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ON A WEIGHTED AND EXPONENTIAL GENERALIZATION OF
RADO’S INEQUALITY

Shanhe Wu

Abstract. In this paper, a weighted and exponential generalization of Rado’s
inequality is established. As applications, the result is used to obtain a refine-
ment of weighted power means inequality.

1. INTRODUCTION

The following inequality is known in the literature as Rado’s inequality (see [1,
p. 94]):

(1) n(An(a) − Gn(a)) ≥ (n − 1)(An−1(a) − Gn−1(a)),

where ai > 0 (i = 1, 2, . . . , n), An(a) = (a1 + a2 + · · · + an)/n, Gn(a) =
n
√

a1a2 · · ·an .
Rado’s inequality is one of the most important inequalities for means, it is

well-known that this classical inequality can be applied to studying numerous in-
equalities related to arithmetic means and geometric means. Over the last decade
Rado’s inequality has received considerable attention from many researchers and
has motivated a large number of research papers giving their simple proofs, various
generalizations, improvements and analogues (see [1-7] and references therein).

Recently, it comes to our attention that an interesting generalization of Rado’s
inequality, which was proved by Bullen [8] (see also [9]), as follows
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where ai > 0, λi > 0 (i = 1, 2, . . . , n), rst �= 0, t/r ≤ 1 and s/r ≥ 1.
In this paper, we shall establish an analogue of Bullen’s inequality, which also

involves weights and exponents, from which a number of Rado-type inequalities
can be obtained by assigning appropriate values to the parameters. Finally, we
provide an application of obtained result to the improvement of weighted power
means inequality.

In order to prove the main result in Section 2, we need the following lemmas.

Lemma 1. (Weighted power means inequality [1, p. 76]). If ai > 0, λi >
0 (i = 1, 2, . . . , n), s ≥ t, st �= 0. Then

(3)

((
n∑

i=1

λia
s
i

)/(
n∑

i=1

λi

))1/s

≥
((
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λia
t
i
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λi

))1/t

.

Lemma 2. If p ≥ 1, a ≥ b ≥ c > 0, then

(4) ap − bp + cp ≥ (a− b + c)p.

If p ≥ 1, a ≥ b > 0, c ≥ b > 0, then

(5) ap − bp + cp ≤ (a − b + c)p.

The Lemma 2 will be used for improving Rado’s inequality as a main tool. We
show here two different proofs of Lemma 2: (I) Proof by direct method, (II) Proof
by Jensen-Steffensen’s inequality. These proofs are interesting, especially, the Proof
II, an artful proof which is motivated by Professor Bullen’s ideas, seems to be more
simple.

Proof of Lemma 2 (I). Direct calculation gives

ap − bp + cp

(a − b + c)p
=
(

a

a − b + c

)p

−
(

b

a − b + c

)p

+
(

c

a − b + c

)p

=
(

a

a − b + c

)p

−
(

a

a − b + c
+

c

a − b + c
− 1
)p

+
(

c

a − b + c

)p

: = xp + yp − (x + y − 1)p,

where x = c/(a− b + c), y = a/(a − b + c).
Define a function f : (0, 1] −→ R by f(x) = xp + yp − (x + y − 1)p (where

p and y are considered as the parameters).

Case (I). When p ≥ 1, a ≥ b ≥ c > 0. It implies that 0 < x ≤ 1, y ≥ 1.



Generalization of Rado’s Inequality 361

Differentiating with respect to x, we find

f ′(x) = pxp−1 − p(x + y − 1)p−1 ≤ 0 for p ≥ 1, 0 < x ≤ 1, y ≥ 1.

This means that f(x) is decreasing on (0, 1], we hence conclude that f(x) ≥
f(1) = 1 for all x ∈ (0, 1], y ∈ [1, +∞) and p ∈ [1, +∞).

Consequently, we have

ap − bp + cp

(a − b + c)p
= xp + yp − (x + y − 1)p ≥ 1,

which leads to inequality (4).

Case (II). When p ≥ 1, a ≥ b > 0, c ≥ b > 0. It implies that 0 < x ≤ 1,
0 < y ≤ 1.

It is easy to verify that

f ′(x) = pxp−1 − p(x + y − 1)p−1 ≥ 0 for p ≥ 1, 0 < x ≤ 1, 0 < y ≤ 1.

We can now assert f(x) ≤ f(1) = 1, since f(x) is increasing on (0, 1]. Further,
we conclude that

ap − bp + cp

(a − b + c)p
= xp + yp − (x + y − 1)p ≤ 1,

which yields the inequality (5). This completes the proof of Lemma 2.
Before the beginning of the Proof II, we shall introduce the Jensen-Steffensen’s

inequality (see [10,p.57]), as follows:

Proposition 1. If f : I → R is a convex function, x = (x1, x2, . . . , xn) is real
monotone n-tuple such that x i ∈ I (i = 1, 2, . . . , n), and p = (p1, p2, . . . , pn) is a
real n-tuple such that

0 ≤ Pk ≤ Pn (1 ≤ k ≤ n), Pn > 0, where Pk =
k∑

i=1

pi .

Then, the following inequality holds true:

(6) f

(
1
Pn

n∑
i=1

pixi

)
≤ 1

Pn

n∑
i=1

pif(xi).

Let us now prove the Lemma 2.

Proof of Lemma 2 (II). Define a function:

f : (0, +∞) −→ R by f(x) = xp (p ≥ 1).



362 Shanhe Wu

It is easy to verify that f is a convex function on (0, +∞).

Case (I). When a ≥ b ≥ c > 0. It implies that the combination x = (a, b, c) is
in decreasing order and a, b, c ∈ (0, +∞).

Consider a 3-tuple p = (1,−1, 1), we find

P1 = 1, P2 = 1 + (−1) = 0, P3 = 1 + (−1) + 1 = 1,

and
0 ≤ Pk ≤ P3 (1 ≤ k ≤ 3), P3 > 0 .

Using Jensen-Steffensen’s inequality gives

[1 · a + (−1) · b + 1 · c]p ≤ 1 · ap + (−1) · bp + 1 · cp .

Inequality (4) is proved.

Case (II). When a ≥ b > 0 and c ≥ b > 0. It implies that a + c − b ≥
a ≥ b > 0, we hence conclude that the combination x = (a + c − b, a, b) is in
decreasing order and a + c − b, a, b ∈ (0, +∞).

Consider the same 3-tuple as above: p = (1,−1, 1), it has been shown that

P1 = 1, P2 = 0, P3 = 1, 0 ≤ Pk ≤ P3 (1 ≤ k ≤ 3), P3 > 0 .

By applying Jensen-Steffensen’s inequality, we obtain

[1 · (a + c− b) + (−1) · a + 1 · b]p ≤ 1 · (a + c− b)p + (−1) · ap + 1 · bp ,

this is
ap − bp + cp ≤ (a− b + c)p.

Inequality (5) is proved.

2. MAIN RESULTS

As in [1-2] the following means for positive numbers a 1, a2, . . . , an and positive
weights λ1, λ2, . . . , λn are defined by

M [s]
n (a, λ) =

((
n∑

i=1

λia
s
i

)/(
n∑

i=1

λi

))1/s

, s �= 0, weighted power means,
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An(a, λ) =

(
n∑

i=1

λiai

)/(
n∑

i=1

λi

)
, weighted arithmetic means,

Hn(a, λ) =

(
n∑

i=1

λi

)/(
n∑

i=1

λia
−1
i

)
, weighted harmonic means,

Gn(a, λ) =

(
n∏

i=1

aλi
i

)1/
n∑

i=1
λi

, extended geometric means.

Our main result is stated in the following theorem.

Theorem 1. Let ai > 0, λi > 0 (i = 1, 2, . . . , n), st �= 0. Then for t/s ≤ 1
and r/s ≥ 1, we have the inequality

(7)
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.

Inequality (7) is reversed for t/s ≥ 1 and r/s ≥ 1.

Proof.

Case (I). When t/s ≤ 1 and r/s ≥ 1.

By Lemma 1 and the assumption t/s ≤ 1, we conclude(
n∑
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λi

)(
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)s
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(
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Based on the above inequalities and r/s ≥ 1, it follows from Lemma 2 that
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Using Lemma 1 with t/s ≤ 1 gives(
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Combining inequality (8) and the above inequality yields

(
n∑

i=1

λi

)r/s(
M [s]

n (a, λ)
)r−

(
n−1∑
i=1

λi

)r/s((
M

[s]
n−1(a, λ)

)r−
(
M

[t]
n−1(a, λ)

)r )

≥
(

n∑
i=1

λi

)r/s (
M [t]

n (a, λ)
)r

,

which leads to the desired inequality (7).

Case (II). When t/s ≥ 1 and r/s ≥ 1.
From Lemma 1 and the assumption t/s ≥ 1, we find(
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and (
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Similarly to the proof in Case (I), it follows respectively from Lemma 2 and
Lemma 1 that
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Combining the above inequalities gives
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which leads to the reverse inequality of (7). The proof of Theorem 1 is complete.

Remark 1. It is worth noticing that inequality (7) and Bullen’s inequality (2)
do not imply each other, because inequality (7) and Bullen’s inequality hold under
different assumption conditions. For example, in Theorem 1, if t = 1, s = −2,
r = −3, then t/s < 1 and r/s > 1. Under the same assumptions, it implies
that t/r < 1 and s/r < 1, which is not suitable for the conditions of Bullen’s
inequality, hence Theorem 1 here is unable to be deduced from Bullen’s inequality.

We give here some consequences from Theorem 1.
Putting r = s in Theorem 1, we obtain

Corollary 1. Let ai > 0, λi > 0 (i = 1, 2, . . . , n), st �= 0. Then for t/s ≤ 1
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we have the inequality

(9)
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Inequality (9) is reversed for t/s ≥ 1.

In Corollary 1, putting s = 1 gives

Corollary 2. Let ai > 0, λi > 0 (i = 1, 2, . . . , n), t �= 0. Then for t ≤ 1 we
have the inequality

(10)

(
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Inequality (10) is reversed for t ≥ 1.

Putting t → 0 and t = −1 respectively in (10), and using the known result
lim
t→0

M
[t]
n (a, λ) = Gn(a, λ) (see [1, p. 74]), we get

Corollary 3. Let ai > 0, λi > 0 (i = 1, 2, . . . , n). Then

(11)

(
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λi
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(An(a, λ)−Gn(a, λ))≥

(
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λi
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(An−1(a, λ)−Gn−1(a, λ)) ,

(12)

(
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(An(a, λ)−Hn(a, λ))≥

(
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λi

)
(An−1(a, λ)−Hn−1(a, λ)) .

Remark 2. Clearly, Rado’s inequality follows from inequality (11) with λ1 =
λ2 = . . . = λn = 1. Corollary 1, Corollary 2 and Corollary 3 show that the
inequality in Theorem 1 is a very general result.

3. APPLICATION TO THE REFINEMENT OF WEIGHTED POWER MEANS INEQUALITY

The weighted power means inequality in Lemma 1 can be rewritten in a sim-
plified form as

(13) M [s]
n (a, λ) ≥ M [t]

n (a, λ),
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where ai > 0, λi > 0 (i = 1, 2, . . . , n), s ≥ t, st �= 0.
It is well known that inequality (13) has important applications in many areas

of pure and applied mathematics. This classical inequality was formulated without
proof by J. Bienaymé [11] in 1840, and was first proved by D. Besso [12] in 1879.
A shorter proof was given by D. S. Mitrinović and P. M. Vasić in [1].

As application of the foregoing results, we show here a refinement of the
weighted power means inequality.

Theorem 2. Let ai > 0, λi > 0 (i = 1, 2, . . . , n), s ≥ t, st �= 0. Then
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for s ≥ t, s < 0.

Inequality (14) follows immediately from the above inequalities. Theorem 2 is
proved.
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12. D. Besso, Teoremi elementari sui massimi e minimi, Annuario Istituto Tecnico, Roma,
1879.

Shanhe Wu
Department of Mathematics,
Longyan College,
Longyan, Fujian 364012,
P. R. China
E-mail: wushanhe@yahoo.com.cn


