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ON THE SOLUTION EXISTENCE OF GENERALIZED
VECTOR QUASI-EQUILIBRIUM PROBLEMS
WITH DISCONTINUOUS MULTIFUNCTIONS

B. T. Kien, N. Q. Huy and N. C. Wong*

Abstract. In this paper we deal with the following generalized vector quasi-
equilibrium problem: given a closed convex set K in a normed space X,
a subset D in a Hausdorff topological vector space Y , and a closed convex
cone C in Rn. Let Γ : K → 2K, Φ : K → 2D be two multifunctions and
f : K×D×K → Rn be a single-valued mapping. Find a point (x̂, ŷ) ∈ K×D
such that

(x̂, ŷ) ∈ Γ(x̂) × Φ(x̂), and {f(x̂, ŷ, z) : z ∈ Γ(x̂)} ∩ (−IntC) = Ø.

We prove some existence theorems for the problem in which Φ can be discon-
tinuous and K can be unbounded.

1. INTRODUCTION

Throughout this paper, C is a closed convex cone in Rn such that IntC �= Ø
and C �= Rn, where IntC denotes the interior of C. Let X and Y be a Hausdorff
topological vector space, K ⊆ X and D ⊆ Y be nonempty sets. Let Γ : K → 2K,
Φ : K → 2D be two multifunctions and f : K × D × K → Rn be a single-
valued mapping. The generalized vector quasi-equilibrium is the problem of finding
(x̂, ŷ) ∈ K × D such that

(x̂, ŷ) ∈ Γ(x̂)× Φ(x̂), and {f(x̂, ŷ, z) : z ∈ Γ(x̂)} ∩ (−IntC) = Ø. (1)

The problem will be denoted by P(K, Γ, Φ, f) ((P) for short). We denote by Sol(P)
the solution set of (P).

It is noted that P (K, Γ, Φ, f) covers several generalized quasivariational in-
equalities and generalized vector equilibrium problems. Here are some of them.
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(A) If n = 1, C = R+ then (P) reduces to the implicit quasivariational inequality
problem: find x̂ ∈ K and ŷ ∈ Φ(x̂) such that

x̂ ∈ Γ(x̂) and f(x̂, ŷ, z) ≥ 0, ∀z ∈ Γ(x̂). (2)

(B) If Γ(x) = K for all x ∈ K then (P) reduces to the generalized vector
equilibrium problem: find x̂ ∈ K and ŷ ∈ Φ(x̂) such that

{f(x̂, ŷ, z) : z ∈ K} ∩ (−IntC) = Ø. (3)

(C) If n = 1, C = R+, Y = X∗ = D and f(x, y, z) = 〈y, z − x〉 then (P)
reduces to the generalized quasivariational inequality problem: find x̂ ∈ K
and ŷ ∈ Φ(x̂) such that

x̂ ∈ Γ(x̂) and 〈ŷ, z − x̂〉 ≥ 0, ∀z ∈ Γ(x̂). (4)

The solution existence of (2), (3) and (4) has become a basic research topic
which continues to attract researchers in applied mathematics. We refer the
readers to [3-13], [15-20], [26-34], and references given therein for recent
results on the solution existence of (2), (3) and (4) with discontinuous multi-
functions.

Since the generalized vector quasi-equilibrium problem covers many classes of
variational inequalities and vector equilibrium problems, it can be seen as an efficient
model to study the solution existence of these classes in a uniform form.

The aim of this paper is to derive some solution existence theorems for (P) with
discontinuous multifunctions. Namely, we will establish some existence theorems in
which Φ can not be continuous and K can be unbounded. Under certain conditions
our results extend the results in [6, 7, 10-12], and some preceding results. In order
to obtain the results we first reduce problem (P) by the scalarization method and
we then use solution existence theorems in [18] to establish our results.

The rest of the paper consists of two sections. In section 2 we recall some
auxiliary results and the scalariation method. Section 3 is devoted to main results.

2. AUXILIARY RESULTS

Let C be a closed convex cone in Rn. A single-valued mapping g : X → Rn

is called C-upper semicontinuous (C−u.s.c., for short) on X if for every z ∈ Z
the set g−1(z − IntC) is open in X (see [27]). In [27], Tanaka proved that g is
C−u.s.c. on X if and only if for each fixed x ∈ X and for any y ∈ IntC, there
exists a neighborhood U of x such that g(u) ∈ g(x) + y − IntC for all u ∈ U .
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Also, g is said to be C − lower semicontinuous (C−l.s.c., for short) on X if for
each fixed x ∈ X and for any y ∈ IntC, there exists a neighborhood V of x such
that g(x)− y ∈ g(v)− IntC for all v ∈ V .

Let K be a nonempty convex subset in X . A single-valued mapping h : K → Z
is called C-convex if for every x, x′ ∈ K and t ∈ [0, 1] one has

th(x) + (1 − t)h(x′)− h(tx + (1− t)x′) ∈ C.

If −h is C − convex then h is said to be C − concave on K.
For each cone C, the set

C∗ := {z∗ ∈ Rn : 〈z∗, z〉 ≥ 0 for all z ∈ C}

is said to be the polar cone of C. Note that C∗ has a compact base B∗, that is,
C∗ =

⋃
t>0 tB∗ where B∗ ⊂ C∗ is convex and compact with 0 /∈ B∗ (see [21]).

When IntC �= Ø and z ∈ IntC, z �= 0, the set

B∗ = {z∗ ∈ C∗ : 〈z∗, z〉 = 1}

is a compact convex base for C∗. Put C∗
+ = C∗ \ {0}. From the bipolar theorem

(see, e.g., [15]), we have

z ∈ C ⇐⇒ [〈z∗, z〉 ≥ 0, ∀z∗ ∈ C∗] ⇐⇒ [〈z∗, z〉 ≥ 0, ∀z∗ ∈ B] (5)

and

z ∈ IntC ⇐⇒ [〈z∗, z〉 > 0, ∀z∗ ∈ C∗
+] ⇐⇒ [〈z∗, z〉 > 0, ∀z∗ ∈ B]. (6)

The following lemma gives us a useful tool of the scalarization procedure.

Lemma 2.1. Let g be a single-valued mapping from K into Z and u ∗ ∈ C∗
+.

Let φ : K → R be a mapping defined by φ(x) = 〈u∗, g(x)〉 for all x ∈ K. Then
the following assertions are valid:

(a) If g is C−convex then φ is convex;
(b) If g is C−concave then φ is concave;
(c) If g is C−u.s.c. then φ u.s.c;
(d) If g is C−l.s.c. then φ is l.s.c.

Proof. Since g is C−convex, then for all x, x′ ∈ K and t ∈ [0, 1] one has

tg(x) + (1− t)g(x′) − g(tx + (1 − t)x′) ∈ C.
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By (5) we have 〈u∗, tg(x) + (1− t)g(x′) − g(tx + (1 − t)x′)〉 ≥ 0. Hence

t〈u∗, g(x)〉+ (1− t)〈u∗, g(x′)〉 ≥ 〈u∗g(tx + (1 − t)x′)〉.

This implies that

tφ(x) + (1 − t)φ(x′) ≥ φ(tx + (1− t)x′).

Hence we obtain (a). The proof of (b) is similar to the proof of (a).
For the assertion (c) we assume that xn → x. We shall prove that lim supn→∞

φ(xn) ≤ φ(x). Choose yj ∈ IntC such that yj → 0. Then for each j > 0 there
exists a neighborhood Uj of x such that

g(u) ∈ g(x) + yj − IntC, ∀u ∈ Uj.

Therefore for each j there exists nj > 0 such that

g(xn) ∈ g(x) + yj − IntC, ∀n > nj.

By (6) it follows that 〈u∗, g(xn) − g(x)− yj〉 < 0. Hence

φ(xn) = 〈u∗, (g(xn) − g(x)− yj) + g(x) + yj〉
= 〈u∗, g(xn) − g(x)− yj〉 + 〈u∗, g(x) + yj〉
< 〈u∗, g(x)〉+ 〈u∗, yj〉

for all n > nj . This implies that lim supn→∞〈φ(xn) ≤ 〈u∗, g(x)〉+ 〈u∗yj〉. By
letting j → ∞ and noting that 〈u∗, yj〉 → 0 we obtain

lim sup
n→∞

φ(xn) ≤ 〈u∗, g(x)〉 = φ(x).

The proof of assertion (d) is similar to that of (c).

Recall that a multifunction Γ : X → 2E from a normed space X into a normed
space E is said to be lower semicontinuous (l.s.c., for short ) at x ∈ X if for any
open set V in E satisfying V ∩Γ(x) �= Ø, there exists a neighborhood U of x such
that V ∩ Γ(x) �= Ø for all x ∈ U. Γ is said to be Hausdorff l.s.c., at x ∈ K if for
any ε > 0, there exists a neighborhood W of x such that

Γ(x) ⊂ Γ(x) + εB for all x ∈ W.

Here B is the open unit ball in E .
We now return to problem (2). By using the Michael continuous selection

theorem, in [18] we obtain the following result.
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Lemma 2.2. (cf. [18, Theorem 3.1]). Let X = Rm, K be a convex compact
set in X and D be a nonempty set in Y . Let Γ : K → 2K , Φ : K → 2D be two
multifunctions and f : K × D × K → R be a single-valued mapping. Assume the
following conditions are fulfilled:

(i) Γ is l.s.c. with nonempty convex values on K and the set M = {x ∈ K :
x ∈ Γ(x)} is closed;

(ii) the set Φ(x) is nonempty, compact for each x ∈ K and convex for each
x ∈ M ;

(iii) for each z ∈ K, the set {x ∈ M | supy∈Φ(x) f(x, y, z) ≥ 0} is closed;
(iv) for each x ∈ M , the set {z ∈ K | supy∈Φ(x) f(x, y, z) ≥ 0} is closed;
(v) for each x ∈ M there exists y ∈ Φ(x) such that f(x, y, x) = 0;
(vi) for each x ∈ M and y ∈ Φ(x), the function f(x, y, .) is convex and l.s.c.;
(vii) for each x ∈ M and z ∈ Γ(x), the function f(x, ., z) is concave and u.s.c.

Then there exists (x̂, ŷ) ∈ K × D such that

(x̂, ŷ) ∈ Γ(x̂)× Φ(x̂), and f(x̂, y, z) ≥ 0, ∀z ∈ Γ(x̂). (7)

3. EXISTENCE RESULTS

In this section we keep all notations in preceding sections and assume that
f : K × D × K → Rn defined by

f(x, y, z) = (f1(x, y, z), f2(x, y, z), . . . , fn(x, y, z)),

where fi : K ×D ×K → R, i = 1, 2, ..., n, are scalar functions. For each ξ ∈ C∗
+

we consider the following problem.
(Pξ) Find (x̂, ŷ) ∈ K × D such that

(x̂, ŷ) ∈ Γ(x̂) × Φ(x̂), and 〈ξ, f(x̂, ŷ, z)〉 ≥ 0, ∀z ∈ Γ(x̂). (8)

We denote by Sol(Pξ) the solution set of problem Pξ .
The following result gives a relation between Sol(P) and Sol(Pξ).

Lemma 3.1.

(a) ⋃
ξ∈C∗

+

Sol(Pξ) ⊂ Sol(P ). (9)
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(b) If Γ has convex values and f(x, y, ·) is C−strongly convex for each (x, y) ∈
M × Φ(x), i.e.,

tf(x, y, z1) + (1− t)f(x, y, z2) ∈ f(x, y, tz1 + (1− t)z2) + IntC ∪ {0}

for all z1, z2 ∈ K and t ∈ [0, 1], then
⋃

ξ∈C∗
+

Sol(Pξ) = Sol(P ).

Proof.

(a) Suppose that (x̂, ŷ) belongs to the left hand side of (9). Then there exists
ξ ∈ C∗

+ such that (8) holds. By (6) we have

f(x̂, ŷ, z) /∈ −IntC, ∀z ∈ Γ(x̂).

This means that

{f(x̂, ŷ, z) : z ∈ Γ(x̂)} ∩ (−IntC) = Ø.

Hence(x̂, ŷ) ∈ Sol(P ) and so
⋃

ξ∈C∗
+

Sol(Pξ) ⊂ Sol(P ).

(b) Taking any (x̂, ŷ) ∈ Sol(P ), we have (x̂, ŷ) ∈ Γ(x̂) × Φ(x̂) and

{f(x̂, ŷ, z) : z ∈ Γ(x̂)} ∩ (−IntC) = Ø.

This implies that

{f(x̂, ŷ, z) + c : (z, c) ∈ Γ(x̂) × IntC} ∩ (−IntC) = Ø.

We want to check that the set

Q := {f(x̂, ŷ, z) + c : (z, c) ∈ Γ(x̂) × IntC}

is convex. Indeed, taking any u, v ∈ Q, we have u = f(x̂, ŷ, z1) + c1 and
v = f(x̂, ŷ, z2)+c2 for some (z1, c1), (z2, c2) ∈ Γ(x̂)×IntC. Hence for each
t ∈ [0, 1], tu + (1− t)v = tf(x̂, ŷ, z1) + (1− t)f(x̂, ŷ, z2) + tc1 + (1− t)c2.
Since f(x̂, ŷ, ·) is C−strongly convex, tf(x̂, ŷ, z1) + (1 − t)f(x̂, ŷ, z2) =
f(x̂, ŷ, tz1 + (1− t)z2) + c3 for some c3 ∈ IntC ∪ {0}. Consequently,

tu + (1 − t)v = f(x̂, ŷ, tz1 + (1− t)z2) + c,
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where c := tc1 +(1− t)c2 + c3 ∈ IntC. This implies that tu+(1− t)v ∈ Q.
Thus Q is a convex set. According to the separation theorem of convex sets
(see [14, Theorem 1, p. 163]), there exists a nonzero functional ξ such that

〈ξ, f(x̂, ŷ, z) + c〉 ≥ 〈ξ, u〉
for all (z, c) ∈ Γ(x̂) × IntC and u ∈ −IntC. This implies that ξ ∈ C ∗

+ and

〈ξ, f(x̂, ŷ, z)〉 ≥ 0, ∀z ∈ Γ(x̂).

Hence (x̂, ŷ) ∈ Sol(Pξ) and so Sol(P ) ⊆ ⋃
ξ∈C∗

+
Sol(Pξ). Combining this

with (9), we obtain the desired conclusion. The proof is complete.

Lemma 3.1 suggests us that in order to prove the solution existence of problem
(P), it is necessary to prove the solution existence of (Pξ) for some ξ ∈ C∗

+. In
this way we obtain the following existence result for the case of finite dimensional
spaces.

Theorem 3.1. Let X = Rm, K be a closed convex set in X , K0 be a
nonempty bounded set in K, and D be a nonempty set in Y . Let Γ : K → 2 K,
Φ : K → 2D be two multifunctions and f : K × D × K → Rn be a single-valued
mapping. Assume that there exists ξ ∈ C ∗

+ such that the following conditions are
fulfilled:

(i) Γ is l.s.c. with nonempty convex values on K and the set M = {x ∈ K :
x ∈ Γ(x)} is closed;

(ii) the set Φ(x) is nonempty, compact for each x ∈ K and convex for each
x ∈ M ;

(iii) for each z ∈ K, the set {x ∈ M | supy∈Φ(x)〈ξ, f(x, y, z)〉 ≥ 0} is closed;
(iv) for each x ∈ M , the set {z ∈ K | supy∈Φ(x)〈ξ, f(x, y, z)〉 ≥ 0} is closed;
(v) for each x ∈ M and for each y ∈ Φ(x) such that f(x, y, x) = 0;
(vi) for each x∈M and y∈Φ(x), the function f(x, y, .) is C−convex and l.s.c.;
(vii) for each x ∈ M and z ∈ Γ(x), the function f(x, ., z) is C−concave and

u.s.c.;
(viii) Γ(x)∩K0 �= Ø for all x ∈ K, for each x ∈ M\K0 there exists z ∈ Γ(x)∩K0

such that f(x, y, z) ∈ −IntC for all y ∈ Φ(x).

Then there exists x̂ ∈ Γ(x̂) such that

max
y∈Φ(x̂)

〈ξ, f(x̂, y, z)〉 ≥ 0, ∀z ∈ Γ(x̂) (10).

Moreover, there exists ŷ ∈ Φ(x̂) such that (x̂, ŷ) is a solution of P(K, Γ, f, Φ).
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Proof. Take r > 0 such that K0 ⊂ intBr where Br is the closed ball in Rm

with radius r and center at 0. We put Ωr = K ∩ Br and define the multifunction
Γr : Ωr → 2Ωr by Γr(x) = Γ(x) ∩ Br and φ : K × D × K → R by φ(x, y, z) =
〈ξ, f(x, y, z)〉. According to Lemma 3.1 in [34], Γr is l.s.c. on Ωr. Put

Φr = Φ |Ωr , φr = φ |Ωr×D×Ωr .

By (vi) and Lemma 2.1, φ(x, y, ·) is convex and l.s.c. Also, φ(x, ·, z) is concave
and u.s.c. Hence the components Ωr, Γr, Φr and φr meet all conditions of Lemma
2.2. By this lemma, there exists (x̂, ŷ) ∈ Γr(x̂) × Φr(x̂) such that

φr(x̂, ŷ, z) ≥ 0, ∀z ∈ Γr(x̂).

Since Φr(x̂) = Φ(x̂) and φr(x̂, ŷ, z) = φ(x̂, ŷ, z) we get

(x̂, ŷ) ∈ Γ(x̂) × Φ(x̂), and φ(x̂, ŷ, z) ≥ 0, ∀z ∈ Γr(x̂). (11)

We now claim that
φ(x̂, ŷ, z) ≥ 0, ∀z ∈ Γ(x̂). (12)

In fact, from (viii) we get x̂ ∈ K0. Take any z ∈ Γ(x̂). Then (1 − t)x̂ + tz ∈
Γ(x̂) ∩ Br for a sufficiently small t ∈ (0, 1). Hence (11) implies

φ(x̂, ŷ, (1− t)x̂ + tz) ≥ 0.

By (vi) and Lemma 2.1 we have

0 ≤ φ(x̂, ŷ, tx̂ + (1− t)z) ≤ tφ(x̂, ŷ, x̂) + (1 − t)φ(x̂, ŷ, z)
= 0 + (1− t)φ(x̂, ŷ, z).

This implies (12). It is obvious that (12) implies (10). From (12) and Lemma 3.1,
we have

{f(x̂, ŷ, z) : z ∈ Γ(x̂)} ∩ (−IntC) = Ø.

Consequently, (x̂, ŷ) is a solution of the problem. The proof is complete.

When C = Rn
+ := {(x1, x2, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n}, C∗ = C

and IntC = {(x1, x2, . . . , xn) ∈ Rn : xi > 0, i = 1, 2, . . . , n}. In this case we have

Corollary 3.1. Let X = Rm, K be a closed convex set in X , K0 be a
nonempty bounded set in K, and D be a nonempty set in Y . Let Γ : K → 2 K ,
Φ : K → 2D be two multifunctions, and f : K ×D× K → Rn be a single-valued
mapping. Assume that there exists an index i, 1 ≤ i ≤ n, such that the following
conditions are fulfilled:
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(i) Γ is l.s.c. with nonempty convex values on K and the set M = {x ∈ K :
x ∈ Γ(x)} is closed;

(ii) the set Φ(x) is nonempty, compact for each x ∈ K and convex for each
x ∈ M ;

(iii) for each z ∈ K, the set {x ∈ M | supy∈Φ(x) fi(x, y, z) ≥ 0} is closed;
(iv) for each x ∈ M , the set {z ∈ K | supy∈Φ(x) fi(x, y, z) ≥ 0} is closed;
(v) for each x ∈ M and for each y ∈ Φ(x) such that f(x, y, x) = 0;
(vi) for each x∈M and y∈Φ(x), the function f(x, y, .) is C−convex and l.s.c.;
(vii) for each x ∈ M and z ∈ Γ(x), the function f(x, ., z) is C−concave and

u.s.c.
(viii) Γ(x)∩K0 �= Ø for all x ∈ K, for each x ∈ M\K0 there exists z ∈ Γ(x)∩K0

such that f(x, y, z) ∈ −IntC for all y ∈ Φ(x).

Then problem P(K, Γ, f, Φ) has a solution (x̂, ŷ) ∈ K 0 × D.

Proof. For the proof we put ξ = (0, 0, . . . , ξi . . . , 0, 0), where ξi is the ith
component of ξ and ξi = 1. It easy to see that ξ ∈ C∗

+ and conditions of Theorem
3.1 are satisfied. The conclusion follows directly from Theorem 3.1.

Let us give an illustrative example for Theorem 3.1.

Example 3.1. Let X = R, K = [0, 1] ⊂ X , Y = R, D = [1, 4], and

C = R2
+ = {(x, y) | x ≥ 0, y ≥ 0}.

Let Γ, Φ and f be defined by:

Γ(x) =

{ {0} if x = 0;

(0, 1] if 0 < x ≤ 1,

Φ(x) =

{
[2, 4] if x = 0;

{1} if 0 < x ≤ 1,

f(x, y, z) = (f1(x, y, z), f2(x, y, z)), where f1(x, y, z) = y(z2 −x2), f2(x, y, z) =
y(z4 − x4). Then the set {0} × [2, 4] is a solution set of P(K, Γ, Φ, f). Moreover
Φ is not upper semicontinuous on [0, 1].

Indeed, by putting ξ = (1, 0) (i = 1), we see that all conditions of Theorem
3.1. are fulfilled. Taking x̂ = 0 and ŷ ∈ Φ(0) = [2, 4] we have 0 ∈ Γ(0) and

f(0, ŷ, z) = (0, 0) /∈ −IntC, ∀z ∈ Γ(0).
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Hence the set {0} × [2, 4] is a solution set of the problem. Since xn = 1/n → 0
and yn = 1 ∈ Φ(xn) but 1 /∈ Φ(0), Φ is not u.s.c. at x = 0.

In the rest of this section we shall derive some existence results for the case of
infinite dimensional spaces.

Theorem 3.2. Let X be a Banach space, K be a closed convex set of X , and D

be a nonempty set in Y . Let Γ : K → 2K , Φ : K → 2D be two multifunctions and
f : K × D × K → Rn be a single-valued mapping. Let K1, K2 be two nonempty
compact sets of K such that K1 ⊂ K2, K1 is finite dimensional and ξ ∈ C ∗

+.
Assume that:

(i) Γ is Hausdorff l.s.c. with nonempty closed graph and convex values;
(ii) the set Φ(x) is nonempty, compact for each x ∈ K and convex for each

x ∈ Γ(x);
(iii) for each z ∈ K, the set {x ∈ K | supy∈Φ(x)〈ξ, f(x, y, z)〉 ≥ 0} is compactly

closed;
(iv) for each x ∈ K, the set {z ∈ K | supy∈Φ(x)〈ξ, f(x, y, z)〉 ≥ 0} is finitely

closed;
(v) for each x ∈ K and for each y ∈ Φ(x) such that f(x, y, x) = 0;
(vi) for each x ∈ K and y ∈ Φ(x), the function f(x, y, .) is C−convex and l.s.c.;

(vii) for each x ∈ K and z ∈ Γ(x), the function f(x, ., z) is C−concave and
u.s.c.

(viii) Intaff(K)Γ(x) �= Ø;
(ix) Γ(x)∩K1 �= Ø for all x ∈ K. Moreover for each x ∈ K\K2 with x ∈ Γ(x)

there exists z ∈ Γ(x) ∩ K1 such that f(x, y, z) ∈ −IntC for all y ∈ Φ(x).

Then there exists a pair (x̂, ŷ) ∈ K2 × D which solves P(K, Γ, Φ, f).

Proof. The proof is based on the scheme given by [10].
Let L = aff(K) and L0 be the linear subspace corresponding to L. For each

x ∈ coK2, there exists zx ∈ IntLΓ(x), the interior of Γ(x) in L which is nonempty
by (viii).

The following lemma plays an important role in our arguments.

Lemma 3.2. ([9], Proposition 2.5). Let T be a topological space, X be a
nomerd space, L be an affine manifold of X , Γ : T → 2L a Hausdorff lower
semicontinuous multifunction with nonempty closed convex values, and x ∈ X ,
y ∈ IntL(Γ(x)). Then there exists a neighborhood U of x such that y ∈ Int L(Γ(x))
for all x ∈ U .
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By Lemma 3.2, there exists a neighborhood Ux of x in X such that zx ∈
IntLΓ(u) for all u ∈ Ux ∩ K. Since coK2 is a compact set and

coK2 ⊂
⋃

x∈coK2

(Ux ∩ L),

there exist x1, x2, ..., xm ∈ coK2 such that

coK2 ⊂
m⋃

i=1

[Uxi ∩ L].

Putting

P0 =
m⋃

i=1

(Uxi ∩ L).

Then P0 ⊂ L. Since L\P0 �= Ø and closed in L,

ξ := inf{d(a, L\P0) : a ∈ coK2} > 0.

Putting
P = coK2 + (B(0, ξ/2)∩ L0),

we have that P is a closed convex set in L and P ⊂ P0.
Let F be the family of all finite-dimensional linear subspaces of X containing

K1 ∪ {zx1, zx2, ..., zxn}. Fix S ∈ F and put

Ω = K ∩ P ∩ S, K0 = K2 ∩ Ω.

Note that K1 ⊂ K ∩ P ∩ S ⊂ Ω ⊂ K ∩ S.
We next define the multifunction ΓS : Ω → 2Ω by setting

ΓS(x) := Γ(x) ∩ Ω = G(x) ∩ K ∩ P ∩ S.

Put
ΦS = Φ |Ω, fS = f |Ω×D×Ω, MS = {x ∈ Ω : x ∈ ΓS(x)}.

The task is now to check that Theorem 3.1 can be applied to the problem P(Ω, ΓS,
ΦS , fS) where Ω plays a role as K in Theorem 3.1. To do this we need

Lemma 3.3. ([8], Lemma 3.3). The multifunction ΓS : Ω → 2Ω is lower
semicontinuous on Ω in the relative topology of S.

(a1) It is easy to see that ΓS has a closed graph. Since

MS = {x ∈ Ω : x ∈ ΓS(x)} = Ω ∩ {x ∈ K : x ∈ Γ(x)},
MS is closed in S. Therefore condition (i) of Theorem 3.1 is satisfied.
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(a2) Condition (ii) is automatically satisfied.
(a3) For each z ∈ Ω we get

{x ∈ MS | sup
y∈ΦS (x)

〈ξ, fS(x, y, z)〉 ≥ 0}

= {x ∈ K | sup
y∈Φ(x)

〈ξ, f(x, y, z)〉 ≥ 0} ∩ MS

which is closed by (iii) (taking into account MS is closed, MS ⊂ S, S is
finite-dimensional). Hence condition (iii) of Theorem 3.1 is satisfied.

(a4) For each x ∈ MS , we have

{x ∈ Ω | sup
y∈ΦS (x)

〈ξ, fS(x, y, z)〉 ≥ 0}

= {x ∈ K | sup
y∈Φ(x)

〈ξ, f(x, y, z)〉 ≥ 0} ∩ Ω.

This implies that condition (iv) of Theorem 3.1 is also satisfied.
(a5) The conditions (v), (vi), (vii) of Theorem 3.2 are automatically fulfilled.
(a6) Finally for each x ∈ MS\K0, we have x ∈ K\K2 and x ∈ Γ(x). By

condition (iv) there exists z ∈ Γ(x) ∩ K1 ⊂ ΓS(x) such that f(x, y, z) =
fS(x, y, z) ∈ −IntC for all y ∈ ΦS(x). Therefore condition (viii) of Theorem
3.1 is valid.

Thus all conditions of Theorem 3.1 are fulfilled. By Theorem 3.1, there exists
x̂S ∈ ΓS(x̂S) such that

max
y∈ΦS(x̂S)

〈ξ, fS(x̂S , y, z)〉 ≥ 0, ∀z ∈ ΓS(x̂S).

Since fS(x̂S, y, z) = f(x̂S, y, z), ΦS(x̂S) = Φ(x̂S) we get

max
y∈Φ(x̂S)

〈ξ, f(x̂S, y, z)〉 ≥ 0, ∀z ∈ Γx̂S) ∩ Ω. (13)

We now show that

max
y∈Φ(x̂S )

〈ξ, f(x̂S, y, z)〉 ≥ 0, ∀z ∈ Γ(x̂S) ∩ S. (14)

In fact, we fix any z ∈ Γ(x̂S) ∩ S. Since

x̂S ∈ K2 ⊂ coK2 ⊂ K ⊂ L,

z ∈ Γ(x̂S) ⊂ K ⊂ L,

L − L ⊂ L0,
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we have

x̂S + t(z − x̂S) ∈ K ∩ [coK2 + B(0, ξ/2)∩ L0] = K ∩ P

for a sufficiently small t ∈ (0, 1). By the convexity of Γ(x̂S) ∩ S we get

x̂S + t(z − x̂S) ∈ K ∩ P ∩ S ∩ Γ(x̂S) ⊂ Ω ∩ Γ(x̂S).

Hence (13) implies

max
y∈Φ(x̂S )

〈ξ, f(x̂S, y, x̂S + t(z − x̂S)〉 ≥ 0. (15)

By (iv) and using the similar argument as in the proof of Theorem 3.1, (15) implies

max
y∈Φ(x̂S )

〈ξ, f(x̂S, y, z)〉 ≥ 0.

Hence we obtained (14). We now consider the net {x̂S}s∈F , where F is ordered
by the ordinary set inclusion ⊇. By the compactness of K2 we can assume that
x̂S → x̂ ∈ K2. Since Γ has a closed graph, x̂ ∈ Γ(x̂).

The following lemma will complete the proof of Theorem 3.2.

Lemma 3.4.

max
y∈Φ(x̂)

〈ξ, f(x̂, y, z)〉 ≥ 0, ∀ z ∈ IntLΓ(x̂). (16)

Proof. On the contrary, suppose that that there exists ẑ ∈ IntLΓ(x̂) such that

max
y∈Φ(x̂)

〈ξ, f(x̂, y, ẑ)〉 < 0. (17)

By Lemma 3.2 there exists δ > 0 such that

ẑ ∈ IntLΓ(x), ∀x ∈ B(x̂, δ) ∩ K. (18)

It also follows from (17) that

x̂ ∈ {x ∈ K | max
y∈Φ(x)

〈ξ, f(x, y, ẑ)〉 < 0},

which is an open set by (iii). Therefore there exists α ∈ (0, δ) such that

max
y∈Φ(x)

〈ξ, f(x, y, ẑ)〉 < 0, ∀x ∈ B(x̂, α) ∩ K. (19)
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Since x̂S → x̂, there exists S0 ∈ F such that x̂S ∈ B(x̂, α) for all S ⊇ S0. So we
can choose S ∈ F satisfying ẑ ∈ S and x̂S ∈ B(x̂, α). Combining this with (18),
we obtain ẑ ∈ Γ(x̂S) ∩ S. Hence it follows from (14) that

x̂S ∈ Γ(x̂S), and max
y∈Φ(x̂S )

〈ξ, f(x̂S, y, ẑ)〉 ≥ 0. (20)

On the other hand, (19) implies that

x̂S ∈ Γ(x̂S), and max
y∈Φ(x̂S )

〈ξ, f(x̂S, y, ẑ)〉 < 0,

which contradicts to (20). The lemma is proved.
We now take any z ∈ Γ(x̂) ⊂ L. Since Γ(x̂) is a closed convex set in X , Γ(x̂)

is a closed convex set in L which is the closure of IntLΓ(x̂) in L (see [2] Theorem
2, pp. 19). Hence there exists a sequence zn ∈ IntLΓ(x̂) such that zn → z. By
Lemma 3.4 we have

max
y∈Φ(x̂)

〈ξ, f(x̂, y, zn)〉 ≥ 0.

By letting n → ∞ and using assumption (iv) yields

max
y∈Φ(x̂)

〈ξ, f(x̂, y, z)〉 ≥ 0, ∀ z ∈ Γ(x̂).

Hence
inf

z∈Γ(x̂)
max

y∈Φ(x̂)
〈ξ, f(x̂, y, z)〉 ≥ 0.

By the minimax theorem (see [1, Theorem 5]) we have

max
y∈Φ(x̂)

inf
z∈Γ(x̂)

〈ξ, f(x̂, y, z)〉 ≥ 0.

Since the function y �→ infz∈Γ(x̂)〈ξ, f(x̂, y, z)〉 is u.s.c., there exists a point ŷ ∈
Φ(x̂) such that

inf
z∈Γ(x̂)

〈ξ, f(x̂, ŷ, x)〉 = max
y∈Φ(x̂)

inf
z∈Γ(x̂)

〈ξ, f(x̂, y, z)〉 ≥ 0.

This implies that
〈ξ, f(x̂, ŷ, z〉 ≥ 0, ∀z ∈ Γ(x̂).

By Lemma 3.1, (x̂, ŷ) is a solution of the problem. The proof is complete.

For the scalar case we have

Corollary 3.2. ([10], Theorem 1.2) Let X be a real Banach space, let K
be a closed convex subset of X , let Γ : K → 2K and Φ : K → 2X∗ be two
multifunctions. Let K1, K2 be two nonempty compact subsets of K such that
K1 ⊂ K2 and K1 is finite-dimensional. Assume that:
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(i) the set Φ(x) is nonempty, weakly-star compact for each x ∈ K , and convex
for each x ∈ K, with x ∈ Γ(x);

(ii) for each z ∈ K, the set {x ∈ K : inf y∈Φ(x)〈y, x − z〉 ≤ 0} is compactly
closed;

(iii) the multifunction Γ is Hausdorff l.s.c. with closed graph and convex values;
(iv) Γ(x) ∩ K1 �= Ø for all x ∈ X;
(v) intaff(K)(Γ(x)) �= Ø for all x ∈ K;
(vi) for each x ∈ K \K2, with x ∈ Γ(x), one has

sup
z∈Γ(x)∩K1

inf
y∈Φ(x)

〈y, x− z〉 > 0.

Then there exists (x̂, ŷ) ∈ K2 × X∗ such that

x̂ ∈ Γ(x̂), ŷ ∈ Φ(x̂) and 〈ŷ, x̂ − z〉 ≤ 0, ∀z ∈ Γ(x̂).

Proof. For the proof we put f(x, y, z) = 〈y, z − x〉, D = Y = X∗, Z = R

and C = {x ∈ R | x ≥ 0}. Then we have C∗ = C and C∗
+ = {u ∈ R | u > 0}.

Choose ξ = 1. We want to verify conditions of Theorem 3.2. It is easily seen that f
meets all conditions of Theorem 3.2. Since Φ(x) is a compact set, for each z ∈ K

we have

{x ∈ K | inf
y∈Φ(x)

〈y, x− z〉 ≤ 0} = {x ∈ K | min
y∈Φ(x)

〈y, x− z〉 ≤ 0}

={x ∈ K | max
y∈Φ(x)

〈y, z − x〉 ≥ 0}

which is a compactly closed set. Moreover for each x ∈ K , the set

{z ∈ K : inf
y∈Φ(x)

〈y, x− z〉 ≤ 0}

is also closed and satisfies

{z ∈ K | inf
y∈Φ(x)

〈y, x− z〉 ≤ 0} = {z ∈ K | min
y∈Φ(x)

〈y, x− z〉 ≤ 0}

={z ∈ K | max
y∈Φ(x)

〈y, z − x〉 ≥ 0}.

Therefore, conditions (iii) and (iv) of Theorem 3.2 are valid.
Finally, (vi) implies that for each x ∈ K \ K2 there exists z ∈ Γ(x) ∩ K1 such

that f(x, y, z) ∈ −IntC for all y ∈ Φ(x). Thus all conditions of Theorem 3.2 are
fulfilled. The conclusion now follows directly from Theorem 3.2.
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Remark 3.1. In the proof of Theorem 3.2 we use Lemma 3.2 as a main
tool for the arguments. In the infinite-dimensional setting, in general, a lower
semicontinuous multifunction has no property demonstrated in Lemma 3.2, even if
X is an Hilbert space; see remark 3.1 of [9] and the references given there.

The following theorem deals with the case where Γ is not Hausdorff lower
semicontinuous and condition Intaff(K)Γ(x) �= Ø can be omitted.

Theorem 3.3. Let X be a normed space, K be a closed convex set of X and
D be a nonempty set in Y . Let Γ : K → 2K , Φ : K → 2D be two multifunctions
and f : K × D × K → Rn be a single-valued mapping. Let K1, K2 be two
nonempty compact sets of K such that K 1 ⊂ K2, K1 is finite dimensional. Assume
that there exists ξ∈C ∗

+ and η>0 such that the following conditions are fulfilled:

(i) Γ is l.s.c. with closed convex values and Hausdorff upper semicontinous;
(ii) the set Φ(x) is nonempty, compact for each x ∈ K and convex for each x

with d(x, Γ(x)) < η;
(iii) the set {(x, z) ∈ K × K : supy∈Φ(x)〈ξ, f(x, y, z)〉 ≥ 0} is closed;
(iv) for each x ∈ K there exists y ∈ Φ(x) such that f(x, y, x) = 0;
(v) for each x ∈ K and y ∈ Φ(x), the function f(x, y, .) is C−convex and l.s.c.;

(vi) for each (x, z) ∈ K × K, the function f(x, ., z) is C−concave and u.s.c.;
(vii) Γ(x) ∩ K1 �= Ø for all x ∈ K. Moreover for each x ∈ K\K2 with

d(x, Γ(x)) < η there exists z ∈ Γ(x) ∩ K1 such that f(x, y, z) ∈ −IntC
for all y ∈ Φ(x).

Then there exists a pair (x̂, ŷ) ∈ K × D which solves P(K, Γ, Φ, f).

Proof. Define a mapping φ : K × D × K → R by putting

φ(x, y, z) = 〈ξ, f(x, y, z)〉.

We now apply a existence result of problem (2) to Pξ(K, Γ, Φ, φ). By Theorem 3.3
in [18], there exists (x̂, ŷ) ∈ K × D such that

(x̂, ŷ) ∈ Γ(x̂) × Φ(x̂), φ(x̂, ŷ, z) ≥ 0, ∀z ∈ Γ(x̂).

By Lemma 3.1, (x̂, ŷ) is a solution of P(K, Γ, Φ, f).

Remark 3.2. In Theorem 3.1 and Theorem 3.2, conditions (iii) and (iv) are
verified via a functional ξ ∈ C∗

+. One of the main difficulties is to find such func-
tionals. Under certain conditions, says, if D is compact, Φ is upper semicontinuous
and the function (x, y) �→ f(x, y, z) is C− upper continuous, then we can choose
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any ξ ∈ C∗
+. However Example 2.1 reveals that although Φ is not u.s.c., there

exists ξ ∈ C∗
+ under which conditions (iii) and (iv) are fulfilled. Besides, Lemma

2.1 shows that under suitable conditions the solution existence of Pξ is necessary
for the solution existence of (P). It is natural to know if we can prove the solution
existence of (P) without Pξ . Namely, one may ask whether the conclusion of The-
orem 3.1 and Theorem 3.2 are still valid if conditions (iii) and (iv) are replaced by
the following conditions:
(iii)’ for each z ∈ K, the set {x ∈ M | ∃y ∈ Φ(x), f(x, y, z) /∈ −IntC} is closed;
(iv)’ for each x ∈ M , the set {z ∈ K | ∃y ∈ Φ(x), f(x, y, z) /∈ −IntC} is closed.
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