# OPTIMALITY CONDITIONS AND DUALITY FOR A CLASS OF NONDIFFERENTIABLE MULTIOBJECTIVE PROGRAMMING PROBLEMS 

Do Sang Kim and Kwan Deok Bae


#### Abstract

In this paper, we formulate a general dual problem for a class of nondifferentiable multiobjective programs involving the support function of a compact convex set and linear functions. Fritz John and Kuhn-Tucker optimality conditions are presented. In addition, we establish weak and strong duality theorems for weakly efficient solutions under suitable generalized ( $F, \alpha, \rho, d$ ) convexity assumptions. Some special cases of our duality results are given.


## 1. Introduction and Preliminaries

There has been an increasing interest in developing optimality conditions and duality relations for nondifferentiable multiobjective programming problems. Mond and Schechter [12], firstly introduced nondifferentiable symmetric duality, in which the objective function contains a support function. Duality theorems for nondifferentiable static programming problem with a square root term are obtained by Lal et al. [7]. In nondifferentiable multiobjective programs involving a support function, further developments for duality relations are founded in Kim et al. [4] and Liang et al. [6].

In order to establish sufficient optimality conditions and duality relations we present the concept of generalized $(F, \alpha, \rho, d)$-convexity which is related to various generalized convexity by several authors ( $[2,3,5,7,11,13]$ ).

Recently, Yang et al. [14] considered a class of nondifferentiable multiobjective programming problems, involving the support function of a compact convex set and constructed a more general dual model for a class of nondifferentiable multiobjective programs and established only weak duality theorems for efficient solutions

## Received October 1, 2008.

2000 Mathematics Subject Classification: 90C46, 90C26, 90C29.
Key words and phrases: Nondifferentiable multiobjective programming problems, Generalized ( $F, \alpha, \rho, d)$-convex functions, Optimality conditions, Duality.
under the generalized $(F, \rho)$-convexity assumptions. Subsequently, Kim et al. [8] established generalized second order symmetric duality in nondifferentiable multiobjective programming problems.

In this paper, we introduce the concept of generalized ( $F, \alpha, \rho, d$ )-convexity and consider a class of nondifferentiable multiobjective programs involving the support function of a compact convex set and linear functions. And we obtain the necessary and sufficient optimality theorems and generalized duality theorems for weakly efficient solutions under generalized $(F, \alpha, \rho, d)$-convexity assumptions.

Not only weak duality theorems but also strong duality theorem are established by using necessary and sufficient optimality theorems under generalized ( $F, \alpha, \rho, d$ )convexity assumptions. Moreover we give some special cases of our duality results.

We consider the following multiobjective programming problem,

$$
\begin{array}{ll}
\text { (MPE) } & \text { Minimize }\left(f_{1}(x)+s\left(x \mid D_{1}\right), \cdots, f_{p}(x)+s\left(x \mid D_{p}\right)\right) \\
& \text { subject to } g(x) \geqq 0, \quad l(x)=0,
\end{array}
$$

where $f$ and $g$ are differentiable functions from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, respectively; $l$ is a linear vector function from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$ and $D_{i}$, for each $i \in P=$ $\{1,2, \cdots, p\}$, is a compact convex set of $\mathbb{R}^{n}$. The support function $s\left(x \mid D_{i}\right)$ of $D_{i}$ defined by $s\left(x \mid D_{i}\right)=\max \left\{\langle x, y\rangle \mid y \in D_{i}\right\}$ [1]. Further let, $S:=\{x \in$ $\left.\mathbb{R}^{n} \mid g_{i}(x) \geqq 0, l_{k}(x)=0, i=1, \cdots, m, k=1, \cdots, q\right\}$ and $I(x):=\left\{i \mid g_{i}(x)=\right.$ $0\}$ for any $x \in \mathbb{R}^{n}$. Let $h_{i}(x)=s\left(x \mid D_{i}\right), i=1, \cdots, p$. Then $h_{i}$ is a convex function and $\partial h_{i}(x)=\left\{w \in D_{i} \mid\langle w, x\rangle=s\left(x \mid D_{i}\right)\right\}$ [12], where $\partial h_{i}$ is the subdifferential of $h_{i}$.

We recall the definitions of $(F, \alpha, \rho, d)$-convexity due to Liang et al. [6].

Let $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a sublinear functional; let the function $\phi: \mathbb{R}^{n} \rightarrow$ $\mathbb{R}$ be differentiable at $u \in \mathbb{R}^{n}, \rho \in \mathbb{R}$, and $d(\cdot, \cdot): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Definition 1.1. The function $\phi$ is said to be $(F, \alpha, \rho, d)$-convex at $u$, if

$$
\phi(x)-\phi(u) \geqq F(x, u ; \alpha(x, u) \nabla \phi(u))+\rho d^{2}(x, u), \quad \forall x \in \mathbb{R}^{n}
$$

Definition 1.2. The function $\phi$ is $(F, \alpha, \rho, d)$-quasiconvex at $u$, if

$$
\phi(x) \leqq \phi(u) \Rightarrow F(x, u ; \alpha(x, u) \nabla \phi(u)) \leqq-\rho d^{2}(x, u), \quad \forall x \in \mathbb{R}^{n}
$$

Definition 1.3. The function $\phi$ is $(F, \alpha, \rho, d)$-pseudoconvex at $u$, if

$$
F(x, u ; \alpha(x, u) \nabla \phi(u)) \geqq-\rho d^{2}(x, u) \Rightarrow \phi(x) \geqq \phi(u), \quad \forall x \in \mathbb{R}^{n}
$$

Definition 1.4. The function $\phi$ is strictly $(F, \alpha, \rho, d)$-pseudoconvex at $u$, if for all $x \in \mathbb{R}^{n}, x \neq u$ such that

$$
F(x, u ; \alpha(x, u) \nabla \phi(u)) \geqq-\rho d^{2}(x, u) \Rightarrow \phi(x)>\phi(u), \quad \forall x \in \mathbb{R}^{n}
$$

## Remark 1.1.

(i) When $\alpha(x, u)=1$, the concept of $(F, \alpha, \rho, d)$-convexity is the same as that of $(F, \rho)$-convexity in [13].
(ii) When $F(x, u ; \alpha(x, u) \nabla \phi(u))=\alpha(x, u) \nabla \phi(u) \eta(x, u)$, for a certain function $\eta: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, the concept of $(F, \alpha, \rho, d)$-convexity is the same as $(V, \rho)$ invexity in [6].

We give a generalization of Gordan's theorem for the convex and linear functions due to Mangasarian [9] and Mangasarian and Fromovitz [10].

Theorem 1.1. [9]. Let $\Gamma$ be a nonempty convex set in $\mathbb{R}^{n}$, let $F$ be an $m$ dimensional convex vector function on $\Gamma$ and let $l$ be a $q$-dimensional linear vector function on $\mathbb{R}^{n}$. If
$\langle F(x)<0, l(x)=0\rangle$ has no solution $x \in \Gamma$
then there exist $p \in \mathbb{R}^{m}$ and $q \in \mathbb{R}^{q}$ such that
$\langle p F(x)+q l(x) \geqq 0\rangle$ for all $x \in \Gamma, \quad p \geqq 0, \quad(p, q) \neq 0$.

## 2. Optimality Conditions

In this section, we establish both Fritz John necessary and sufficient optimality conditions and Kuhn-Tucker necessary and sufficient optimality conditions for weakly efficient solutions of (MPE).

Theorem 2.1. (Fritz John Necessary Optimality Conditions). Suppose that $f_{i}, g_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \cdots, p, j=1, \cdots, m$, are differentiable and $l_{k}: \mathbb{R}^{n} \rightarrow$ $\mathbb{R}, k=1, \cdots, q$, is a linear vector function. If $\bar{x} \in S$ is a weakly efficient solution of (MPE), then there exist $\lambda_{i}, i=1, \cdots, p, \mu_{j}, j=1, \cdots, m, \nu_{k}, k=$ $1, \cdots, q, w_{i} \in D_{i}, i=1, \cdots, p$ such that

$$
\begin{aligned}
& \sum_{i=1}^{p} \lambda_{i} \nabla f_{i}(\bar{x})+\sum_{i=1}^{p} \lambda_{i} w_{i}-\sum_{j=1}^{m} \mu_{j} \nabla g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} \nabla l_{k}(\bar{x})=0, \\
& \left\langle w_{i}, \bar{x}\right\rangle=s\left(\bar{x} \mid D_{i}\right), i=1, \cdots, p \\
& \sum_{j=1}^{m} \mu_{j} g_{j}(\bar{x})=0 \\
& \left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{m}\right) \geqq 0 \\
& \left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{m}, \nu_{1}, \cdots, \nu_{q}\right) \neq 0 .
\end{aligned}
$$

Proof. Let $h_{i}(x)=s\left(x \mid D_{i}\right), i=1, \cdots, p$. Since $D_{i}$ is convex and compact, $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function and hence $\forall d \in \mathbb{R}^{n}$,

$$
h_{i}^{\prime}(\bar{x} ; d)=\lim _{\lambda \rightarrow 0+} \frac{h_{i}(\bar{x}+\lambda d)-h_{i}(\bar{x})}{\lambda}
$$

is finite. Also, $\forall d \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\left(f_{i}+h_{i}\right)^{\prime}(\bar{x} ; d) & =\lim _{\lambda \rightarrow 0+} \frac{f_{i}(\bar{x}+\lambda d)+h_{i}(\bar{x}+\lambda d)-f_{i}(\bar{x})-h_{i}(\bar{x})}{\lambda} \\
& =\lim _{\lambda \rightarrow 0+} \frac{f_{i}(\bar{x}+\lambda d)-f_{i}(\bar{x})}{\lambda}+\lim _{\lambda \rightarrow 0+} \frac{h_{i}(\bar{x}+\lambda d)-h_{i}(\bar{x})}{\lambda} \\
& =f_{i}^{\prime}(\bar{x} ; d)+h_{i}^{\prime}(\bar{x} ; d) \\
& =\left\langle\nabla f_{i}(\bar{x}), d\right\rangle+h_{i}^{\prime}(\bar{x} ; d) .
\end{aligned}
$$

Since $\bar{x}$ is a weakly efficient solution of (MPE),

$$
\left\langle\begin{array}{c}
\left\langle\nabla f_{i}(\bar{x}), d\right\rangle+h_{i}^{\prime}(\bar{x} ; d)<0, i=1, \cdots, p \\
-\left\langle\nabla g_{j}(\bar{x}), d\right\rangle<0, j \in I(\bar{x}) \\
\left\langle\nabla l_{k}(\bar{x}), d\right\rangle=0, k=1, \cdots, q
\end{array}\right\rangle
$$

has no solution $d \in \mathbb{R}^{n}$. By Gordan theorem for convex functions, there exist $\lambda_{i} \geqq 0, i=1, \cdots, p, \mu_{j} \geqq 0, j \in I(\bar{x})$ and $\nu_{k}, k=1, \cdots, q$ are not all zero such that for any $d \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\sum_{i=1}^{p} \lambda_{i}\left\langle\nabla f_{i}(\bar{x}), d\right\rangle+\sum_{i=1}^{p} \lambda_{i} h_{i}^{\prime}(\bar{x} ; d)-\sum_{j \in I(\bar{x})} \mu_{j}\left\langle\nabla g_{j}(\bar{x}), d\right\rangle+\sum_{k=1}^{q} \nu_{k}\left\langle\nabla l_{k}(\bar{x}), d\right\rangle \geqq 0 . \tag{1}
\end{equation*}
$$

Let $A=\left\{\sum_{i=1}^{p} \lambda_{i}\left[\nabla f_{i}(\bar{x})+\xi_{i}\right]-\sum_{j \in I(\bar{x})} \mu_{j} \nabla g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} \nabla l_{k}(\bar{x}) \mid \xi_{i} \in\right.$ $\left.\partial h_{i}(\bar{x}), i=1, \cdots, p\right\}$. Then $0 \in A$. Ab absurdo, suppose that $0 \notin A$. By separation theorem, there exists $d^{*} \in \mathbb{R}^{n}, d^{*} \neq(0, \cdots, 0)$, such that $\forall a \in A,\left\langle a, d^{*}\right\rangle<$ 0 , that is, $\sum_{i=1}^{p} \lambda_{i}\left\langle\nabla f_{i}(\bar{x}), d^{*}\right\rangle+\sum_{i=1}^{p} \lambda_{i}\left\langle\xi_{i}, d^{*}\right\rangle-\sum_{j \in I(\bar{x})} \mu_{j}\left\langle\nabla g_{j}(\bar{x}), d^{*}\right\rangle+$ $\sum_{k=1}^{q} \nu_{k}\left\langle\nabla l_{k}(\bar{x}), d^{*}\right\rangle<0, \forall \xi_{i} \in \partial h_{i}(\bar{x})$. Hence $\sum_{i=1}^{p} \lambda_{i}\left\langle\nabla f_{i}(\bar{x}), d^{*}\right\rangle+\sum_{i=1}^{p}$ $\lambda_{i} h_{i}^{\prime}(\bar{x} ; d)-\sum_{j \in I(\bar{x})} \mu_{j}\left\langle\nabla g_{j}(\bar{x}), d^{*}\right\rangle+\sum_{k=1}^{q} \nu_{k}\left\langle\nabla l_{k}(\bar{x}), d^{*}\right\rangle<0$, which contradicts (1). Letting $\mu_{j}=0, \forall j \notin I(\bar{x})$, we have

$$
0 \in \sum_{i=1}^{p} \lambda_{i} \nabla f_{i}(\bar{x})+\sum_{i=1}^{p} \lambda_{i} \partial h_{i}(\bar{x})-\sum_{j=1}^{m} \mu_{j} \nabla g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} \nabla l_{k}(\bar{x}) \text { and }
$$ $\sum_{j=1}^{m} \mu_{j} g_{j}(\bar{x})=0,\left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{m}, \nu_{1}, \cdots, \nu_{q},\right) \neq 0$. Since $\partial h_{i}(\bar{x})=$ $\left\{w_{i} \mid\left\langle w_{i}, \bar{x}\right\rangle=s\left(\bar{x} \mid D_{i}\right)\right\}$, we obtain the desired result.

Theorem 2.2. (Kuhn-Tucker Necessary Optimality Conditions). Suppose that $f_{i}, g_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \cdots, p, j=1, \cdots, m$ are differentiable and the vectors $\nabla l_{k}(\bar{x}), k=1, \cdots, q$, are linearly independent. Assume that $\exists z^{*} \in \mathbb{R}^{n}$ such that $\left\langle\nabla g_{j}(\bar{x}), z^{*}\right\rangle>0, j \in I(\bar{x}),\left\langle\nabla l_{k}(\bar{x}), z^{*}\right\rangle=0, k=1, \cdots, q$. If $\bar{x} \in S$ is a weakly efficient solution of (MPE), then there exist $\lambda_{i}, i=1, \cdots, p, \mu_{j}, j=$ $1, \cdots, m, \nu_{k}, k=1, \cdots, q, w_{i} \in D_{i}, i=1, \cdots, p$, such that

$$
\begin{aligned}
& \sum_{i=1}^{p} \lambda_{i} \nabla f_{i}(\bar{x})+\sum_{i=1}^{p} \lambda_{i} w_{i}-\sum_{j=1}^{m} \mu_{j} \nabla g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} \nabla l_{k}(\bar{x})=0, \\
& \left\langle w_{i}, \bar{x}\right\rangle=s\left(\bar{x} \mid D_{i}\right), i=1, \cdots, p, \\
& \sum_{j=1}^{m} \mu_{j} g_{j}(\bar{x})=0 \\
& \left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{m}\right) \geq 0 \\
& \left(\lambda_{1}, \cdots, \lambda_{p}\right) \neq(0, \cdots, 0) .
\end{aligned}
$$

Proof. Since $\bar{x}$ is a weakly efficient solution of (MPE), by Theorem 2.1, there exists $\lambda_{i}, i=1, \cdots, p, \mu_{j}, j=1, \cdots, m, \nu_{k}, k=1, \cdots, q$ and $w_{i} \in D_{i}, i=$ $1, \cdots, p$ such that

$$
\begin{aligned}
& \sum_{i=1}^{p} \lambda_{i} \nabla f_{i}(\bar{x})+\sum_{i=1}^{p} \lambda_{i} w_{i}-\sum_{j=1}^{m} \mu_{j} \nabla g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} \nabla l_{k}(\bar{x})=0, \\
& \left\langle w_{i}, \bar{x}\right\rangle=s\left(\bar{x} \mid D_{i}\right), i=1, \cdots, p \\
& \sum_{j=1}^{m} \mu_{j} g_{j}(\bar{x})=0 \\
& \left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{m}\right) \geqq 0 \\
& \left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{m}, \nu_{1}, \cdots, \nu_{q}\right) \neq 0 .
\end{aligned}
$$

Assume that there exists $z^{*} \in \mathbb{R}^{n}$ such that $\left\langle\nabla g_{j}(\bar{x}), z^{*}\right\rangle>0, \forall j \in I(\bar{x})$, $\left\langle\nabla l_{k}(\bar{x}), z^{*}\right\rangle=0, \quad k=1, \cdots, q$. Then $\left(\lambda_{1}, \cdots, \lambda_{p}\right) \neq(0, \cdots, 0)$. Ab absurdo, suppose that $\left(\lambda_{1}, \cdots, \lambda_{p}\right)=(0, \cdots, 0)$. Then $\left(\mu_{1}, \cdots, \mu_{m}, \nu_{1}, \cdots, \nu_{q}\right) \neq$ $(0, \cdots, 0)$. If $\mu=0$, then $\nu \neq 0$. Since $\nabla l_{k}(\bar{x}), k=1, \cdots, q$, are linearly independent, $\nu_{1} \nabla l_{1}(\bar{x})+\cdots+\nu_{q} \nabla l_{q}(\bar{x})=0$ has trivial solution $\nu=0$, this contradicts $\nu \neq 0$. So $\mu \geq 0$. Since $\left\langle\nabla g_{j}(\bar{x}), z^{*}\right\rangle>0, j \in I(\bar{x})$. Defining $\mu_{j}>0$ for some $j \in\{1, \cdots, m\}$ then $\sum_{j=1}^{m} \mu_{j}\left\langle\nabla g_{j}(\bar{x}), z^{*}\right\rangle>0$ and so $\sum_{j=1}^{m} \mu_{j}\left\langle\nabla g_{j}(\bar{x}), z^{*}\right\rangle+\sum_{k=1}^{q} \nu_{k}\left\langle\nabla l_{k}(\bar{x}), z^{*}\right\rangle>0$. This is contradiction. Hence $\left(\lambda_{1}, \cdots, \lambda_{p}\right) \neq(0, \cdots, 0)$.

Theorem 2.3. (Fritz John Sufficient Optimality Conditions). Let ( $\bar{x}, \lambda, w, \mu, \nu$ ) satisfy the Fritz John optimality conditions as follows:

$$
\begin{aligned}
& \sum_{i=1}^{p} \lambda_{i} \nabla f_{i}(\bar{x})+\sum_{i=1}^{p} \lambda_{i} w_{i}-\sum_{j=1}^{m} \mu_{j} \nabla g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} \nabla l_{k}(\bar{x})=0, \\
& \left\langle w_{i}, \bar{x}\right\rangle=s\left(\bar{x} \mid D_{i}\right), i=1, \cdots, p \\
& \sum_{j=1}^{m} \mu_{j} g_{j}(\bar{x})=0 \\
& \left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{m}\right) \geqq 0 \\
& \left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{m}, \nu_{1}, \cdots, \nu_{q}\right) \neq 0 .
\end{aligned}
$$

(a) $f_{i}(\cdot)+(\cdot)^{T} w_{i}$ is $\left(F, \alpha, \rho_{i}, d\right)$-pseudoconvex at $\bar{x}$, and $-\sum_{j=1}^{m} \mu_{j} g_{j}(\cdot)+$ $\sum_{0 ;}^{q}{ }_{0=1}^{q} \nu_{k} l_{k}(\cdot)$ is strictly $(F, \alpha, \beta, d)$-pseudoconvex at $\bar{x}$, with $\beta+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqq$
(b) $\sum_{i=1}^{p} \lambda_{i}\left(f_{i}(\cdot)+(\cdot)^{T} w_{i}\right)$ is $(F, \alpha, \rho, d)$-quasiconvex at $\bar{x}$, and $-\sum_{j=1}^{m} \mu_{j} g_{j}(\cdot)+$ $\sum_{k=1}^{q} \nu_{k} l_{k}(\cdot)$ is strictly $(F, \alpha, \beta, d)$-pseudoconvex at $\bar{x}$, with $\beta+\rho \geqq 0$.
Then $\bar{x}$ is a weakly efficient solution of (MPE).
Proof. (a) Suppose that $\bar{x}$ is not a weakly efficient solution of (MPE). Then there exists $x^{*} \in S$ such that $f_{i}\left(x^{*}\right)+s\left(x^{*} \mid D_{i}\right)<f_{i}(\bar{x})+s\left(\bar{x} \mid D_{i}\right)$. Since $\left\langle w_{i}, \bar{x}\right\rangle=$ $s\left(\bar{x} \mid D_{i}\right), i=1, \cdots, p$,

$$
\begin{aligned}
f_{i}\left(x^{*}\right)+x^{* T} w_{i} & =f_{i}\left(x^{*}\right)+s\left(x^{*} \mid D_{i}\right) \\
& <f_{i}(\bar{x})+s\left(\bar{x} \mid D_{i}\right) \\
& =f_{i}(\bar{x})+\bar{x}^{T} w_{i} .
\end{aligned}
$$

By the ( $F, \alpha, \rho_{i}, d$ )-pseudoconvexity of $f_{i}(\bar{x})+\bar{x}^{T} w_{i}$, we have

$$
F\left(x^{*}, \bar{x} ; \alpha\left(x^{*}, \bar{x}\right)\left(\nabla f_{i}(\bar{x})+w_{i}\right)\right)<-\rho_{i} d^{2}\left(x^{*}, \bar{x}\right) .
$$

By sublinearity, there exists $\lambda_{i} \geqq 0$,

$$
F\left(x^{*}, \bar{x} ; \alpha\left(x^{*}, \bar{x}\right) \sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(\bar{x})+w_{i}\right)\right) \leqq-\sum_{i=1}^{p} \lambda_{i} \rho_{i} d^{2}\left(x^{*}, \bar{x}\right) .
$$

Since $\beta+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqq 0$,

$$
F\left(x^{*}, \bar{x} ;-\alpha\left(x^{*}, \bar{x}\right)\left(\sum_{j=1}^{m} \mu_{i} \nabla g_{j}(\bar{x})-\sum_{k=1}^{q} \nu_{k} \nabla l_{k}(\bar{x})\right)\right) \geqq-\beta d^{2}\left(x^{*}, \bar{x}\right) .
$$

Since $-\sum_{j=1}^{m} \mu_{j} g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} l_{k}(\bar{x})$ is strictly $(F, \alpha, \beta, d)$-pseudoconvex,

$$
-\sum_{j=1}^{m} \mu_{j} g_{j}\left(x^{*}\right)+\sum_{k=1}^{q} \nu_{k} l_{k}\left(x^{*}\right)>-\sum_{j=1}^{m} \mu_{j} g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} l_{k}(\bar{x}) .
$$

Since $\mu_{j} g_{j}(\bar{x})=0, j=1, \cdots, m, \nu_{k} l_{k}(\bar{x})=0, \nu_{k} l_{k}\left(x^{*}\right)=0, k=1, \cdots, q$, we obtain

$$
\sum_{j=1}^{m} \mu_{j} g_{j}\left(x^{*}\right)<0
$$

which contradicts the condition $\mu_{j} \geqq 0$ and $g_{j}\left(x^{*}\right) \geqq 0$.
By a method similar to that used in the proof of (a), we can prove for (b).
Theorem 2.4. (Kuhn-Tucker Sufficient Optimality Conditions). Let ( $\bar{x}, \lambda, w, \mu, \nu$ ) satisfy the Kuhn-Tucker optimality conditions as follows:

$$
\begin{aligned}
& \sum_{i=1}^{p} \lambda_{i} \nabla f_{i}(\bar{x})+\sum_{i=1}^{p} \lambda_{i} w_{i}-\sum_{j=1}^{m} \mu_{j} \nabla g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} \nabla l_{k}(\bar{x})=0 \\
& \left\langle w_{i}, \bar{x}\right\rangle=s\left(\bar{x} \mid D_{i}\right), i=1, \cdots, p \\
& \sum_{j=1}^{m} \mu_{j} g_{j}(\bar{x})=0 \\
& \left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{m}\right) \geqq(0, \cdots, 0), \quad\left(\lambda_{1}, \cdots, \lambda_{p}\right) \neq(0, \cdots, 0)
\end{aligned}
$$

(a) $f_{i}(\cdot)+(\cdot)^{T} w_{i}$ is $\left(F, \alpha, \rho_{i}, d\right)$-pseudoconvex at $\bar{x}$, and $-\sum_{j=1}^{m} \mu_{j} g_{j}(\cdot)+$ $\sum_{\text {or }}^{q} \nu_{k} l_{k}(\cdot)$ is $(F, \alpha, \beta, d)$-quasiconvex at $\bar{x}$, with $\beta+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqq 0$;
(b) $\sum_{i=1}^{p} \lambda_{i}\left(f_{i}(\cdot)+(\cdot)^{T} w_{i}\right)$ is $(F, \alpha, \rho, d)$-pseudoconvex at $\bar{x}$, and $-\sum_{j=1}^{m} \mu_{j} g_{j}(\cdot)+$ $\sum_{k=1}^{q} \nu_{k} l_{k}(\cdot)$ is $(F, \alpha, \beta, d)$-quasiconvex at $\bar{x}$, with $\beta+\rho \geqq 0$.
Then $\bar{x}$ is a weakly efficient solution of (MPE).
Proof. (a) Suppose that $\bar{x}$ is not a weakly efficient solution of (MPE). Then there exists $x^{*} \in S$ such that $f_{i}\left(x^{*}\right)+s\left(x^{*} \mid D_{i}\right)<f_{i}(\bar{x})+s\left(\bar{x} \mid D_{i}\right)$. Since $\left\langle w_{i}, \bar{x}\right\rangle=$ $s\left(\bar{x} \mid D_{i}\right), i=1, \cdots, p$,

$$
\begin{aligned}
f_{i}\left(x^{*}\right)+x^{* T} w_{i} & =f_{i}\left(x^{*}\right)+s\left(x^{*} \mid D_{i}\right) \\
& <f_{i}(\bar{x})+s\left(\bar{x} \mid D_{i}\right) \\
& =f_{i}(\bar{x})+\bar{x}^{T} w_{i}
\end{aligned}
$$

By the $\left(F, \alpha, \rho_{i}, d\right)$-pseudoconvexity of $f_{i}(\bar{x})+\bar{x}^{T} w_{i}$, we have

$$
F\left(x^{*}, \bar{x} ; \alpha\left(x^{*}, \bar{x}\right)\left(\nabla f_{i}(\bar{x})+w_{i}\right)\right)<-\rho_{i} d^{2}\left(x^{*}, \bar{x}\right)
$$

By sublinearity, there exists $\lambda_{i} \geq 0$,

$$
F\left(x^{*}, \bar{x} ; \alpha\left(x^{*}, \bar{x}\right) \sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(\bar{x})+w_{i}\right)\right)<-\sum_{i=1}^{p} \lambda_{i} \rho_{i} d^{2}\left(x^{*}, \bar{x}\right)
$$

Since $\beta+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqq 0$,

$$
F\left(x^{*}, \bar{x} ;-\alpha\left(x^{*}, \bar{x}\right)\left(\sum_{j=1}^{m} \mu_{i} \nabla g_{j}(\bar{x})-\sum_{k=1}^{q} \nu_{k} \nabla l_{k}(\bar{x})\right)\right)>-\beta d^{2}\left(x^{*}, \bar{x}\right) .
$$

Since $-\sum_{j=1}^{m} \mu_{j} g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} l_{k}(\bar{x})$ is $(F, \alpha, \beta, d)$-quasiconvex,

$$
-\sum_{j=1}^{m} \mu_{j} g_{j}\left(x^{*}\right)+\sum_{k=1}^{q} \nu_{k} l_{k}\left(x^{*}\right)>-\sum_{j=1}^{m} \mu_{j} g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} l_{k}(\bar{x}) .
$$

Since $\mu_{j} g_{j}(\bar{x})=0, j=1, \cdots, m, \nu_{k} l_{k}(\bar{x})=0, \nu_{k} l_{k}\left(x^{*}\right)=0, k=1, \cdots, q$, we obtain

$$
\sum_{j=1}^{m} \mu_{j} g_{j}\left(x^{*}\right)<0
$$

which contradicts the condition $\mu_{j} \geqq 0$ and $g_{j}\left(x^{*}\right) \geqq 0$.
By a method similar to that used in the proof of (a), we can prove for (b).

## 3. Duality Theorems

In this section, we formulate the generalized dual programming problem and establish weak and strong duality theorems under generalized $(F, \alpha, \rho, d)$-convexity assumptions. Now we propose the following general dual (MDE) to (MPE):
(MDE) Maximize

$$
\begin{align*}
& \left(f_{1}(u)+u^{T} w_{1}-\sum_{i \in I_{0}} y_{i} g_{i}(u)+z^{T} l(u),\right. \\
& \left.\cdots, f_{p}(u)+u^{T} w_{p}-\sum_{i \in I_{0}} y_{i} g_{i}(u)+z^{T} l(u)\right) \\
& \text { subject to } \sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-y^{T} \nabla g(u)+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)=0,  \tag{2}\\
& \quad \sum_{i \in I_{\alpha}} y_{i} g_{i}(u) \leqq 0, \alpha=1, \cdots, r,  \tag{3}\\
& y \geqq 0, \quad w_{i} \in D_{i}, i=1, \cdots, p, \\
& \lambda=\left(\lambda_{1}, \cdots, \lambda_{p}\right) \in \Lambda^{+},
\end{align*}
$$

where $I_{\alpha} \subset M=\{1, \cdots, m\}, \alpha=0,1, \cdots, r$ with $\cup_{\alpha=0}^{r} I_{\alpha}=M$ and $I_{\alpha} \cap I_{\beta}=\emptyset$ if $\alpha \neq \beta$. Let $\Lambda^{+}=\left\{\lambda \in \mathbb{R}^{p}: \lambda \geqq 0, \lambda^{T} e=1, e=(1, \cdots, 1)^{T} \in \mathbb{R}^{p}\right\}$.

Theorem 3.1. (Weak Duality). Assume that for all feasible $x$ of (MPE) and all feasible $(u, \lambda, w, y, z)$ of (MDE), if $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot)(\alpha=1, \cdots, r)$ is $\left(F, \alpha, \beta_{\alpha}, \rho\right)$ quasiconvex at $u$ and assuming that one of the following conditions hold:
(a) $f_{i}(\cdot)+(\cdot)^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+z^{T} l(\cdot)$ is $\left(F, \alpha, \rho_{i}, d\right)$-pseudoconvex at $u$, with $\sum_{\alpha=1}^{r} \beta_{\alpha}+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqq 0$; or
(b) $\sum_{i=1}^{p} \lambda_{i}\left(f_{i}(\cdot)+(\cdot)^{T} w_{i}\right)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+\sum_{k=1}^{q} z_{k} l_{k}(\cdot)$ is $(F, \alpha, \rho, d)$-pseudoconvex at $u$, with $\sum_{\alpha=1}^{r} \beta_{\alpha}+\rho \geqq 0$.
Then the following cannot hold:

$$
\begin{equation*}
f(x)+s(x \mid D)<f(u)+u^{T} w-\sum_{i \in I_{0}} y_{i} g_{i}(u) e+z^{T} l(u) e \tag{4}
\end{equation*}
$$

Proof. As $x$ is feasible for (MPE) and $(u, \lambda, w, y, z)$ is feasible for (MDE), we have

$$
\sum_{i \in I_{\alpha}} y_{i} g_{i}(x) \geqq 0 \geqq \sum_{i \in I_{\alpha}} y_{i} g_{i}(u), \alpha=1, \cdots, r
$$

By the $\left(F, \alpha, \beta_{\alpha}, d\right)$-quasiconvexity of $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(u), \alpha=1, \cdots, r$, it follows that

$$
\begin{equation*}
F\left(x, u ;-\alpha(x, u)\left(\sum_{i \in I_{\alpha}} y_{i} \nabla g_{i}(u)\right) \leqq-\beta_{\alpha} d^{2}(x, u), \alpha=1, \cdots, r\right. \tag{5}
\end{equation*}
$$

On the other hand, by (2) and the sublinearity of $F$, we have

$$
\begin{align*}
& F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)\right)\right) \\
& \quad+\sum_{\alpha=1}^{r} F\left(x, u ;-\alpha(x, u)\left(\sum_{i \in I_{\alpha}} y_{i} \nabla g_{i}(u)\right) \geqq F(x, u ; \alpha(x, u)\right.  \tag{6}\\
& \left.\quad\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-y^{T} \nabla g(u)+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)\right)\right)=0
\end{align*}
$$

Combination (5) and (6) gives

$$
\begin{align*}
& F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)\right.\right.  \tag{7}\\
& \left.\left.\quad+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)\right)\right) \geqq\left(\sum_{\alpha=1}^{r} \beta_{\alpha}\right) d^{2}(x, u) .
\end{align*}
$$

Now suppose, contrary to the result, that (4) holds. Since $x^{T} w_{i} \leqq s\left(x \mid D_{i}\right)$, we have for all $i \in\{1, \cdots, p\}$

$$
\begin{align*}
& f_{i}(x)+x^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(x)+z^{T} l(x) \leqq f_{i}(x)+x^{T} w_{i} \\
\leqq & f_{i}(x)+s\left(x \mid D_{i}\right)<f_{i}(u)+u^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(u)+z^{T} l(u) \tag{8}
\end{align*}
$$

By (a), we get

$$
\begin{align*}
& F\left(x, u ; \alpha(x, u)\left(\nabla f_{i}(u)+w_{i}-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+z^{T} \nabla l(u)\right)\right)  \tag{9}\\
< & -\rho_{i} d^{2}(x, u), \quad \forall i \in\{1, \cdots p\} .
\end{align*}
$$

From $\lambda \in \Lambda^{+}$, (9) and the sublinearity of $F$, we obtain

$$
\begin{align*}
& F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)\right)\right)  \tag{10}\\
& <\left(-\sum_{i=1}^{p} \lambda_{i} \rho_{i}\right) d^{2}(x, u) .
\end{align*}
$$

Since $\sum_{\alpha=1}^{r} \beta_{\alpha}+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqq 0$, it follows from (10) that

$$
\begin{aligned}
& F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)\right)\right) \\
< & \left(\sum_{\alpha=1}^{r} \beta_{\alpha}\right) d^{2}(x, u)
\end{aligned}
$$

which contradicts (7). Hence (4) cannot hold.
Suppose now that (b) is satisfied. From $\lambda \in \Lambda^{+}$and (8), it follows that

$$
\begin{aligned}
& \sum_{i=1}^{p} \lambda_{i}\left(f_{i}(x)+x^{T} w_{i}\right)-\sum_{i \in I_{0}} y_{i} g_{i}(x)+z^{T} l(x) \\
& \quad<\sum_{i=1}^{p} \lambda_{i}\left(f_{i}(u)+u^{T} w_{i}\right)-\sum_{i \in I_{0}} y_{i} g_{i}(u)+z^{T} l(u) .
\end{aligned}
$$

Then, by the $(F, \alpha, \rho, d)$-pseudoconvexity of $\sum_{i=1}^{p} \lambda_{i}\left(f_{i}(\cdot)+(\cdot)^{T} w_{i}\right)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)$ $+\sum_{k=1}^{q} z_{k} l_{k}(\cdot)$ at $u$,

$$
\begin{align*}
& F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+z^{T} \nabla l(u)\right)\right)  \tag{11}\\
< & -\rho d^{2}(x, u) .
\end{align*}
$$

Since $\sum_{\alpha=1}^{r} \beta_{\alpha}+\rho \geqq 0$, it follows from (11) that

$$
\begin{aligned}
& F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+z^{T} \nabla l(u)\right)\right) \\
< & \left(\sum_{\alpha=1}^{r} \beta_{\alpha}\right) d^{2}(x, u),
\end{aligned}
$$

which contradicts (7). Hence (4) cannot hold.
Theorem 3.2. (Weak Duality). Assume that for all feasible $x$ of (MPE) and all feasible $(u, \lambda, w, y, z)$ of (MDE), if $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot)(\alpha=1, \cdots, r)$ is $\left(F, \alpha, \beta_{\alpha}, \rho\right)$ quasiconvex at $u$ and assuming that one of the following three conditions hold:
(a) $f_{i}(\cdot)+(\cdot)^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+z^{T} l(\cdot)$ is both $\left(F, \alpha, \rho_{i}, d\right)$-quasiconvex and ( $\left.F, \alpha, \rho_{i}, d\right)$-pseudoconvex at $u, i \in P$ with $\sum_{\alpha=1}^{r} \beta_{\alpha}+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqq 0$; or
(b) $f_{i}(\cdot)+(\cdot)^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+z^{T} l(\cdot)$ is $\left(F, \alpha, \rho_{i}, d\right)$-quasiconvex at $u, \forall i \in P$ and there exist $k \in P$ such that $f_{k}(\cdot)+(\cdot)^{T} w_{k}-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+z^{T} l(\cdot)$ is strictly $\left(F, \alpha, \rho_{i}, d\right)$-pseudoconvex at $u$, with $\sum_{\alpha=1}^{r} \beta_{\alpha}+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqq 0$; or
(c) $\sum_{i=1}^{p} \lambda_{i}\left(f_{i}(\cdot)+(\cdot)^{T} w_{i}\right)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+\sum_{k=1}^{q} z_{k} l_{k}(\cdot)$ is $(F, \alpha, \rho, d)$-pseudoconvex at $u$, with $\sum_{\alpha=1}^{r} \beta_{\alpha}+\rho \geqq 0$, then the following cannot hold:

$$
\begin{equation*}
f(x)+s(x \mid D) \leq f(u)+u^{T} w-\sum_{i \in I_{0}} y_{i} g_{i}(u) e+z^{T} l(u) e, \text { for all } i \in P, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)+s(x \mid D)<f(u)+u^{T} w-\sum_{i \in I_{0}} y_{i} g_{i}(u) e+z^{T} l(u) e, \text { some } i \in P . \tag{13}
\end{equation*}
$$

Proof. As $x$ is feasible for (MPE) and $(u, \lambda, w, y, z)$ is feasible for (MDE), we have

$$
\sum_{i \in I_{\alpha}} y_{i} g_{i}(x) \geqq 0 \geqq \sum_{i \in I_{\alpha}} y_{i} g_{i}(u), \alpha=1, \cdots, r .
$$

By the $\left(F, \alpha, \beta_{\alpha}, d\right)$-quasiconvexity of $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(u), \alpha=1, \cdots, r$, it follows that

$$
\begin{equation*}
F\left(x, u ;-\alpha(x, u)\left(\sum_{i \in I_{\alpha}} y_{i} \nabla g_{i}(u)\right) \leqq-\beta_{\alpha} d^{2}(x, u), \alpha=1, \cdots, r .\right. \tag{14}
\end{equation*}
$$

On the other hand, by (2) and the sublinearity of $F$, we have

$$
\begin{align*}
& F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)\right)\right) \\
+ & \sum_{\alpha=1}^{r} F\left(x, u ;-\alpha(x, u) \sum_{i \in I_{\alpha}} y_{i} \nabla g_{i}(u)\right)  \tag{15}\\
\geqq & F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-y^{T} \nabla g(u)+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)\right)\right)=0 .
\end{align*}
$$

Combination (14) and (15) gives

$$
\begin{align*}
& F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)\right)\right)  \tag{16}\\
\geqq & \left(\sum_{\alpha=1}^{r} \beta_{\alpha}\right) d^{2}(x, u) .
\end{align*}
$$

Now suppose, contrary to the result, that (12)and (13) hold. Since $x^{T} w_{i} \leqq$ $s\left(x \mid D_{i}\right)$, we have

$$
\begin{align*}
& f_{i}(x)+x^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(x)+z^{T} l(x) \leqq f_{i}(x)+x^{T} w_{i} \leqq f_{i}(x)+s\left(x \mid D_{i}\right) \\
\leqq & f_{i}(u)+u^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(u)+z^{T} l(u), \forall i \in P, \\
& f_{i}(x)+x^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(x)+z^{T} l(x) \leqq f_{i}(x)+x^{T} w_{i} \leqq f_{i}(x)+s\left(x \mid D_{i}\right) \\
< & f_{i}(u)+u^{T} w_{i}-\sum_{i \in I_{0}} y_{i} g_{i}(u)+z^{T} l(u), \text { for some } i \in P . \tag{18}
\end{align*}
$$

By (a), we get

$$
\begin{align*}
& F\left(x, u ; \alpha(x, u)\left(\nabla f_{i}(u)+w_{i}-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+z^{T} \nabla l(u)\right)\right)  \tag{19}\\
\leqq & -\rho_{i} d^{2}(x, u), \quad \forall i \in P, \\
& F\left(x, u ; \alpha(x, u)\left(\nabla f_{i}(u)+w_{i}-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+z^{T} \nabla l(u)\right)\right)  \tag{20}\\
< & -\rho_{i} d^{2}(x, u), \quad \text { for some } i \in P .
\end{align*}
$$

From $\lambda \in \Lambda^{+}$, (19), (20) and the sublinearity of $F$, we have

$$
\begin{align*}
& F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)\right)\right)  \tag{21}\\
< & \left(-\sum_{i=1}^{p} \lambda_{i} \rho_{i}\right) d^{2}(x, u) .
\end{align*}
$$

Since $\sum_{\alpha=1}^{r} \beta_{\alpha}+\sum_{i=1}^{p} \lambda_{i} \rho_{i} \geqq 0$, it follows from (21) that

$$
\begin{aligned}
& F\left(x, u ; \alpha(x, u)\left(\sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-\sum_{i \in I_{0}} y_{i} \nabla g_{i}(u)+\sum_{k=1}^{q} z_{k} \nabla l_{k}(u)\right)\right) \\
& <\left(\sum_{\alpha=1}^{r} \beta_{\alpha}\right) d^{2}(x, u),
\end{aligned}
$$

which contradicts (16). Hence (12)and (13) cannot hold.
The proof for (b) or (c) is similar to the one used for the proof of (a).

Remark 3.1. If $l=0$ and $\alpha(x, u)=1$, then Theorem 3.2 reduces to Theorem 2.1 of Yang et al. [14] in the sense of efficient solutions.

Theorem 3.3. (Strong Duality). If $\bar{x} \in S$ is a weakly efficient solution of (MPE), and assume that there exists $z^{*} \in \mathbb{R}^{n}$ such that $\left\langle\nabla g_{j}(\bar{x}), z^{*}\right\rangle>0, \forall j \in I(\bar{x})$, $\left\langle\nabla l_{k}(\bar{x}), z^{*}\right\rangle=0, k=1, \cdots, q$, the vector $\nabla l_{k}(\bar{x}), k=1, \cdots, q$ are linearly independent. Then there exist $\bar{\lambda} \in \mathbb{R}^{p}, \bar{w}_{i} \in D_{i}, i=1, \cdots, p, \bar{y} \in \mathbb{R}^{m}, \bar{z} \in \mathbb{R}^{q}$ such that $(\bar{x}, \bar{\lambda}, \bar{w}, \bar{y}, \bar{z})$ is feasible for $(M D E)$ and $\bar{x}^{T} \bar{w}_{i}=s\left(\bar{x} \mid D_{i}\right), i=1, \cdots, p$. Moreover, if the assumptions of Theorem 3.1 are satisfied, then $(\bar{x}, \bar{\lambda}, \bar{w}, \bar{y}, \bar{z})$ is a weakly efficient solution of (MDE).

Proof. By Theorem 2.2, there exist $\bar{\lambda} \in \mathbb{R}^{p}, \bar{y} \in \mathbb{R}^{m}, \bar{z} \in \mathbb{R}^{q}$ and $\bar{w}_{i} \in D_{i}, i=$ $1, \cdots, p$, such that $\sum_{i=1}^{p} \bar{\lambda}_{i}\left(\nabla f_{i}(\bar{x})+\bar{w}_{i}\right)-\sum_{j=1}^{m} \bar{y}_{j} \nabla g_{j}(\bar{x})+\sum_{k=1}^{q} \nu_{k} \nabla l_{k}(\bar{x})=$ $0, \bar{y}_{j} g_{j}(\bar{x})=0, j=1, \cdots, m$, and $\bar{w}_{i} \in D_{i}, i=1, \cdots, p$. Thus $(\bar{x}, \bar{\lambda}, \bar{w}, \bar{y}, \bar{z})$ is a feasible for (MDE) and $\bar{x}^{T} \bar{w}_{i}=s\left(\bar{x} \mid D_{i}\right), i=1, \cdots, p$. Notice that $f_{i}(\bar{x})+$ $s\left(\bar{x} \mid D_{i}\right)=f_{i}(\bar{x})+\bar{x}^{T} \bar{w}_{i}=f_{i}(\bar{x})+\bar{x}^{T} \bar{w}_{i}-\sum_{i \in I_{0}} \bar{y}_{i} g_{i}(\bar{x})+z^{T} l(\bar{x})$. By Theorem 3.1, we obtain that the following cannot hold:

$$
\begin{aligned}
& \left(f_{1}(\bar{x})+s\left(\bar{x} \mid D_{1}\right), \cdots, f_{p}(\bar{x})+s\left(\bar{x} \mid D_{p}\right)\right) \\
& \quad<\left(f_{1}(u)+u^{T} w_{1}+\sum_{i \in I_{0}} y_{i} g_{i}(u)+z^{T} l(u)\right. \\
& \left.\quad, \cdots, f_{p}(u)+u^{T} w_{p}-\sum_{i \in I_{0}} y_{i} g_{i}(u)+z^{T} l(u)\right)
\end{aligned}
$$

where $(u, \lambda, w, y, z)$ is any feasible solution of (MDE). Since $\bar{x}^{T} \bar{w}_{i}=s\left(\bar{x} \mid D_{i}\right)$, we have that the following cannot hold:

$$
\begin{aligned}
& \quad\left(f_{1}(\bar{x})+\bar{x}^{T} \bar{w}_{1}-\sum_{i \in I_{0}} \bar{y}_{i} g_{i}(\bar{x})+z^{T} l(\bar{x})\right. \\
& \left.\quad, \cdots, f_{p}(\bar{x})+\bar{x}^{T} \bar{w}_{p}-\sum_{i \in I_{0}} \bar{y}_{i} g_{i}(\bar{x})+z^{T} l(\bar{x})\right) \\
& <\left(f_{1}(u)+u^{T} w_{1}-\sum_{i \in I_{0}} y_{i} g_{i}(u)+z^{T} l(u)\right. \\
& \left.\quad, \cdots, f_{p}(u)+u^{T} w_{p}-\sum_{i \in I_{0}} y_{i} g_{i}(u)+z^{T} l(u)\right)
\end{aligned}
$$

Since $(\bar{x}, \bar{\lambda}, \bar{w}, \bar{y}, \bar{z})$ is a feasible solution for (MDE), $(\bar{x}, \bar{\lambda}, \bar{w}, \bar{y}, \bar{z})$ is a weakly efficient solution of (MDE). Hence the result holds.

Theorem 3.4. (Strong Duality). If $\bar{x} \in S$ is an efficient solution of (MPE), and assume that there exists $z^{*} \in \mathbb{R}^{n}$ such that $\left\langle\nabla g_{j}(\bar{x}), z^{*}\right\rangle>0, \forall j \in I(\bar{x})$, $\left\langle\nabla l_{k}(\bar{x}), z^{*}\right\rangle=0, \quad k=1, \cdots, q$, the vector $\nabla l_{k}(\bar{x}), k=1, \cdots, q$ are linearly independent. Then there exist $\bar{\lambda} \in \mathbb{R}^{p}, \bar{w}_{i} \in D_{i}, i=1, \cdots, p, \bar{y} \in \mathbb{R}^{m}, \bar{z} \in \mathbb{R}^{q}$ such that $(\bar{x}, \bar{\lambda}, \bar{w}, \bar{y}, \bar{z})$ is feasible for $(M D E)$ and $\bar{x}^{T} \bar{w}_{i}=s\left(\bar{x} \mid D_{i}\right), i=1, \cdots, p$. Moreover, if the assumptions of Theorem 3.2 are satisfied, then $(\bar{x}, \bar{\lambda}, \bar{w}, \bar{y}, \bar{z})$ is an efficient solution of (MDE).

The proof is similar to the one used for the previous strong duality theorem.

## 4. Special Cases

We give some special cases of our duality results.
(1) If $l=0$, then the primal problem (MPE) and the dual problem (MDE) become the primal problem (VP) and the dual problem (VD) considered in Yang et al. [14] respectively.
(VP) Minimize $\left(f_{1}(x)+s\left(x \mid D_{1}\right), \cdots, f_{p}(x)+s\left(x \mid D_{p}\right)\right)$
subject to $\quad g(x) \geqq 0$,
(VD) Maximize

$$
\begin{array}{ll}
\left(f_{1}(u)+u^{T}\right. & \left.w_{1}-\sum_{i \in I_{0}} y_{i} g_{i}(u), \cdots, f_{p}(u)+u^{T} w_{p}-\sum_{i \in I_{0}} y_{i} g_{i}(u)\right) \\
\text { subject to } & \sum_{i=1}^{p} \lambda_{i}\left(\nabla f_{i}(u)+w_{i}\right)-y^{T} \nabla g(u)=0 \\
& \sum_{i \in I_{\alpha}} y_{i} g_{i}(u) \leqq 0, \alpha=1, \cdots, r
\end{array}
$$

$$
\begin{aligned}
& y \geqq 0, \quad w_{i} \in D_{i}, \quad i=1, \cdots, p \\
& \lambda=\left(\lambda_{1}, \cdots, \lambda_{p}\right) \in \Lambda^{+}
\end{aligned}
$$

(2) Let $D_{i}=\left\{B_{i} w: w^{T} B_{i} w \leqq 1,\right\}$. Then $s\left(x \mid D_{i}\right)=\left(x^{T} B_{i} x\right)^{1 / 2}$ and the sets $D_{i}, i=1, \cdots, p$, are compact and convex. If $l=0, I_{0}=M$ and $I_{\alpha}=\emptyset$, $\alpha=1, \cdots, r$, then (MPE) and (MDE) reduce to (VP) and (VDP) $)_{1}$ in Lal et al. [7], respectively. If $l=0, I_{0}=\emptyset, I_{1}=M$ and $I_{\alpha}=\emptyset, \alpha=2, \cdots, r$, then (MPE) and (MDE) reduce to (VP) and (VDP) $)_{2}$ in Lal et al. [7], respectively.

## References

1. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983, pp. 235-236.
2. V. Jeyakumar, Equivalence of saddle-points and optima, and duality for a class of nonsmooth non-convex problems, Journal of Mathematical Analysis and Applications, 130 (1988), 334-343.
3. V. Jeyakumar and B. Mond, On generalized convex mathematical programming, Journal of the Australian Mathematical Society, 34B (1992), 43-53.
4. S. J. Kim, M. H. Kim and D. S. Kim, Optimality and Duality for a Class of Nondifferentiable Multiobjective Fractional Programming Problems, Journal of Optimization Theory and Applications, 129(1) (2006), 131-146.
5. H. Kuk, G. M. Lee and D. S. Kim, Nonsmooth multiobjective programs with V- $\rho$ invexity, Indian Journal of Pure and Applied Mathematics, 29 (1998), 405-412.
6. Z. A. Liang, H. X. Huang and P. M. Pardalos, Optimality conditions and duality for a class of nonlinear fractional programming problems, Journal of Optimization Theory and Applications, 110(3) (2001), 611-619.
7. S. N. Lal, B. Nath and A. Kumar, Duality for some nondifferentiable static multiobjective programming problems, Journal of Mathematical Analysis and Applications, 186 (1994), 862-867.
8. H. J. Lee, Y. J. Lee and D. S. Kim, Generalized second order symmetric duality in nondifferentiable multiobjective programming, Taiwanese Journal of Mathematics, 11(3) (2007), 745-764.
9. O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969, pp. 66-67.
10. O. L. Mangasarian, and S. Fromovitz, The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints, Journal of Mathematical Analysis and Application, 17 (1967), 37-47.
11. S. K. Mishra and R. N. Mukherjee, On generalized convex multi-objective nonsmooth programming, Journal of the Australian Mathematical Society, 38B (1996), 140-148.
12. B. Mond and M. Schechter, Non-differentiable symmetric duality, Bulletin of the Australian Mathematical Society, 53 (1996), 177-187.
13. V. Preda, On efficiency and duality for multiobjective programs, Journal of Mathematical Analysis and Applications, 166 (1992), 365-377.
14. X. M. Yang, K. L. Teo and X. Q. Yang, Duality for a class of nondifferentiable multiobjective programming problem, Journal of Mathematical Analysis and Applications, 252 (2000), 999-1005.

Do Sang Kim and Kwan Deok Bae Division of Mathematical Sciences, Pukyong National University,
Busan 608-737, Republic of Korea
E-mail: dskim@pknu.ac.kr

