = ak f̃ (k = 1, 2, ...).
Then

∥∥∥f̃k − f̃
∥∥∥
∞

→ 0 but
∥∥∥Qf̃k −Qf̃

∥∥∥
∞

= 1 (k = 1, 2, ...). In fact

1 ≥
∥∥∥Qf̃k −Qf̃

∥∥∥
∞

≥
∣∣∣Qf̃k(xk) −Qf̃(xk)

∣∣∣ =
∣∣∣f̃k

(
λ‖fk‖∞(xk)

)
− f̃

(
λ‖f‖∞(xk)

)∣∣∣
=

∣∣∣f̃k (λak
(xk))− f̃(xk)

∣∣∣ =
∣∣∣∣ak f̃

(
2

1 + ak
xk

)
− f̃(xk)

∣∣∣∣ = 1.

Since the measure of noncompactness of a set is invariant under isometries, the
following corollary enlarges the class of spaces for which Theorem 2.7 holds.

Corollary 2.9. Let M be a metric space. Assume that there are a set K in
a normed space E containing B(E) and an homeomorphism h : K → M such
that both the restrictions h /B(E) and h−1

/h(B(E))
are lipschitz, where h−1 is the

inverse homeomorphism of h. Then for any u > 0 there is a retraction R u :
B

(BCh(B(E))(M)
) → S

(BCh(B(E))(M)
)

such that

γBCh(B(E))(M )
(Ru) =




1
2
, if u ≤ 4

2
u
, if u > 4

and γBCh(B(E))(M ) (Ru) = u+8
u . In particular, we have W (BCh(B(E))(M)) = 1.

Proof. It is enough to observe that i : BCB(E)(K) → BCh(B(E))(M) defined
by i(f) = f ◦ h is an isometry.

Corollary 2.10. Let x0 ∈ E , r > 0 and K be a set in E such that Bx0,r(E) :=
{x ∈ E : ‖x − x0‖ ≤ r} ⊆ K . For any u > 0 there is a retraction Ru :
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B(BCBx0,r(E)(K)) → S(BCB{x0,r}(E)(K)) such that

γBCBx0,r(E)(K)
(Ru) =

{
1
2 , if u ≤ 4
2
u , if u > 4

and γBCBx0,r(E)(K)(Ru) = u+8
u . In particular, W (BCBx0,r(E)(K)) = 1.

Proof. It follows by Corollary 2.9 when we consider h(x) = 1
r (x− x0) for all

x ∈ K.

Remark 2.11. As a particular case of Theorem 2.7, if E is a finite dimensional
normed space, then for any u > 0 there is a retractionRu : B(BC(E)) → S(BC(E))
such that

γBC(E)
(Ru) =




1
2
, if u ≤ 4

2
u
, if u > 4

and γBC(E)(Ru) = u+8
u .

This result with Corollary 2.10 yieldsW (C(K)) = 1 ([9, Theorem 10]) when K
is a convex compact set inE with nonempty interior, and also yieldsW (BC(R)) = 1
([3, Theorem 2.4]).

The following corollary covers the case of the space BCU(E)). By repeating the
proof of Theorem 2.7, taking into account Remark 2.5, and by slight modifications
of Examples 2.13 and 2.14 we have a different evaluation of γBCU(E))

(Ru).

Corollary 2.12. For any u > 0 there is a retraction R u : B (BCU(E)) →
S(BCU(E)) such that

γ
BCU(E)

(Ru) =




1, if u ≤ 4

4
u
, if u > 4

and γBCU(E)(Ru) = u+8
u . In particular, W (BCU (E)(K)) = 1

In connection with Theorem 2.7 we have the following Examples 2.13 and 2.14.

Example 2.13. Let K be a set in a normed space E such that B(E) ⊆ K.
Define the maps fn : K → R (n = 3, 4, ...) by

fn(x) =




u

u+ 8
, if ‖x‖ < 1

2
− 1
n
,

−n u

u + 8

(
‖x‖ − 1

2

)
, if

1
2
− 1
n
≤ ‖x‖ < 1

2
+

1
n
,

− u

u+ 8
, if ‖x‖ ≥ 1

2
+

1
n
.
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Then the following are the expression for Qfn and, given u > 0, that for Pufn

respectively

Qfn(x) =




u

u+ 8
, if ‖x‖ < 1 + u

u+8

2
(
1
2
− 1
n

),

−2n
u

u+8

1 + u
u+8

(
‖x‖ − 1 + u

u+8

2
1
2

)
, if

1 + u
u+8

2
(
1
2
− 1
n

) ≤ ‖x‖

<
1 + u

u+8

2
(
1
2

+
1
n

),

− u

u+ 8
, if ‖x‖ ≥ 1 + u

u+8

2
(
1
2

+
1
n

);

(Pufn)(x) =




0, if ‖x‖ ≤ 1 + u
u+8

2
or ‖x‖ > 1,

u

(
‖x‖ − 1 + u

u+8

2

)
, if

1 + u
u+8

2
≤ ‖x‖ < 3 + u

u+8

4
,

−u (‖x‖ − 1) , if
3 + u

u+8

4
≤ ‖x‖ ≤ 1.

Hence we obtain

‖Qfn + Pufn‖∞ = max
{
‖fn‖∞ ,

u

4
(1 − ‖fn‖) − ‖fn‖

}
=

u

u+ 8
.

Setting A = {fn : n ≥ 3}, we have

RuA = {Rufn : n ≥ 3} =
u+ 8
u

(Q+ Pu)A,

and

(12) γBCB(E)(K)(Ru(A)) =
u + 8
u

γBCB(E)(K)(A).

Example 2.14. Let K be a set in a normed space E . Without loss of generality
we may assume B2(E) ⊆ K. Define the maps fc,n : K → R (n = 3, 4, ...) by

fc,n(x) =




−c, if ‖x‖ < 1− 1
n
,

nc(‖x‖ − 1), if 1 − 1
n ≤ ‖x‖ < 1 + 1

n ,

c, if ‖x‖ ≥ 1 +
1
n
.



Hausdorff Norms of Retractions in Banach Spaces of Continuous Functions 1151

We have that

Qfc,n(x) =




−c, if ‖x‖ < 1 + c

2
(1 − 1

n
),

2n
c

1 + c
(‖x‖ − 1 + c

2
), if

1 + c

2
(1 − 1

n
) ≤ ‖x‖ < 1 + c

2
,

0, if
1 + c

2
≤ ‖x‖ < 1,

nc(‖x‖ − 1), if 1 ≤ ‖x‖ < 1 +
1
n
,

c, if ‖x‖ ≥ 1 +
1
n
.

Set Ac = {fc,n : n ≥ 3}. Then γBCB(E)(K)(Ac) = c and γBCB(E)(K)(QAc) = c
2 .

Let u > 0. We find

Pufn(x) =




0, if ‖x‖ < 1 + c

2
or ‖x‖ > 1,

u(‖x‖ − 1 + c

2
), if

1 + c

2
≤ ‖x‖ < 3 + c

4
,

−u(‖x‖ − 1), if
3 + c

4
≤ ‖x‖ < 1.

Thus ‖Pufn‖∞ = u1−c
4 . Moreover if c ≤ u

u+4 then ‖Qfn + Pufn‖∞ = max {c,
u1−c

4

}
= u1−c

4 . Hence

γBCB(E)(K)(RuAc) =
4

u(1− c)
γBCB(E)(K)(QAc) =

2
u(1 − c)

γBCB(E)(K)(Ac).

Now by (10), γBCB(E)(K)
(Ru) ≥ 2

u . Suppose γBCB(E)(K)
(Ru) = 2

u +σ with σ > 0.

Fix c such that 2
u(1−c) <

2
u + σ, then

γBCB(E)(K)(RuAc) =
2

u(1 − c)
γBCB(E)(K)(Ac)

<

(
2
u

+ σ

)
γBCB(E)(K)(Ac) ≤ γBCB(E)(K)(RuAc),

which is a contradiction. So that γBCB(E)(K)
(Ru) = 2

u . For each u ≤ 4 , by (11)

we have γBCB(E)(K)
(Ru) ≥ 1

2 . Suppose γBCB(E)(K)
(Ru) = 1

2 + σ with σ > 0. Fix

c such that 2
u(1−c)

< 1
2 + σ, then

γBCB(E)(K)(RuAc) =
2

u(1 − c)
γBCB(E)(K)(Ac)

< (
1
2

+ σ)γBCB(E)(K)(Ac) ≤ γBCB(E)(K)(RuAc),

which is a contradiction so that γBCB(E)(K)
(Ru) = 1

2 .
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3. RETRACTIONS IN THE SPACE C(P )

Let l2 be the real Hilbert space, with the usual norm ‖ · ‖2 and canonical basis
(en). Denote by

P = {x = (xn) ∈ l2 : |xn| ≤ 1
n

(n = 1, 2, ...)}
the Hilbert cube. We consider the Banach space C(P ) of all real continuous function
defined on P .

For a ∈ [0, 1] define the maps ϕa and ϕa : P → P by

ϕa (t) := (λa (t1) , t2, ..., tn, ...) ,

ϕa (t) := (λa (t1) , t2, ..., tn, ...) ,

where by λa we continue to denote the restriction of λa to the interval [−1, 1], i.e.

λa (t1) :=




−1, if t1 ∈
[
−1,−1 + a

2

)
,

2
1 + a

t1, if t1 ∈
[
−1 + a

2
,
1 + a

2

)
,

1, if t1 ∈
[
1 + a

2
, 1

]
,

and
λa (t1) :=

1 + a

2
t1, t1 ∈ [−1, 1].

Moreover for f ∈ C(P ) set

Bf = {f ◦ ϕa : a ∈ [0, 1]} ,
Bf = {f ◦ ϕa : a ∈ [0, 1]} .

Lemma 3.1. Let a ∈ [0, 1]. The maps ϕa and ϕa are continuous. Moreover,
if (am) is a sequence in [0, 1] converging to a, then ‖ϕam − ϕa‖∞ → 0 and
‖ϕam − ϕa‖∞ → 0.

Proof. Clearly ϕa and ϕa are continuous. Let ε > 0. Then there ism such that
|am − a| ≤ ε for all m ≥ m. It is easy to verify that |λam(t1)−λa(t1)| ≤ |am−a|
for any t1 ∈ [0, 1], hence we obtain that

‖ϕam (t) − ϕa (t)‖2
2 = |λam (t1) − λa (t1)|2 ≤ ε2,

for all m ≥ m and for all t ∈ P . Thus ‖ϕam − ϕa‖∞ → 0. The proof of the
continuity of the maps ϕa is similar, taking into account that |λam(t1)− λa(t1)| ≤
1
2 |am − a| for any t1 ∈ [0, 1].
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Lemma 3.2. Let f ∈ C(P ). The sets Bf and Bf are compact in C(P ).

Proof. Let (am) be a sequence of elements of [0, 1] converging to a. In order
to prove the compactness of the set Bf it will be sufficient to show that

(13) ‖f ◦ ϕam − f ◦ ϕa‖∞ → 0.

Let ε > 0. Since f is uniformly continuous on C(P ), there is δ > 0 such that for
all s, t ∈ P such that ‖t− s‖2 ≤ δ we have

(14) |f(t) − f(s)| ≤ ε.

By Lemma 3.1 (c) we can choose m such that

(15) ‖ϕam (t) − ϕa (t)‖2 ≤ δ,

for any m ≥ m and t ∈ P . By (14) and (15) it follows that

‖f ◦ ϕam − f ◦ ϕa‖∞ = max
t∈P

|f(ϕam(t)) − f(ϕa(t))| ≤ ε ,

for all m ≥ m. Hence we get (13). The proof of the compactness of the set Bf in
C(P ) is similar.

As no confusion may arise, we denote by Q and Pu the maps we use to construct
the retractions in the space C(P ). In virtue of 3.1 (a) we define the map Q :
B(C(P )) → S(C(P )) as follows

(16) Qf := f ◦ ϕ‖f‖∞ .

It is easy to see that ‖Qf‖∞ = ‖f‖∞ for all f ∈ B(C(P )) and Qf = f for all
f ∈ S(C(P )). Let u ∈ (0,+∞). Moreover, we define the map Pu : B(C(P )) →
C(P ) by

(Puf) (t) :=




u(t1 + 1), if t1 ∈
[
−1,−3 + ‖f‖∞

4

)
,

−u(t1 +
1 + ‖f‖∞

2
), if t1 ∈

[
−3 + ‖f‖∞

4
,−1 + ‖f‖∞

2

)
,

0, if t1 ∈
[
−1 + ‖f‖∞

2
,
1 + ‖f‖∞

2

]
,

u(t1 − 1 + ‖f‖∞
2

), if t1 ∈
]
1 + ‖f‖∞

2
,
3 + ‖f‖∞

4

]
,

−u(t1 − 1), if t1 ∈
]
3 + ‖f‖∞

4
, 1

]
.

The proofs of the following propositions are similar to the proof of Propositions 2.3
and 2.6, hence are omitted.
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Proposition 3.3. The map Q is continuous.

Proposition 3.4. The map Pu is compact.

Next result gives a precise estimate of the Hausdorff measure of noncompactness
of QA for A ⊆ B(C(P )).

Proposition 3.5. Let A be a subset of B(C(P )). Then γC(P )(QA) = γC(P )(A).

Proof. Let A ⊆ B(C(P )). By a proof analogous to that of Proposition 2.4
we find γC (P )(QA) ≤ γC(P )(A). Moreover, taking into account that for each
f ∈ C(P ) the set Bf is compact in C(P ) (Proposition 3.2), we find γC(P )(A) ≤
γC(P )(QA).

The next theorem is the main result of the Section.

Theorem 3.6. For any u > 0 there is a retraction Ru : B(C(P )) → S(C(P ))
with

γC(P )
(Ru) =




1, if u ≤ 4

4
u
, if u > 4

and
γC(P )(Ru) =

u+ 8
u

.

In particular, we have W (C(P )) = 1.

Proof. Let u ∈ (0,+∞). Define the map Tu : B(C(P )) → C(P ) by
Tuf = Qf + Puf . Since Pu is compact, Proposition 3.5 implies

(17) γC(P )(TuA) = γC(P )(A),

for any A ⊆ B(C(P )). Then we define Ru : B(C(P )) → S(C(P )) by

Ruf =
Tuf

‖Tuf‖∞
.

Next, adapting the proof of Theorem 2.7 and Example 2.13 to this setting we find

(18) γC(P )(Ru) =
u+ 8
u

.

Also, taking into account (17) and adapting Example 2.14 we obtain

γC(P )
(Ru) =




1, if u ≤ 4

4
u
, if u > 4.
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Finally, since limu→∞ u+8
u = 1, we have W (C(P )) = 1.

We point out that our construction does not work in the case of the Banach
space BC(l2) of all real bounded and continuous functions defined on l2. In fact,
the following example shows the map Q defined in (16) is not anymore continuous
when considered from B(BC(l2)) into itself.

Example 3.7. Set Ik =
[∑2k

i=1
1
i ,

∑2k+1
i=1

1
i

)
and Jk =

[∑2k+1
i=1

1
i ,

∑2k+2
i=1

1
i

)
,

for each k = 1, 2, ...
Then let f : l2 → R defined by

f(t) =




0, if ‖t‖2
2 ∈

[
0,

3
2

)
,

(2k + 1)(‖t‖2
2 −

2k∑
i=1

1
i
), if ‖t‖2

2 ∈ Ik, (k = 1, 2, ...).

−(2k + 2)(‖t‖2
2 −

2k+2∑
i=1

1
i
), if ‖t‖2

2 ∈ Jk.

The map f is bounded, continuous and ‖f‖∞ = 1 but f is not uniformly continuous.
In fact, let 0 < ε < 1. Given δ > 0 find k ∈ N such that 1

2k+1 ≤ δ and choose
t, s ∈ l2 such that ‖t‖2

2 =
∑2k

i=1
1
i and ‖s‖2

2 =
∑2k+1

i=1
1
i . Then f(t) = 0 and

f(s) = 1 so that |f(t) − f(s)| = 1 > ε.
Consider now the sequence (fm), where fm : l2 → R is defined by fm = (1− 1

m)f
(m = 1, 2, ...). Then ‖fm‖∞ = 1 − 1

m and ‖fm − f‖∞ = 1
m → 0. We now show

that ∥∥∥f ◦ ϕ1− 1
p
− f ◦ ϕ1− 1

q

∥∥∥
∞

= 1,

for all p, q ∈ N . Suppose q < p so that 0 <
1+(1−1

q
)

2 <
1+(1−1

p
)

2 and 2
1+(1−1

q
)
>

2
1+(1−1

p
)
. Set

δq,p = (
2

1 + (1 − 1
q )

)2 − (
2

1 + (1 − 1
p)

)2 > 0.

Fix k ∈ N such that (t1,k)
2 = 1

δq,p(2k+1)
and t1,k ∈

(
0,

1+(1−1
q
)

2

)
. Set

t(k) = (t1,k, t(
2k∑
i=1

1
i
− (t1,k)

2(
2

1 + (1− 1
p)

)2)
1
2 , 0, 0, ...).
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Since

∥∥∥ϕ1− 1
p
(t(k))

∥∥∥2

2
= (t1,k)

2(
2

1 + (1− 1
p)

)2 +
2k∑
i=1

1
i
− (t1,k)

2(
2

1 + (1− 1
p)

)2 =
2k∑
i=1

1
i
,

we have

f(ϕ1− 1
p
(t(k))) = f(

2k∑
i=1

1
i
) = 0.

On the other hand

∥∥∥ϕ1− 1
q
(t(k))

∥∥∥2

2
= (t1,k)

2(
2

1 + (1 − 1
q )

)2 +
2k∑
i=1

1
i
− (t1,k)

2(
2

1 + (1 − 1
p)

)2

=
2k∑
i=1

1
i
+

1
δq,p(2k + 1)

((
2

1 + (1 − 1
q )

)2−(
2

1 + (1 − 1
p)

)2)=
2k+1∑
i=1

1
i
,

implies

f(ϕ1− 1
q
(t(k))) = f(

2k+1∑
i=1

1
i
) = 1.

Thus
∣∣∣f(ϕ1− 1

p
(t(k))) − f(ϕ1− 1

q
(t(k)))

∣∣∣ = 1 so that
∥∥∥f ◦ ϕ1− 1

p
− f ◦ ϕ1− 1

q

∥∥∥
∞

= 1.
Suppose Q : B(BC(l2)) → B(BC(l2)) continuous. Then if ‖fm − f‖∞ → 0 we
have that

‖Qfm −Qf‖∞ =
∥∥∥fm ◦ ϕ‖fm‖∞ − f ◦ ϕ‖f‖∞

∥∥∥
∞

=
∥∥∥fm ◦ ϕ1− 1

m
− f

∥∥∥
∞

→ 0.

Let ε > 0. Fix p, q ∈ N such that

‖f − fp‖∞ + ‖Qfp −Qfq‖∞ + ‖fq − f‖∞ < 1.

Then

1 =
∥∥∥f ◦ ϕ1− 1

p
− f ◦ ϕ1− 1

q

∥∥∥
∞

≤
∥∥∥f ◦ ϕ1− 1

p
− fp ◦ ϕ‖fp‖∞

∥∥∥
∞

+
∥∥∥fp ◦ ϕ‖fp‖∞ − fq ◦ ϕ‖fq‖∞

∥∥∥
∞

+
∥∥∥fq ◦ ϕ‖fq‖∞ − f ◦ ϕ1− 1

q

∥∥∥
∞

=
∥∥∥f ◦ ϕ1− 1

p
− fp ◦ ϕ1− 1

p

∥∥∥
∞

+ ‖Qfp −Qfq‖∞ +
∥∥∥fq ◦ ϕ1− 1

q
− f ◦ ϕ1− 1

q

∥∥∥
∞

= ‖f − fp‖∞ + ‖Qfp −Qfq‖∞ + ‖fq − f‖∞ < 1,

which is a contradiction. Observe that the set Bf = {f ◦ ϕa : a ∈ [0, 1]} is not
compact.
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Since the Hausdorff measure of noncompactness of a set is invariant under
isometries and the Banach space C(K) of all real continuous functions defined on
a Hausdorff space K homeomorphic to the Hilbert cube is isometric to C(P ), we
get the following corollary.

Corollary 3.8. Let K be a Hausdorff space homeomorphic to the Hilbert cube
P . For any u > 0 there is a retraction Ru : B(C(K)) → S(C(K)) with

γC(K)
(Ru) =




1, if u ≤ 4

4
u
, if u > 4

and
γC(K)(Ru) =

u+ 8
u

.

In particular, we have W (C(K)) = 1.

Remark 3.9. The previous Corollary applies in two particular important cases.
(i) Every infinite dimensional compact convex subsetK of a normed space is home-
omorphic to the Hilbert cube P (see [8]).
(ii) Let K be a metrizable infinite dimensional compact convex set in a topological
linear space and assume K is an absolute retract, then K is homeomorphic to the
Hilbert cube P (see [6]).
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10. M. Väth, On the minimal displacement problem of γ-Lipschitz maps and γ-Lipschitz
retractions onto the sphere, Z. Anal. Anwendungen, 21(4) (2002), 901-914.
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