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EQUIVALENCE OF NON-NEGATIVE RANDOM TRANSLATES
OF AN IID RANDOM SEQUENCE

Aoi Honda, Yoshiaki Okazaki and Hiroshi Sato

Abstract. Let X = {Xk} be an IID random sequence and Y = {Yk}
be an independent random sequence also independent of X. Denote by µX

and µX+Y the probability measures on the sequence space induced by X and
X+Y = {Xk+Yk}, respectively. The problem is to characterize µX+Y ∼ µX

in terms of µY in the case where X is non-negative. Sato and Tamashiro[6]
first discussed this problem assuming the existence of fX(x) = dµX1

dx (x). They
gave several necessary or sufficient conditions for µX+Y ∼ µX under some
additional assumptions on fX or on Y.

The authors precisely improve these results. First they rationalize the
assumption of the existence of fX. Then they prove that the condition (C.6) is
necessary for wider classes of fX with local regularities. They also prove if the
p-integral I0

p (X) < ∞ and Y ∈ �+p a.s., then (C.6) is necessary and sufficient.
Furthermore, in the typical case where X is exponentially distributed, they
prove an explicit necessary and sufficient condition for µX+Y ∼ µX.

1. INTRODUCTION

For σ-finite measures µ and ν on a measurable space, µ � ν means that
µ is absolutely continuous with respect to ν, µ ⊥ ν that they are singular, and
µ ∼ ν that they are equivalent (mutually absolutely continuous). In the sequel, for
a probability measure ν on R and some −∞ ≤ θ < ∞, we say “ν ∼ m on [θ,∞)”
if ν is supported by the half line [θ,∞) and ν ∼ m there, where m is the Lebesgue
measure. If θ = −∞, then [−∞,∞) should be read as (−∞,∞).

Throughout this paper X = {Xk} denotes an independent identically distributed
(IID) random sequence and Y = {Yk} an independent random sequence, which
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is also independent of X, defined on a probability space (Ω,F , P). Denote by
µX and µX+Y the probability measures on the sequence space induced by X and
X + Y = {Xk + Yk}, respectively. Furthermore, we always assume
(C.0) µXk+Yk

∼ µXk
, k ≥ 1,

where µXk+Yk
and µXk

are the marginal distributions of Xk + Yk and Xk, respec-
tively (see also (C.3)). Y is said to be admissible (for X) if µX+Y ∼ µX.

Let 1 ≤ p < ∞ and −∞ ≤ θ < ∞. Let f(x) be a probability density function
on R which vanishes on (−∞, θ) and f(x) > 0 a.e.(m) on (θ,∞). Then we say
Iθ
p(f) < ∞ if f(x)1/p is absolutely continuous on [θ,∞) and the p-integral defined
by

Iθ
p(f) := pp

∫ ∞

θ

∣∣∣∣ d

dx

(
f(x)

1
p

)∣∣∣∣
p

dx < ∞.

In the case where θ = −∞, I−∞
p (f) is simply denoted by Ip(f). In particular

I2(f) coincides with the Shepp’s integral (Shepp[8]). For an IID random sequence
X = {Xk}, Iθ

p(X) is defined by Iθ
p(X) := Iθ

p(fX), where fX(x) is the probability
density function of µX1 if exists.

For sequences of non-negative numbers ak ≥ 0, 0 ≤ pk < 1, k ≥ 1, a Bernoulli
sequence

{
ε(ak, pk)

}
is an independent random sequence such that ε(ak, pk) takes

two values ak and 0 with probability pk and 1 − pk, respectively.
Kakutani’s dichotomy theorem implies either µX+Y ∼ µX or µX+Y ⊥ µX, and

he also proved

(C.1)
∞∑

k=1

(
1 − E

[√
dµXk+Yk

dµXk

(Xk)

])
< ∞,

is necessary and sufficient for the admissibility of Y (Kakutani[2]).

On the other hand, definingZk(x) :=
dµXk+Yk

dµXk

(x)− 1, k ≥ 1, Kitada and Sato[3]

proved

(C.2) the almost sure convergence of
∞∑

k=1

Zk(Xk)

is necessary and sufficient for the admissibility of Y.
The problem is to characterize the admissibility of Y only in terms of the distri-

bution of Y. In other words, the problem is to characterize the uniform integrability
of the positive martingale

Mn =
n∏

k=1

dµXk+Yk

dµXk

(Xk), n ≥ 1,
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in terms of the distribution of Y. We shall study the problem by utilizing the criteria
(C.1) and (C.2).

The case where Y is a deterministic sequence a = {ak} was first discussed
systematically by [8]. He proved that µX+a ∼ µX implies a ∈ �2, and that
µX+a ∼ µX for every a ∈ �2 if and only if I2(X) < ∞.

Define aε := {akεk} where {εk} is a Rademacher sequence and {ak} is a
deterministic sequence. Then it was proved that the admissibility of aε implies
{ak} ∈ �4, and that µX+aε ∼ µX for every {ak} ∈ �4 if and only if

J2(X) :=
∫ ∞

−∞

f ′′
X(x)2

fX(x)
dx < ∞

(Okazaki[4], Okazaki and Sato[5], Sato and Watari[7]). Furthermore, if Y is sym-
metric and J2(X) < ∞, then Y ∈ �4 a.s. implies the admissibility of Y ([7]).

Sato and Tamashiro[6] discussed the problem under the assumption of the ex-
istence of the density fX(x) = dµX1

dx (x).
In Section 2, we shall prove that a Bernoulli sequence Y =

{
ε (ak, 1/2)

}
is

admissible for every {ak} ∈ �+
2 if and only if there exists θ ≥ −∞ such that

µX1 ∼ m on [θ,∞), Iθ
2 (X) < ∞ and fX(+θ) := limx↘θ fX(x) = 0 (Theorem

2.2). This shows that the assumption of the existence of fX(x) = dµX1
dx (x) on

[θ,∞) in [6] is reasonable.
In Sections 3, 4 and 5, we assume θ = 0, that is, X1 ≥ 0 a.s. and there exists

fX(x) = dµX1
dx (x) for x ≥ 0. In this case, if Y is admissible for X, then Y is

necessarily non-negative, that is, Yk ≥ 0 a.s., k ≥ 1, and no deterministic sequence
is admissible unless trivial. On the other hand, if θ = 0, the condition (C.0) is
equivalent to

(C.3) P(Yk < ε) > 0 for every ε > 0, k ≥ 1.

In Section 3, we shall study the necessary condition for the admissibility of Y.
It is known that if X and Y are non-negative and Y is admissible, then we have

(C.4)
∞∑

k=1

E[Yk : Yk ≤ α]2 < ∞,

(C.5)
∞∑

k=1

P(Yk > α)2 < ∞,

for some (and any) α > 0 (Hino[1], see also [3], [6]). [6] strengthened the necessary
condition (C.5) to

(C.6)
∞∑

k=1

∫ ∞

0
P(Yk > x)2fX(x)dx < ∞,
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in the case whereY is a Bernoulli sequence ([6], Theorem 3.1), or where fX(+0) >

0, fX is absolutely continuous in an interval [0, δ] and ess.sup0≤x≤δ|f ′
X(x)| < ∞

([6], Theorem 3.3(B)). We shall prove (C.6) under new assumptions of the local
increase (Theorem 3.1) or the integrability

∫ δ
0 x−2fX(x)dx < ∞ (Theorem 3.2) on

fX, which include the case fX(+0) = 0. These results exhaust most cases of fX

and it is not known any examples of fX where Y is admissible but (C.6) does not
hold. We conjecture that (C.6) is a necessary condition for the admissibility of Y
in general.

Furthermore, we shall strengthen (C.4) to

(C.7)
∞∑

k=1

∫ ∞

0
E[Yk : Yk ≤ x ]2fX(x)dx < ∞.

(C.7) is necessary for admissibility of Y if E[|X1|2] < ∞ (Theorem 3.4). However
there exist examples of X, with E[|X1|2] < ∞ and admissible Y which do not
satisfy (C.7) (Example 3.5). On the other hand, in general, (C.6) and (C.7) are not
sufficient for the admissibility of Y (Example 5.4).

In Section 4, we shall study X with I0
p(X) < ∞, 1 ≤ p ≤ 2. We shall prove

that if I0
p (X) < ∞ and Y ∈ �+

p a.s., then Y is admissible if and only if (C.6) holds
(Theorem 4.1).

In Section 5, we shall study the case where X is exponentially distributed, that
is, fX(x) = λe−λxI[0,∞)(x) for some λ > 0 as the most typical and simplest case.
[6] gave a necessary and sufficient condition of this case for the admissibility of Y
under the additional assumption

(C.8)
∞∑

k=1

P(Yk > α) < ∞,

for some α > 0 ([6], Theorem 4.1). We shall give a necessary and sufficient condi-
tion for the admissibility of Y without any additional assumptions on Y (Theorem
5.1).

2. NON-NEGATIVE RANDOM TRANSLATES

To begin with, we shall prove the following lemma.

Lemma 2.1. For a probability ν on (R,B), define νs(A) = ν(A − s), A ∈
B, s ∈ R+. Then νs � ν for every s ∈ R+ if and only if ν ∼ m on [θ,∞) for
some −∞ ≤ θ < ∞.

Proof. Assume νs � ν for every s ∈ R+. Then for every open interval (a, b)
such that ν((a, b)) = 0, we have ν((a, b) − s) = µs((a, b)) = 0 for every s ≥ 0.
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Consequently there exists −∞ ≤ θ < ∞ such that ν is supported by the half line
[θ,∞).

Next we show ν � m. Assume m(A) = 0 for A ∈ B. Then we have

0 = m(A + 1) =
∫

R

dν(x)
∫ 1

0
IA+1(s + x)ds =

∫ 1

0
ν (A + 1− s) ds.

Hence there exists an s ∈ [0, 1) such that ν (A + 1− s) = 0. Since ν(1−s) � ν,
we have ν(A) = ν(1−s)(A + 1 − s) = 0.

Finally we show m � ν on [θ,∞). For every Borel set A ⊂ [θ,∞) such that
ν(A) = 0, we have

0 =
∫ ∞

0
νs(A)ds =

∫ ∞

0
ds

∫
[θ,∞)

IA−s(x)dν(x) =
∫

[θ,∞)
m((A−x)∩R+)dν(x),

so that F (x) := m((A − x) ∩ R+) = 0 a.s.(dν). Then by the minimality of the
support [θ,∞), we can find a sequence θn ↓ θ such that F (θn) = 0 and have

m(A) = lim
n

m((A − θn) ∩ R+) = 0.

The converse statement of the lemma is evident.

Theorem 2.2. Let X = {Xk} be an IID random sequence of real (not nec-
essarily non-negative) random variables and Y =

{
ε (ak, 1/2)

}
be a Bernoulli

sequence. Then we have

(A) The admissibility of Y implies {a k} ∈ �+
2 .

(B) Y is admissible for every {ak} ∈ �+
2 if and only if there exits θ ≥ −∞ such

that µX1 ∼ m on [θ,∞), Iθ
2 (X) < ∞ and fX(+θ) = 0.

Proof.

(A) is due to [6, Theorem 3.1], [1, Theorem 1.8].
(B) Since ak ≥ 0 is arbitrary, Lemma 1 is applicable to ν = µX1 and we have

µX1 ∼ m on [θ,∞) for some θ ≥ −∞.
On the other hand, Kakutani’s criterion (C.1) implies that Y is admissible for

every {ak} ∈ �+
2 if and only if

∞∑
k=1

∫ ∞

−∞

∣∣∣√fX(x − ak) −
√

fX(x)
∣∣∣2 dx < ∞

for every {ak} ∈ �+
2 . Consequently we have

√
fX(x) is absolutely continuous on

R and Iθ
2 (X) < ∞ by applying the arguments similar to [8].
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The condition fX(+θ) = 0 is crucial since I θ
2 (X) < ∞ implies the absolute

continuity of
√

fX(x) on the whole real line R. In fact, if X is exponentially
distributed, where fX(+0) > 0 and I0

2 (X) < ∞, then the Bernoulli sequence{
ε (ak, 1/2)

}
is admissible if and only if {ak} ∈ �+

1 (Example 5.5).

3. NECESSARY CONDITIONS FOR ADMISSIBILITY

We shall discuss the necessity of (C.6) and show that (C.6) is necessary for the
admissibility of Y under the various assumptions on fX.

By Kolmogorov’s three series theorem, (C.2) is equivalent to the following two
conditions.

(3.1)
∞∑

k=1

E
[|Zk(Xk)| : |Zk(Xk)| ≥ α

]
< ∞,

(3.2)
∞∑

k=1

E
[
Zk(Xk)2 : |Zk(Xk)| < α

]
< ∞,

for some (and any) α > 0.
In the following two theorems, we shall prove the necessity of (C.6) under the

assumption of local regularities on fX. These results include the case fX(+0) = 0.

Theorem 3.1. Assume that there exists some δ > 0 such that fX(x) is non-
decreasing on the interval [0, δ]. Then the admissibility of Y implies (C.6).

Proof. Since fX(x) is non-decreasing in [0, δ] and fX(x) = 0 for x < 0, we
have for any y > 0,

0 ≤ 1− fX(x− y)
fX(x)

≤ 1,

and (3.2) implies
∞∑

k=1

∫ δ

0
P(Yk > x)2fX(x)dx

=
∞∑

k=1

∫ δ

0
E

[
1− fX(x − Yk)

fX(x)
: Yk > x

]2

fX(x)dx

≤
∞∑

k=1

∫ δ

0
E

[
1− fX(x − Yk)

fX(x)

]2

fX(x)dx

=
∞∑

k=1

∫ δ

0

(
1 − E[fX(x − Yk)]

fX(x)

)2

fX(x)dx

≤
∞∑

k=1

E
[
Zk(Xk)2 : Zk(Xk) ≤ 1

]
< ∞.
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Theorem 3.2. Assume that
∫ δ
0 x−2fX(x)dx < ∞ for some δ > 0. Then the

admissibility of Y implies (C.6).

Proof. By Chebyshev’s inequality, we have P(x < Yk ≤ δ) ≤ E[Yk; Yk ≤ δ]/x,
and

∞∑
k=1

∫ δ

0
P(Yk > x)2fX(x)dx

=
∞∑

k=1

∫ δ

0
P(x < Yk ≤ δ)2fX(x)dx +

∞∑
k=1

∫ δ

0
P(x < Yk, Yk > δ)2fX(x)dx

= : A + B.

Then we have by using (C.4) and (C.5)

A ≤
∞∑

k=1

∫ δ

0
x−2

E[Yk; Yk≤δ]2fX(x)dx=
∞∑

k=1

E[Yk; Yk≤δ]2
∫ δ

0
x−2fX(x)dx<∞,

B ≤
∞∑

k=1

∫ δ

0

P(Yk > δ)2fX(x)dx =
∞∑

k=1

P(Yk > δ)2
∫ δ

0

fX(x)dx < ∞.

The following theorem reformulates [6, Theorem 3.3(B)].

Theorem 3.3. Assume that fX(+0) > 0 and there exist δ > 0 and K > 0
satisfying

|fX(y) − fX(x)| ≤ K|y − x| for x, y ∈ [0, δ].

Then the admissibility of Y implies (C.6).

Proof. Taking δ sufficiently small, we may assume Kδ < fX(+0)/2. Then
for x ∈ [0, δ] we have 0 < fX(+0)/2 < fX(x) < 3fX(+0)/2 and

|Zk(x)| =
∣∣∣∣E[fX(x− Yk)]

fX(x)
− 1
∣∣∣∣

=
∣∣∣∣E[fX(x− Yk)− fX(x) : Yk < x]

fX(x)
− P(Yk ≥ x)

∣∣∣∣
≤ Kδ

fX(x)
+ 1 ≤ 2.

Consequently by (3.2) and (C.4) we have
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∞∑
k=1

∫ δ

0

P(Yk > x)2fX(x)dx

=
∞∑

k=1

∫ δ

0

[(
E[fX(x − Yk)]

fX(x)
−1
)
fX(x)−E[fX(x − Yk)−fX(x) : Yk≤x]

]2 dx

fX(x)

≤ 2
∞∑

k=1

∫ δ

0

Zk(x)2fX(x)dx + 4
K2δ

fX(+0)

∞∑
k=1

E[Yk : Yk ≤ δ]2

≤ 2
∞∑

k=1

E[Zk(Xk)2 : |Zk(Xk)| ≤ 2] + 2K

∞∑
k=1

E[Yk : Yk ≤ δ]2 < ∞.

On the other hand, we have strengthen (C.4) to (C.7) as follows.

Theorem 3.4. Assume E[|X1|2] < ∞ and Y is admissible. Then we have
(C.7).

Proof. We have

∞∑
k=1

∫ ∞

0
E[Yk : Yk ≤ x]2fX(x)dx

≤
∞∑

k=1

∫ δ

0
E[Yk : Yk ≤ x]2fX(x)dx + 2

∞∑
k=1

∫ ∞

δ
E[Yk : Yk ≤ δ]2fX(x)dx

+2
∞∑

k=1

∫ ∞

δ
E[Yk : δ < Yk ≤ x]2fX(x)dx =: A + 2B + 2C.

By (C.4) and (C.5), we have

A=
∞∑

k=1

E[Yk : Yk ≤ δ]2
∫ δ

0
fX(x)dx < ∞,

B≤
∞∑

k=1

E[Yk : Yk ≤ δ]2
∫ ∞

δ
fX(x)dx < ∞,

C =
∞∑

k=1

∫ ∞

δ
E[Yk : δ<Yk ≤x]2fX(x)dx≤

∞∑
k=1

∫ ∞

δ
x2

P(Yk >δ)2fX(x)dx<∞.

The integrability E[X2
1 ] < ∞ is crucial in the above theorem. For instance, we

have the following example.

Example 3.5. Let fX(x) = 2/{π(1 + x2)} and Y =
{
ε(k3, 1/k2)

}
, k ≥ 1 be

a Bernoulli sequence. Then Y is admissible but (C.7) does not hold.
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Proof. Let fX(x) = 2/{π(1 + x2)} and Y =
{
ak, pk}, where ak = k3 and

pk = 1/k2. By estimating Kakutani’s criterion (C.1), we have

∞ >

∞∑
k=1

∫ ∞

0

∣∣∣√E[fX(x − Yk)]−
√

fX(x)
∣∣∣2 dx

=
∞∑

k=1

(√
1 − pk − 1

)2
∫ ak

0

fX(x)dx

+
∞∑

k=1

∫ ∞

ak

∣∣∣√fX(x) + pk(fX(x − ak) − fX(x))−
√

fX(x)
∣∣∣2 dx = I1 + I2.

Since 1 ≤ (√1− pk + 1
)2 ≤ 4, we have

I1 =
∞∑

k=1

(pk)2(√
1 − pk + 1

)2
∫ ak

0
fX(x)dx ≤

∞∑
k=1

∫ ∞

0
P(Yk > y)2fX(y)dy ≤ 4I1,

which shows I1 < ∞ if and only if (C.6) holds. We have

I2 =
∞∑

k=1

(pk)2
∫ ∞

ak

(fX(x− ak) − fX(x))2(√
fX(x) + pk(fX(x − ak) − fX(x)) +

√
fX(x)

)2
dx

≤
∞∑

k=1

(pk)2
∫ ∞

ak

a2
k(2x− ak)2fX(x)2fX(x− ak)2

pkfX(x − ak)
dx

=
∞∑

k=1

(ak)2pk

∫ ∞

ak

(2x − ak)2fX(x)2fX(x − ak)dx

≤
(

2
π

)2 ∞∑
k=1

pk

∫ ∞

ak

a2
k

1 + a2
k

4x2

1 + x2
fX(x − ak)dx

≤ 16
π2

∞∑
k=1

pk

∫ ∞

0
fX(x)dx =

16
π2

∞∑
k=1

pk.

Consequently, if
∑∞

k=1 pk < ∞ then I1 ≤∑∞
k=1 p2

k < ∞ and Y is admissible.
On the other hand, for ak ≥ 1,

∞∑
k=1

∫ ∞

0
E[Yk : Yk ≤ x]2fX(x)dx =

2
π

∞∑
k=1

(akpk)2
∫ ∞

ak

1
(1 + x2)

dx

≥ 1
π

∞∑
k=1

(akpk)2
∫ ∞

ak

1
x2

dx =
1
π

∞∑
k=1

ak(pk)2,
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which implies that (C.7) is equivalent to
∑∞

k=1 ak(pk)2 < ∞ if ak ≥ 1. But∑∞
k=1 pk =

∑∞
k=1

1
k2 < ∞ and

∑∞
k=1 ak(pk)2 =

∑∞
k=1

1
k = ∞, so that (C.7) does

not hold.

Conversely, even if both (C.6) and (C.7) hold, Y is not necessarily admissible
in general (Example 5.4).

4. THE p-INTEGRAL

In this section, we shall prove that (C.6) is necessary and sufficient condition
for the admissibility of Y if I0

p(X) < ∞ and Y ∈ �+
p a.s. for some 1 ≤ p ≤ 2. In

the case p = 2, [6] proved the sufficiency of (C.6), and the necessity of (C.6) under
the condition ess.sup0≤x≤δ|f ′

X(x)| < ∞.

Theorem 4.1. Assume I0
p(X) < ∞ and Y = {Yk} ∈ �+

p a.s. for some
1 ≤ p ≤ 2. Then Y is admissible if and only if (C.6) holds.

Proof. Assume Y ∈ �+
p a.s. Then Kolmogorov’s three series theorem implies∑∞

k=1 P(Yk > δ) < ∞ and
∑∞

k=1 E[|Yk|p : Yk ≤ δ] < ∞. We have

1
4

∞∑
k=1

∫ δ

0
P(Yk > x)2fX(x)dx ≤

∞∑
k=1

∫ δ

0

∣∣∣∣∣ fX(x)P(Yk > x)√
fX(x) +

√
fX(x)P(Yk ≤ x)

∣∣∣∣∣
2

dx

≤
∞∑

k=1

∫ δ

0

∣∣∣√fX(x) −
√

fX(x)P(Yk ≤ x)
∣∣∣2 dx

≤
∞∑

k=1

∫ δ

0

2
[(√

fX(x)−
√

E[fX(x − Yk)]
)2

+
(√

E[fX(x − Yk)] −
√

fX(x)P(Yk ≤ x)
)2 ]

dx.

The first term is finite by Kakutani’s criterion (C.1).
On the other hand by inequality

∣∣∣a 1
r − b

1
r

∣∣∣r ≥ ∣∣∣a 1
s − b

1
s

∣∣∣s , a, b ≥ 0, 0 < r ≤ s,

we have for q > 1 such that 1/p + 1/q = 1,

∞∑
k=1

∫ δ

0

∣∣∣√E[fX(x − Yk) : Yk ≤ x]−
√

fX(x)P(Yk ≤ x)
∣∣∣2 dx

≤
∞∑

k=1

∫ δ

0

∣∣∣E[fX(x − Yk) : Yk ≤ x]
1
p − (fX(x)P(Yk ≤ x))

1
p

∣∣∣p dx
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=
∞∑

k=1

∫ δ

0

∣∣∣∣∣
∫ 1

0

E[f ′
X(x − sYk)Yk : Yk ≤ x]

pE[fX(x− sYk) : Yk ≤ x]
1
q

ds

∣∣∣∣∣
p

dx

≤
∞∑

k=1

∫ δ

0

dx
1
pp

∫ 1

0

1

E[fX(x − sYk) : Yk ≤ x]
p
q

×E

[
|f ′

X(x − sYk)|Yk

fX(x − sYk)
1
q

fX(x − sYk)
1
q : Yk ≤ x

]p

ds

≤ 1
pp

∞∑
k=1

∫ δ

0
dx

∫ 1

0
E

[
|f ′

X(x − sYk)|p|Yk|p
fX(x − sYk)

p
q

: Yk ≤ x

]
ds

≤ 1
pp

∫ δ

0

|f ′
X(x)|p

fX(x)
p
q

dx

∞∑
k=1

E[|Yk|p : Yk ≤ δ] < ∞.

Next we prove the converse. Since Y ∈ �+p a.s., by Kolmogorov’s three series
theorem,

∑∞
k=1 P(Yk > 1) < ∞ and

∑∞
k=1 E[|Yk|p : Yk ≤ 1] < ∞, so that we

have β := infk P(Yk ≤ 1) > 0 (see also (C.3)). In order to prove the theorem, we
shall show Kakutani’s criterion (C.1). Decompose∣∣∣√E[fX(x − Yk)] −

√
fX(x)

∣∣∣2
≤
∣∣∣√E[fX(x − Yk) : Yk > 1] −

√
fX(x)P(Yk > 1)

∣∣∣2
+2
∣∣∣√E[fX(x − Yk) : Yk ≤ x, Yk ≤ 1] −

√
fX(x)P(Yk ≤ x, Yk ≤ 1)

∣∣∣2
+2
∣∣∣√fX(x)P(Yk ≤ x, Yk ≤ 1)]−

√
fX(x)P(Yk ≤ 1)

∣∣∣2
= : Uk(x) + 2Vk(x) + 2Wk(x).

Then we have
∑∞

k=1

∫∞
0 Uk(x)dx ≤ 2

∑∞
k=1 P(Yk > 1) < ∞. For q > 1

defined by 1/p + 1/q = 1 we have
∞∑

k=1

∫ ∞

0
Vk(x)dx ≤ 1

pp

∫ ∞

0

|f ′
X(x)|p

fX(x)
p
q

dx

∞∑
k=1

E[|Yk|p : Yk ≤ 1] < ∞,

by the same way as the last part of the necessity, and finally
∞∑

k=1

∫ ∞

0
Wk(x)dx

=
∞∑

k=1

∫ ∞

0

∣∣∣∣∣ P(Yk ≤ x, Yk ≤ 1) − P(Yk ≤ 1)√
P(Yk ≤ x, Yk ≤ 1) +

√
P(Yk ≤ 1)

∣∣∣∣∣
2

fX(x)dx

≤ 1
β

∞∑
k=1

∫ ∞

0
P(x < Yk)2fX(x)dx < ∞.
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5. EXPONENTIAL DISTRIBUTION

In the case where X is exponentially distributed, we prove a necessary and
sufficient condition for the admissibility of Y without any additional assumptions
on Y.

Theorem 5.1. Let X be exponentially distributed and Y be non-negative.
Then Y is admissible if and only if

∞∑
k=1

P(γk ≤ Yk) +
∞∑

k=1

e−λγk +
∞∑

k=1

∫ γk

0
eλy

P(y < Yk < γk)2dy < ∞,

where γk := sup
{
x ≥ 0

∣∣E [eλYk : Yk ≤ x
]

< 2
}
.

Fact 5.2.

(i) If the distribution of Yk is continuous, then

Zk(x) = E[eλYk : Yk ≤ x]− 1

is also continuous in x, and γk < ∞ implies Zk(γk) = 1.
(ii) By definition we have E[eλYk : Yk < γk] ≤ 2, and in particular, if γk = ∞

then we have E[eλYk ] ≤ 2.
(iii) If γk < ∞, then we have 2 ≤ E[eλYk : Yk ≤ γk] < ∞.

Proof of Theorem 5.1. We shall first prove the case where λ = 1. We use
(C.2) for the admissibility of Y. We show that (3.1) is equivalent to

(5.1)
∞∑

k=1

P(γk ≤ Yk) +
∞∑

k=1

e−γk < ∞

and that under (3.1), (3.2) is equivalent to

(5.2)
∞∑

k=1

∫ γk

0
ey

P(y < Yk < γk)2dy < ∞.

In order to prove that (3.1) implies (5.1), we have only to consider k with
γk < ∞. By Fubini’s theorem and Fact 5.2 (iii), we have

(5.3)
E[Zk(Xk) : Zk(Xk) ≥ 1] =

∫ ∞

γk

e−x
(
E[eYk : Yk ≤ x] − 1

)
dx

= e−γk E[eYk : Yk ≤ γk] + P(Yk > γk)− e−γk

≥ P(Yk > γk) + e−γk
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which implies (5.1). On the other hand, since Yk ≥ 0 a.s. we have

E[Zk(Xk) : Zk(Xk) ≥ 1] = e−γk E[eYk : Yk < γk] + P(Yk ≥ γk) − e−γk

≥ e−γk P(Yk < γk) + P(γk ≤ Yk) − e−γk = (1 − e−γk )P(γk ≤ Yk).

Since (5.1) implies γk → ∞ as k → ∞, (3.1) implies (5.1).
Conversely, we have by Fact 5.2 (ii),

E[Zk(Xk) : Zk(Xk) ≥ 1] = e−γk E[eYk : Yk < γk] + P(Yk ≥ γk) − e−γk

≤ 2e−γk + P(Yk ≥ γk) − e−γk = e−γk + P(Yk ≥ γk),

so that (5.1) implies (3.1). Therefore (3.1) is equivalent to (5.1).
Next, assume (3.1) and denote by {Y ′

k} an independent copy of {Yk}. Then by
Fubini’s theorem, we have

E[Zk(Xk)2 : Zk(Xk) < 1]

=
∫ γk

0
e−x

(
E[eYk+Y ′

k : Yk, Y ′
k ≤ x] − 2E[eYk : Yk ≤ x] + 1

)
dx

= E

[
eYk+Y ′

k

∫ γk

Yk∨Y ′
k

e−xdx : Yk, Y ′
k ≤ γk

]

−2E[eYk

∫ γk

Yk

e−xdx : Yk ≤ γk] +
∫ γk

0
e−xdx

= E[eYk∧Y ′
k − e−γk+Yk+Y ′

k : Yk, Y ′
k ≤ γk]

−2P(Yk ≤ γk) + 2e−γk E[eYk : Yk ≤ γk] + 1− e−γk

= E[eYk∧Y ′
k : Yk, Y

′
k ≤ γk] − e−γk E[eYk : Yk ≤ γk]2 + P(Yk > γk)

−P(Yk ≤ γk) + 2e−γk E[eYk : Yk ≤ γk]− e−γk

= E[eYk∧Y ′
k : Yk, Y

′
k < γk] − P(Yk < γk) − e−γk E[eYk : Yk < γk]2

+P(Yk ≥ γk) + 2e−γk E[eYk : Yk < γk]− e−γk ,

where a ∨ b := max{a, b}. By Fact 5.2 (ii) and by (5.1), the last four terms in
the final expression are summable. Therefore, under (3.1), (3.2) is equivalent to the
convergence of the series:

∞∑
k=1

{
E[eYk∧Y ′

k : Yk, Y ′
k < γk] − P(Yk < γk)

}
.
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Since P(Yk < γk) = P(Yk < γk, Y
′
k < γk) + P(Yk < γk, Y

′
k ≥ γk), we have

∞∑
k=1

{
E[eYk∧Y ′

k : Yk, Y ′
k < γk]− P(Yk < γk)

}

=
∞∑

k=1

E[eYk∧Y ′
k − 1 : Yk, Y ′

k < γk]−
∞∑

k=1

P(Yk < γk)P(Y ′
k ≥ γk),

where the second sum in the right expression is finite by (5.1). Thus under (3.1),
(3.2) is equivalent to

∫ γk

0

ey
P(y < Yk < γk)2dy = E

[∫ Yk∧Y ′
k

0

eydy : Yk, Y ′
k < γk

]

=
∞∑

k=1

E[eYk∧Y ′
k − 1 : Yk, Y ′

k < γk] < ∞.

Therefore, (3.2) is equivalent to (5.2) under (3.1).
Combining (5.1) and (5.2), we obtain a necessary and sufficient condition for

µX+Y ∼ µX as

(5.4)
∞∑

k=1

P(γk ≤ Yk) +
∞∑

k=1

e−γk +
∞∑

k=1

∫ γk

0
ey

P(y < Yk < γk)2dy < ∞.

Finally We shall prove the case where λ �= 1. In this case we have γk =
sup

{
x ≥ 0 | E

[
eλγk : Yk ≤ x

]
< 2
}
. We have µX+Y ∼ µX if and only if µλX+λY ∼

µλX. Since dµλX1(x) = e−xI[0,∞)(x)dx, replacing Y with λY in (5.4), we have
the conclusion.

As a corollary of Theorem , we obtain a necessary and sufficient condition in
the case where X is exponentially distributed and Y is a Bernoulli sequence.

Corollary 5.3. Let X be exponentially distributed and Y = {ε(a k, pk)} be a
Bernoulli sequence. Then Y is admissible if and only if

∞∑
k=1

eλak − 1
(e(λ∨σk)ak − 1)(eσkak − 1)

< ∞,

where σk := (1/ak) log {(1 + pk)/pk}.

Example 5.4. Let fX(x) = e−xI[0,∞)(x) and Y =
{
ε(ak, pk)

}
, where ak =

log(k + 2), pk = 1/(k + 1), k ≥ 1. Then (C.6) and (C.7) hold but Y is not
admissible.
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Proof. We have
∞∑

k=1

∫ ∞

0
P(Yk > x)2fX(x)dx =

∞∑
k=1

∫ ak

0
p2

ke
−xdx =

∞∑
k=1

p2
k(1 − e−ak )

=
∞∑

k=1

1
k2 + 3k + 2

< ∞

and
∞∑

k=1

∫ ∞

0
E[Yk; Yk ≤ x]2fX(x)dx =

∞∑
k=1

∫ ∞

ak

(akpk)2e−xdx =
∞∑

k=1

a2
kp

2
ke

−ak

=
∞∑

k=1

(log(k + 2))2

(k + 1)2(k + 2)
< ∞.

We show Y is not admissible. Since σk := 1
ak

log 1+pk
pk

= 1, Y is admissible
if and only if

∞∑
k=1

eak − 1
(eak − 1)(eak − 1)

=
∞∑

k=1

1
eak − 1

< ∞.

But
∞∑

k=1

1
eak − 1

=
∞∑

k=1

1
k + 1

= ∞.

Example 5.5. Let fX(x) = e−xI[0,∞)(x) and Y =
{
ε(ak, 1/2)

}
, k ≥ 1 be a

Bernoulli sequence. Then Y is admissible if and only if a = {ak} ∈ �+
1 .

Proof. We may assume ak ≤ log 3. Then σk = log 3
ak

and

∞∑
k=1

eak − 1
(e(1∨σk)ak − 1)(eσkak − 1)

=
∞∑

k=1

eak − 1
4

.

∑∞
k=1

eak−1
4 < ∞ if and only if a = {ak} ∈ �+

1 .

In the case where the distributions of all Yk’s are continuous, Theorem 5.1 is
simplified as follows.

Theorem 5.6. Let X be exponentially distributed and the distributions of Y k’s
be continuous. Then we have µX+Y ∼ µX if and only if

∞∑
k=1

P(γk ≤ Yk) +
∞∑

k=1

∫ γk

0
eλy

P(y < Yk < γk)2dy < ∞.
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Proof. Let the distributions of Yk’s be continuous. Then by Fact 5.2 (i), we
have E

[
eλYk : Yk ≤ γk

]
− 1 = 1 and it follows that

λ

∫ γk

0

ey
P(y < Yk ≤ γk)dy = E

[
eλYk − 1 : Yk ≤ γk

]
= E

[
eλYk : Yk ≤ γk

]
− 1 + P(Y > γk) = 1 + P(Yk > γk),

which implies

E[eλYk − 1 : Yk ≤ γk] = λ

∫ γk

0
eλy

P(y < Yk ≤ γk)dy = 1 + P(Yk > γk).

If γk < ∞, then by the Schwarz inequality

1 ≤ [1 + P(Yk > γk)]
2 = λ2

∣∣∣∣
∫ γk

0

eλy
P(y < Yk ≤ γk) dy

∣∣∣∣2

≤ λ2

∫ γk

0
eλudu

∫ γk

0
eλy

P(y < Yk ≤ γk)2dy

≤ λeλγk

∫ γk

0
eλy

P(y < Yk ≤ γk)2dy,

which implies e−λγk ≤ λ
∫ γk

0 eλy
P(y < Yk ≤ γk)2dy. Therefore we have

∞∑
k=1

e−λγk =
∑

k:γk<∞
e−λγk ≤

∞∑
k=1

∫ γk

0
eλy

P(y < Yk ≤ γk)2dy

and if the distributions of Yk’s are continuous, then P(y < Yk < γk) = P(y < Yk ≤
γk), and Theorem 5.1 implies the assertion.

Example 5.7. Let fX(x) = e−xI[0,∞)(x) and Yk obey to the uniform distribu-
tion

dµk(y) =
1
ak

I[0,ak](y)dy, k ≥ 1,

where ak > 0. Then we have µX+Y ∼ µX if and only if
∑∞

k=1 ak < ∞.

Proof. Let κ > 0 be the unique positive solution of et = 1 + 2t.
For ak with ak ≥ τ , we have γk = log(1 + 2ak) and

P(Yk ≥ γk) =
1
ak

∫ ak

γk

dy = 1− log(1 + 2ak)
ak

,

and, by Theorem 5.6,
∑∞

k=1 P(Yk ≥ γk) < ∞ implies limk ak = κ > 0.
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On the other hand, we have
∫ γk

0
ey

P(y < Yk < γk)2dy =
2
a2

k

[
eγk −

(
1 + γk +

γ2
k

2

)]

≥ | log(1 + 2ak)|3
3a2

k

→ | log(1 + 2κ)|3
3κ2

> 0,

which contradicts to
∞∑

k=1

∫ γk

0
ey

P(y < Yk < γk)2dy < ∞. Therefore, but for finite
number of ak’s, we may assume ak < κ.

For ak such that ak < κ, we have γk = ∞ and
∫ γk

0

ey
P(y < Yk < γk)2dy =

2
a2

k

[
eak −

(
1 + ak +

a2
k

2

)]
≥ ak

3
,

and Theorem 5.6 implies
∑∞

k=1 ak < ∞.
Conversely,

∑∞
k=1 ak < ∞ implies limk ak = 0 so that, without loss of gener-

ality, we may assume that ak < κ and γk = ∞. Then we have ∫ γk

0 ey
P(y < Yk <

γk)2dy ≤ ake
κ/3 < ∞ and Theorem 5.6 proves the example.
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