TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 1, pp. 269-286, February 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

EQUIVALENCE OF NON-NEGATIVE RANDOM TRANSLATES OF AN IID RANDOM SEQUENCE

Aoi Honda, Yoshiaki Okazaki and Hiroshi Sato

Abstract. Let $\mathbf{X} = \{X_k\}$ be an IID random sequence and $\mathbf{Y} = \{Y_k\}$ be an independent random sequence also independent of \mathbf{X} . Denote by $\mu_{\mathbf{X}}$ and $\mu_{\mathbf{X}+\mathbf{Y}}$ the probability measures on the sequence space induced by \mathbf{X} and $\mathbf{X}+\mathbf{Y} = \{X_k+Y_k\}$, respectively. The problem is to characterize $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ in terms of $\mu_{\mathbf{Y}}$ in the case where \mathbf{X} is non-negative. Sato and Tamashiro[6] first discussed this problem assuming the existence of $f_{\mathbf{X}}(x) = \frac{d\mu_{X_1}}{dx}(x)$. They gave several necessary or sufficient conditions for $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ under some additional assumptions on $f_{\mathbf{X}}$ or on \mathbf{Y} .

The authors precisely improve these results. First they rationalize the assumption of the existence of $f_{\mathbf{X}}$. Then they prove that the condition (C.6) is necessary for wider classes of $f_{\mathbf{X}}$ with local regularities. They also prove if the *p*-integral $I_p^0(\mathbf{X}) < \infty$ and $\mathbf{Y} \in \ell_p^+$ a.s., then (C.6) is necessary and sufficient. Furthermore, in the typical case where \mathbf{X} is exponentially distributed, they prove an explicit necessary and sufficient condition for $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$.

1. INTRODUCTION

For σ -finite measures μ and ν on a measurable space, $\mu \ll \nu$ means that μ is absolutely continuous with respect to ν , $\mu \perp \nu$ that they are singular, and $\mu \sim \nu$ that they are *equivalent* (mutually absolutely continuous). In the sequel, for a probability measure ν on \mathbb{R} and some $-\infty \leq \theta < \infty$, we say " $\nu \sim m$ on $[\theta, \infty)$ " if ν is supported by the half line $[\theta, \infty)$ and $\nu \sim m$ there, where m is the Lebesgue measure. If $\theta = -\infty$, then $[-\infty, \infty)$ should be read as $(-\infty, \infty)$.

Throughout this paper $\mathbf{X} = \{X_k\}$ denotes an independent identically distributed (IID) random sequence and $\mathbf{Y} = \{Y_k\}$ an independent random sequence, which

Accepted March 13, 2007.

Communicated by Hui-Hsiung Kuo.

²⁰⁰⁰ Mathematics Subject Classification: Primary 60G30, 28C20; Secondary 60B11, 46G12.

Key words and phrases: Non-negative random translates, Admissible, Kakutani's dichotomy theorem, Kitada-Sato criterion, *p*-integral, Exponential distribution.

is also independent of **X**, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Denote by $\mu_{\mathbf{X}}$ and $\mu_{\mathbf{X}+\mathbf{Y}}$ the probability measures on the sequence space induced by **X** and $\mathbf{X} + \mathbf{Y} = \{X_k + Y_k\}$, respectively. Furthermore, we always assume

(C.0)
$$\mu_{X_k+Y_k} \sim \mu_{X_k}, k \ge 1,$$

where $\mu_{X_k+Y_k}$ and μ_{X_k} are the marginal distributions of $X_k + Y_k$ and X_k , respectively (see also (C.3)). **Y** is said to be *admissible* (for **X**) if $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$.

Let $1 \le p < \infty$ and $-\infty \le \theta < \infty$. Let f(x) be a probability density function on \mathbb{R} which vanishes on $(-\infty, \theta)$ and f(x) > 0 a.e.(m) on (θ, ∞) . Then we say $I_p^{\theta}(f) < \infty$ if $f(x)^{1/p}$ is absolutely continuous on $[\theta, \infty)$ and the *p*-integral defined by

$$I_p^{\theta}(f) := p^p \int_{\theta}^{\infty} \left| \frac{d}{dx} \left(f(x)^{\frac{1}{p}} \right) \right|^p dx < \infty.$$

In the case where $\theta = -\infty$, $I_p^{-\infty}(f)$ is simply denoted by $I_p(f)$. In particular $I_2(f)$ coincides with the Shepp's integral (Shepp[8]). For an IID random sequence $\mathbf{X} = \{X_k\}, I_p^{\theta}(\mathbf{X})$ is defined by $I_p^{\theta}(\mathbf{X}) := I_p^{\theta}(f_{\mathbf{X}})$, where $f_{\mathbf{X}}(x)$ is the probability density function of μ_{X_1} if exists.

For sequences of non-negative numbers $a_k \ge 0, 0 \le p_k < 1, k \ge 1$, a Bernoulli sequence $\{\varepsilon(a_k, p_k)\}$ is an independent random sequence such that $\varepsilon(a_k, p_k)$ takes two values a_k and 0 with probability p_k and $1 - p_k$, respectively.

Kakutani's dichotomy theorem implies either $\mu_{X+Y} \sim \mu_X$ or $\mu_{X+Y} \perp \mu_X$, and he also proved

(C.1)
$$\sum_{k=1}^{\infty} \left(1 - \mathbb{E}\left[\sqrt{\frac{d\mu_{X_k+Y_k}}{d\mu_{X_k}}}(X_k) \right] \right) < \infty,$$

is necessary and sufficient for the admissibility of Y (Kakutani[2]).

On the other hand, defining $Z_k(x) := \frac{d\mu_{X_k+Y_k}}{d\mu_{X_k}}(x) - 1, k \ge 1$, Kitada and Sato[3] proved

(C.2) the almost sure convergence of
$$\sum_{k=1}^{\infty} Z_k(\mathbf{X}_k)$$

is necessary and sufficient for the admissibility of Y.

The problem is to characterize the admissibility of \mathbf{Y} only in terms of the distribution of \mathbf{Y} . In other words, the problem is to characterize the uniform integrability of the positive martingale

$$M_n = \prod_{k=1}^n \frac{d\mu_{X_k+Y_k}}{d\mu_{X_k}}(X_k), n \ge 1,$$

in terms of the distribution of \mathbf{Y} . We shall study the problem by utilizing the criteria (C.1) and (C.2).

The case where **Y** is a deterministic sequence $a = \{a_k\}$ was first discussed systematically by [8]. He proved that $\mu_{\mathbf{X}+\boldsymbol{a}} \sim \mu_{\mathbf{X}}$ implies $a \in \ell_2$, and that $\mu_{\mathbf{X}+\boldsymbol{a}} \sim \mu_{\mathbf{X}}$ for every $a \in \ell_2$ if and only if $I_2(\mathbf{X}) < \infty$.

Define $a\varepsilon := \{a_k\varepsilon_k\}$ where $\{\varepsilon_k\}$ is a Rademacher sequence and $\{a_k\}$ is a deterministic sequence. Then it was proved that the admissibility of $a\varepsilon$ implies $\{a_k\} \in \ell_4$, and that $\mu_{\mathbf{X}+a\varepsilon} \sim \mu_{\mathbf{X}}$ for every $\{a_k\} \in \ell_4$ if and only if

$$J_2(\mathbf{X}) := \int_{-\infty}^{\infty} \frac{f_{\mathbf{X}}''(x)^2}{f_{\mathbf{X}}(x)} dx < \infty$$

(Okazaki[4], Okazaki and Sato[5], Sato and Watari[7]). Furthermore, if Y is symmetric and $J_2(\mathbf{X}) < \infty$, then $\mathbf{Y} \in \ell_4$ a.s. implies the admissibility of Y ([7]).

Sato and Tamashiro[6] discussed the problem under the assumption of the existence of the density $f_{\mathbf{X}}(x) = \frac{d\mu_{X_1}}{dx}(x)$.

In Section 2, we shall prove that a Bernoulli sequence $\mathbf{Y} = \{\varepsilon(a_k, 1/2)\}\$ is admissible for every $\{a_k\} \in \ell_2^+$ if and only if there exists $\theta \ge -\infty$ such that $\mu_{X_1} \sim m$ on $[\theta, \infty)$, $I_2^{\theta}(\mathbf{X}) < \infty$ and $f_{\mathbf{X}}(+\theta) := \lim_{x \searrow \theta} f_{\mathbf{X}}(x) = 0$ (Theorem 2.2). This shows that the assumption of the existence of $f_{\mathbf{X}}(x) = \frac{d\mu_{X_1}}{dx}(x)$ on $[\theta, \infty)$ in [6] is reasonable.

In Sections 3, 4 and 5, we assume $\theta = 0$, that is, $X_1 \ge 0$ a.s. and there exists $f_{\mathbf{X}}(x) = \frac{d\mu_{X_1}}{dx}(x)$ for $x \ge 0$. In this case, if **Y** is admissible for **X**, then **Y** is necessarily non-negative, that is, $Y_k \ge 0$ a.s., $k \ge 1$, and no deterministic sequence is admissible unless trivial. On the other hand, if $\theta = 0$, the condition (C.0) is equivalent to

(C.3)
$$\mathbb{P}(Y_k < \varepsilon) > 0 \text{ for every } \varepsilon > 0, k \ge 1.$$

In Section 3, we shall study the necessary condition for the admissibility of \mathbf{Y} . It is known that if \mathbf{X} and \mathbf{Y} are non-negative and \mathbf{Y} is admissible, then we have

(C.4)
$$\sum_{\substack{k=1\\\infty}}^{\infty} \mathbb{E}[Y_k : Y_k \le \alpha]^2 < \infty,$$

(C.5)
$$\sum_{k=1}^{\infty} \mathbb{P}(Y_k > \alpha)^2 < \infty,$$

for some (and any) $\alpha > 0$ (Hino[1], see also [3], [6]). [6] strengthened the necessary condition (C.5) to

(C.6)
$$\sum_{k=1}^{\infty} \int_0^\infty \mathbb{P}(Y_k > x)^2 f_{\mathbf{X}}(x) dx < \infty,$$

in the case where **Y** is a Bernoulli sequence ([6], Theorem 3.1), or where $f_{\mathbf{X}}(+0) > 0$, $f_{\mathbf{X}}$ is absolutely continuous in an interval $[0, \delta]$ and $\operatorname{ess.sup}_{0 \le x \le \delta} |f'_{\mathbf{X}}(x)| < \infty$ ([6], Theorem 3.3(B)). We shall prove (C.6) under new assumptions of the local increase (Theorem 3.1) or the integrability $\int_0^{\delta} x^{-2} f_{\mathbf{X}}(x) dx < \infty$ (Theorem 3.2) on $f_{\mathbf{X}}$, which include the case $f_{\mathbf{X}}(+0) = 0$. These results exhaust most cases of $f_{\mathbf{X}}$ and it is not known any examples of $f_{\mathbf{X}}$ where **Y** is admissible but (C.6) does not hold. We conjecture that (C.6) is a necessary condition for the admissibility of **Y** in general.

Furthermore, we shall strengthen (C.4) to

(C.7)
$$\sum_{k=1}^{\infty} \int_0^\infty \mathbb{E}[Y_k : Y_k \le x]^2 f_{\mathbf{X}}(x) dx < \infty.$$

(C.7) is necessary for admissibility of **Y** if $\mathbb{E}[|X_1|^2] < \infty$ (Theorem 3.4). However there exist examples of **X**, with $\mathbb{E}[|X_1|^2] < \infty$ and admissible **Y** which do not satisfy (C.7) (Example 3.5). On the other hand, in general, (C.6) and (C.7) are not sufficient for the admissibility of **Y** (Example 5.4).

In Section 4, we shall study **X** with $I_p^0(\mathbf{X}) < \infty, 1 \le p \le 2$. We shall prove that if $I_p^0(\mathbf{X}) < \infty$ and $\mathbf{Y} \in \ell_p^+$ a.s., then **Y** is admissible if and only if (C.6) holds (Theorem 4.1).

In Section 5, we shall study the case where **X** is exponentially distributed, that is, $f_{\mathbf{X}}(x) = \lambda e^{-\lambda x} \mathbf{I}_{[0,\infty)}(x)$ for some $\lambda > 0$ as the most typical and simplest case. [6] gave a necessary and sufficient condition of this case for the admissibility of **Y** under the additional assumption

(C.8)
$$\sum_{k=1}^{\infty} \mathbb{P}(Y_k > \alpha) < \infty,$$

for some $\alpha > 0$ ([6], Theorem 4.1). We shall give a necessary and sufficient condition for the admissibility of **Y** without any additional assumptions on **Y** (Theorem 5.1).

2. Non-negative Random Translates

To begin with, we shall prove the following lemma.

Lemma 2.1. For a probability ν on $(\mathbb{R}, \mathcal{B})$, define $\nu_s(A) = \nu(A - s)$, $A \in \mathcal{B}$, $s \in \mathbb{R}_+$. Then $\nu_s \ll \nu$ for every $s \in \mathbb{R}_+$ if and only if $\nu \sim m$ on $[\theta, \infty)$ for some $-\infty \leq \theta < \infty$.

Proof. Assume $\nu_s \ll \nu$ for every $s \in \mathbb{R}_+$. Then for every open interval (a, b) such that $\nu((a, b)) = 0$, we have $\nu((a, b) - s) = \mu_s((a, b)) = 0$ for every $s \ge 0$.

Consequently there exists $-\infty \le \theta < \infty$ such that ν is supported by the half line $[\theta, \infty)$.

Next we show $\nu \ll m$. Assume m(A) = 0 for $A \in \mathcal{B}$. Then we have

$$0 = m(A+1) = \int_{\mathbb{R}} d\nu(x) \int_0^1 \mathbf{I}_{A+1}(s+x) ds = \int_0^1 \nu \left(A+1-s\right) ds$$

Hence there exists an $s \in [0,1)$ such that $\nu (A+1-s) = 0$. Since $\nu_{(1-s)} \ll \nu$, we have $\nu(A) = \nu_{(1-s)}(A+1-s) = 0$.

Finally we show $m \ll \nu$ on $[\theta, \infty)$. For every Borel set $A \subset [\theta, \infty)$ such that $\nu(A) = 0$, we have

$$0 = \int_0^\infty \nu_s(A) ds = \int_0^\infty ds \int_{[\theta,\infty)} \mathbf{I}_{A-s}(x) d\nu(x) = \int_{[\theta,\infty)} m((A-x) \cap \mathbb{R}_+) d\nu(x),$$

so that $F(x) := m((A - x) \cap \mathbb{R}_+) = 0$ a.s. $(d\nu)$. Then by the minimality of the support $[\theta, \infty)$, we can find a sequence $\theta_n \downarrow \theta$ such that $F(\theta_n) = 0$ and have

$$m(A) = \lim_{n} m((A - \theta_n) \cap \mathbb{R}_+) = 0.$$

The converse statement of the lemma is evident.

Theorem 2.2. Let $\mathbf{X} = \{X_k\}$ be an IID random sequence of real (not necessarily non-negative) random variables and $\mathbf{Y} = \{\varepsilon(a_k, 1/2)\}$ be a Bernoulli sequence. Then we have

- (A) The admissibility of **Y** implies $\{a_k\} \in \ell_2^+$.
- (B) **Y** is admissible for every $\{a_k\} \in \ell_2^+$ if and only if there exits $\theta \ge -\infty$ such that $\mu_{X_1} \sim m$ on $[\theta, \infty)$, $I_2^{\theta}(\mathbf{X}) < \infty$ and $f_{\mathbf{X}}(+\theta) = 0$.

Proof.

- (A) is due to [6, Theorem 3.1], [1, Theorem 1.8].
- (B) Since $a_k \ge 0$ is arbitrary, Lemma 1 is applicable to $\nu = \mu_{X_1}$ and we have $\mu_{X_1} \sim m$ on $[\theta, \infty)$ for some $\theta \ge -\infty$.

On the other hand, Kakutani's criterion (C.1) implies that Y is admissible for every $\{a_k\} \in \ell_2^+$ if and only if

$$\sum_{k=1}^{\infty} \int_{-\infty}^{\infty} \left| \sqrt{f_{\mathbf{X}}(x-a_k)} - \sqrt{f_{\mathbf{X}}(x)} \right|^2 dx < \infty$$

for every $\{a_k\} \in \ell_2^+$. Consequently we have $\sqrt{f_{\mathbf{X}}(x)}$ is absolutely continuous on \mathbb{R} and $I_2^{\theta}(\mathbf{X}) < \infty$ by applying the arguments similar to [8].

The condition $f_{\mathbf{X}}(+\theta) = 0$ is crucial since $I_2^{\theta}(\mathbf{X}) < \infty$ implies the absolute continuity of $\sqrt{f_{\mathbf{X}}(x)}$ on the whole real line \mathbb{R} . In fact, if \mathbf{X} is exponentially distributed, where $f_{\mathbf{X}}(+0) > 0$ and $I_2^0(\mathbf{X}) < \infty$, then the Bernoulli sequence $\{\varepsilon(a_k, 1/2)\}$ is admissible if and only if $\{a_k\} \in \ell_1^+$ (Example 5.5).

3. NECESSARY CONDITIONS FOR ADMISSIBILITY

We shall discuss the necessity of (C.6) and show that (C.6) is necessary for the admissibility of \mathbf{Y} under the various assumptions on $f_{\mathbf{X}}$.

By Kolmogorov's three series theorem, (C.2) is equivalent to the following two conditions.

(3.1)
$$\sum_{k=1}^{\infty} \mathbb{E}\big[|Z_k(\mathbf{X}_k)| : |Z_k(\mathbf{X}_k)| \ge \alpha\big] < \infty,$$

(3.2)
$$\sum_{k=1}^{\infty} \mathbb{E} \left[Z_k(\mathbf{X}_k)^2 : |Z_k(\mathbf{X}_k)| < \alpha \right] < \infty,$$

for some (and any) $\alpha > 0$.

In the following two theorems, we shall prove the necessity of (C.6) under the assumption of local regularities on $f_{\mathbf{X}}$. These results include the case $f_{\mathbf{X}}(+0) = 0$.

Theorem 3.1. Assume that there exists some $\delta > 0$ such that $f_{\mathbf{X}}(x)$ is nondecreasing on the interval $[0, \delta]$. Then the admissibility of \mathbf{Y} implies (C.6).

Proof. Since $f_{\mathbf{X}}(x)$ is non-decreasing in $[0, \delta]$ and $f_{\mathbf{X}}(x) = 0$ for x < 0, we have for any y > 0,

$$0 \le 1 - \frac{f_{\mathbf{X}}(x-y)}{f_{\mathbf{X}}(x)} \le 1,$$

and (3.2) implies

$$\begin{split} &\sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{P}(Y_{k} > x)^{2} f_{\mathbf{X}}(x) dx \\ &= \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{E} \left[1 - \frac{f_{\mathbf{X}}(x - Y_{k})}{f_{\mathbf{X}}(x)} : Y_{k} > x \right]^{2} f_{\mathbf{X}}(x) dx \\ &\leq \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{E} \left[1 - \frac{f_{\mathbf{X}}(x - Y_{k})}{f_{\mathbf{X}}(x)} \right]^{2} f_{\mathbf{X}}(x) dx \\ &= \sum_{k=1}^{\infty} \int_{0}^{\delta} \left(1 - \frac{\mathbb{E}[f_{\mathbf{X}}(x - Y_{k})]}{f_{\mathbf{X}}(x)} \right)^{2} f_{\mathbf{X}}(x) dx \\ &\leq \sum_{k=1}^{\infty} \mathbb{E} \left[Z_{k}(X_{k})^{2} : Z_{k}(X_{k}) \leq 1 \right] < \infty. \end{split}$$

Theorem 3.2. Assume that $\int_0^{\delta} x^{-2} f_{\mathbf{X}}(x) dx < \infty$ for some $\delta > 0$. Then the admissibility of \mathbf{Y} implies (C.6).

Proof. By Chebyshev's inequality, we have $\mathbb{P}(x < Y_k \leq \delta) \leq \mathbb{E}[Y_k; Y_k \leq \delta]/x$, and

$$\begin{split} &\sum_{k=1}^{\infty} \int_0^{\delta} \mathbb{P}(Y_k > x)^2 f_{\mathbf{X}}(x) dx \\ &= \sum_{k=1}^{\infty} \int_0^{\delta} \mathbb{P}(x < Y_k \le \delta)^2 f_{\mathbf{X}}(x) dx + \sum_{k=1}^{\infty} \int_0^{\delta} \mathbb{P}(x < Y_k, Y_k > \delta)^2 f_{\mathbf{X}}(x) dx \\ &= :A + B. \end{split}$$

Then we have by using (C.4) and (C.5)

$$A \leq \sum_{k=1}^{\infty} \int_0^{\delta} x^{-2} \mathbb{E}[Y_k; Y_k \leq \delta]^2 f_{\mathbf{X}}(x) dx = \sum_{k=1}^{\infty} \mathbb{E}[Y_k; Y_k \leq \delta]^2 \int_0^{\delta} x^{-2} f_{\mathbf{X}}(x) dx < \infty,$$

$$B \leq \sum_{k=1}^{\infty} \int_0^{\delta} \mathbb{P}(Y_k > \delta)^2 f_{\mathbf{X}}(x) dx = \sum_{k=1}^{\infty} \mathbb{P}(Y_k > \delta)^2 \int_0^{\delta} f_{\mathbf{X}}(x) dx < \infty.$$

The following theorem reformulates [6, Theorem 3.3(B)].

Theorem 3.3. Assume that $f_{\mathbf{X}}(+0) > 0$ and there exist $\delta > 0$ and K > 0 satisfying

$$|f_{\mathbf{X}}(y) - f_{\mathbf{X}}(x)| \le K|y - x| \quad for \ x, y \in [0, \delta].$$

Then the admissibility of \mathbf{Y} implies (C.6).

Proof. Taking δ sufficiently small, we may assume $K\delta < f_{\mathbf{X}}(+0)/2$. Then for $x \in [0, \delta]$ we have $0 < f_{\mathbf{X}}(+0)/2 < f_{\mathbf{X}}(x) < 3f_{\mathbf{X}}(+0)/2$ and

$$\begin{aligned} |Z_k(x)| &= \left| \frac{\mathbb{E}[f_{\mathbf{X}}(x - Y_k)]}{f_{\mathbf{X}}(x)} - 1 \right| \\ &= \left| \frac{\mathbb{E}[f_{\mathbf{X}}(x - Y_k) - f_{\mathbf{X}}(x) : Y_k < x]}{f_{\mathbf{X}}(x)} - \mathbb{P}(Y_k \ge x) \right| \\ &\leq \frac{K\delta}{f_{\mathbf{X}}(x)} + 1 \le 2. \end{aligned}$$

Consequently by (3.2) and (C.4) we have

$$\begin{split} &\sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{P}(Y_{k} > x)^{2} f_{\mathbf{X}}(x) dx \\ &= \sum_{k=1}^{\infty} \int_{0}^{\delta} \left[\left(\frac{\mathbb{E}[f_{\mathbf{X}}(x - Y_{k})]}{f_{\mathbf{X}}(x)} - 1 \right) f_{\mathbf{X}}(x) - \mathbb{E}[f_{\mathbf{X}}(x - Y_{k}) - f_{\mathbf{X}}(x) : Y_{k} \le x] \right]^{2} \frac{dx}{f_{\mathbf{X}}(x)} \\ &\leq 2 \sum_{k=1}^{\infty} \int_{0}^{\delta} Z_{k}(x)^{2} f_{\mathbf{X}}(x) dx + 4 \frac{K^{2} \delta}{f_{\mathbf{X}}(+0)} \sum_{k=1}^{\infty} \mathbb{E}[Y_{k} : Y_{k} \le \delta]^{2} \\ &\leq 2 \sum_{k=1}^{\infty} \mathbb{E}[Z_{k}(X_{k})^{2} : |Z_{k}(X_{k})| \le 2] + 2K \sum_{k=1}^{\infty} \mathbb{E}[Y_{k} : Y_{k} \le \delta]^{2} < \infty. \end{split}$$

On the other hand, we have strengthen (C.4) to (C.7) as follows.

Theorem 3.4. Assume $\mathbb{E}[|X_1|^2] < \infty$ and **Y** is admissible. Then we have (C.7).

Proof. We have

$$\begin{split} &\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{E}[Y_{k}:Y_{k} \leq x]^{2} f_{\mathbf{X}}(x) dx \\ \leq &\sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{E}[Y_{k}:Y_{k} \leq x]^{2} f_{\mathbf{X}}(x) dx + 2 \sum_{k=1}^{\infty} \int_{\delta}^{\infty} \mathbb{E}[Y_{k}:Y_{k} \leq \delta]^{2} f_{\mathbf{X}}(x) dx \\ &+ 2 \sum_{k=1}^{\infty} \int_{\delta}^{\infty} \mathbb{E}[Y_{k}:\delta < Y_{k} \leq x]^{2} f_{\mathbf{X}}(x) dx =: A + 2B + 2C. \end{split}$$

By (C.4) and (C.5), we have

$$\begin{split} A &= \sum_{k=1}^{\infty} \mathbb{E}[Y_k : Y_k \leq \delta]^2 \int_0^{\delta} f_{\mathbf{X}}(x) dx < \infty, \\ B &\leq \sum_{k=1}^{\infty} \mathbb{E}[Y_k : Y_k \leq \delta]^2 \int_{\delta}^{\infty} f_{\mathbf{X}}(x) dx < \infty, \\ C &= \sum_{k=1}^{\infty} \int_{\delta}^{\infty} \mathbb{E}[Y_k : \delta < Y_k \leq x]^2 f_{\mathbf{X}}(x) dx \leq \sum_{k=1}^{\infty} \int_{\delta}^{\infty} x^2 \mathbb{P}(Y_k > \delta)^2 f_{\mathbf{X}}(x) dx < \infty. \end{split}$$

The integrability $\mathbb{E}[X_1^2] < \infty$ is crucial in the above theorem. For instance, we have the following example.

Example 3.5. Let $f_{\mathbf{X}}(x) = 2/\{\pi(1+x^2)\}$ and $\mathbf{Y} = \{\varepsilon(k^3, 1/k^2)\}, k \ge 1$ be a Bernoulli sequence. Then \mathbf{Y} is admissible but (C.7) does not hold.

Proof. Let $f_{\mathbf{X}}(x) = 2/\{\pi(1+x^2)\}$ and $\mathbf{Y} = \{a_k, p_k\}$, where $a_k = k^3$ and $p_k = 1/k^2$. By estimating Kakutani's criterion (C.1), we have

$$\infty > \sum_{k=1}^{\infty} \int_{0}^{\infty} \left| \sqrt{\mathbb{E}[f_{\mathbf{X}}(x-Y_{k})]} - \sqrt{f_{\mathbf{X}}(x)} \right|^{2} dx$$

= $\sum_{k=1}^{\infty} \left(\sqrt{1-p_{k}} - 1 \right)^{2} \int_{0}^{a_{k}} f_{\mathbf{X}}(x) dx$
+ $\sum_{k=1}^{\infty} \int_{a_{k}}^{\infty} \left| \sqrt{f_{\mathbf{X}}(x) + p_{k}(f_{\mathbf{X}}(x-a_{k}) - f_{\mathbf{X}}(x))} - \sqrt{f_{\mathbf{X}}(x)} \right|^{2} dx = I_{1} + I_{2}.$

Since $1 \le \left(\sqrt{1-p_k}+1\right)^2 \le 4$, we have

$$I_1 = \sum_{k=1}^{\infty} \frac{(p_k)^2}{\left(\sqrt{1-p_k}+1\right)^2} \int_0^{a_k} f_{\mathbf{X}}(x) dx \le \sum_{k=1}^{\infty} \int_0^{\infty} \mathbb{P}(Y_k > y)^2 f_{\mathbf{X}}(y) dy \le 4I_1,$$

which shows $I_1 < \infty$ if and only if (C.6) holds. We have

$$\begin{split} I_2 &= \sum_{k=1}^{\infty} (p_k)^2 \int_{a_k}^{\infty} \frac{(f_{\mathbf{X}}(x-a_k) - f_{\mathbf{X}}(x))^2}{\left(\sqrt{f_{\mathbf{X}}(x) + p_k(f_{\mathbf{X}}(x-a_k) - f_{\mathbf{X}}(x))} + \sqrt{f_{\mathbf{X}}(x)}\right)^2} dx \\ &\leq \sum_{k=1}^{\infty} (p_k)^2 \int_{a_k}^{\infty} \frac{a_k^2 (2x - a_k)^2 f_{\mathbf{X}}(x)^2 f_{\mathbf{X}}(x-a_k)^2}{p_k f_{\mathbf{X}}(x-a_k)} dx \\ &= \sum_{k=1}^{\infty} (a_k)^2 p_k \int_{a_k}^{\infty} (2x - a_k)^2 f_{\mathbf{X}}(x)^2 f_{\mathbf{X}}(x-a_k) dx \\ &\leq \left(\frac{2}{\pi}\right)^2 \sum_{k=1}^{\infty} p_k \int_{a_k}^{\infty} \frac{a_k^2}{1 + a_k^2} \frac{4x^2}{1 + x^2} f_{\mathbf{X}}(x-a_k) dx \\ &\leq \frac{16}{\pi^2} \sum_{k=1}^{\infty} p_k \int_{0}^{\infty} f_{\mathbf{X}}(x) dx = \frac{16}{\pi^2} \sum_{k=1}^{\infty} p_k. \end{split}$$

Consequently, if $\sum_{k=1}^{\infty} p_k < \infty$ then $I_1 \leq \sum_{k=1}^{\infty} p_k^2 < \infty$ and Y is admissible. On the other hand, for $a_k \geq 1$,

$$\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{E}[Y_{k} : Y_{k} \le x]^{2} f_{\mathbf{X}}(x) dx = \frac{2}{\pi} \sum_{k=1}^{\infty} (a_{k}p_{k})^{2} \int_{a_{k}}^{\infty} \frac{1}{(1+x^{2})} dx$$
$$\geq \frac{1}{\pi} \sum_{k=1}^{\infty} (a_{k}p_{k})^{2} \int_{a_{k}}^{\infty} \frac{1}{x^{2}} dx = \frac{1}{\pi} \sum_{k=1}^{\infty} a_{k}(p_{k})^{2},$$

which implies that (C.7) is equivalent to $\sum_{k=1}^{\infty} a_k (p_k)^2 < \infty$ if $a_k \ge 1$. But $\sum_{k=1}^{\infty} p_k = \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty$ and $\sum_{k=1}^{\infty} a_k (p_k)^2 = \sum_{k=1}^{\infty} \frac{1}{k} = \infty$, so that (C.7) does not hold.

Conversely, even if both (C.6) and (C.7) hold, \mathbf{Y} is not necessarily admissible in general (Example 5.4).

4. The p-integral

In this section, we shall prove that (C.6) is necessary and sufficient condition for the admissibility of **Y** if $I_p^0(\mathbf{X}) < \infty$ and $\mathbf{Y} \in \ell_p^+$ a.s. for some $1 \le p \le 2$. In the case p = 2, [6] proved the sufficiency of (C.6), and the necessity of (C.6) under the condition $\operatorname{ess.sup}_{0 \le x \le \delta} |f'_{\mathbf{X}}(x)| \le \infty$.

Theorem 4.1. Assume $I_p^0(\mathbf{X}) < \infty$ and $\mathbf{Y} = \{Y_k\} \in \ell_p^+$ a.s. for some $1 \le p \le 2$. Then \mathbf{Y} is admissible if and only if (C.6) holds.

Proof. Assume $\mathbf{Y} \in \ell_p^+$ a.s. Then Kolmogorov's three series theorem implies $\sum_{k=1}^{\infty} \mathbb{P}(Y_k > \delta) < \infty$ and $\sum_{k=1}^{\infty} \mathbb{E}[|Y_k|^p : Y_k \le \delta] < \infty$. We have

$$\begin{split} &\frac{1}{4}\sum_{k=1}^{\infty}\int_{0}^{\delta}\mathbb{P}(Y_{k}>x)^{2}f_{\mathbf{X}}(x)dx \leq \sum_{k=1}^{\infty}\int_{0}^{\delta}\left|\frac{f_{\mathbf{X}}(x)\mathbb{P}(Y_{k}>x)}{\sqrt{f_{\mathbf{X}}(x)} + \sqrt{f_{\mathbf{X}}(x)\mathbb{P}(Y_{k}\leq x)}}\right|^{2}dx \\ &\leq \sum_{k=1}^{\infty}\int_{0}^{\delta}\left|\sqrt{f_{\mathbf{X}}(x)} - \sqrt{f_{\mathbf{X}}(x)\mathbb{P}(Y_{k}\leq x)}\right|^{2}dx \\ &\leq \sum_{k=1}^{\infty}\int_{0}^{\delta}2\Big[\left(\sqrt{f_{\mathbf{X}}(x)} - \sqrt{\mathbb{E}[f_{\mathbf{X}}(x-Y_{k})]}\right)^{2} \\ &+ \left(\sqrt{\mathbb{E}[f_{\mathbf{X}}(x-Y_{k})]} - \sqrt{f_{\mathbf{X}}(x)\mathbb{P}(Y_{k}\leq x)}\right)^{2}\Big]dx. \end{split}$$

The first term is finite by Kakutani's criterion (C.1).

On the other hand by inequality $\left|a^{\frac{1}{r}} - b^{\frac{1}{r}}\right|^r \ge \left|a^{\frac{1}{s}} - b^{\frac{1}{s}}\right|^s$, $a, b \ge 0, \ 0 < r \le s$, we have for q > 1 such that 1/p + 1/q = 1,

$$\sum_{k=1}^{\infty} \int_0^{\delta} \left| \sqrt{\mathbb{E}[f_{\mathbf{X}}(x-Y_k):Y_k \le x]} - \sqrt{f_{\mathbf{X}}(x)\mathbb{P}(Y_k \le x)} \right|^2 dx$$
$$\leq \sum_{k=1}^{\infty} \int_0^{\delta} \left| \mathbb{E}[f_{\mathbf{X}}(x-Y_k):Y_k \le x]^{\frac{1}{p}} - (f_{\mathbf{X}}(x)\mathbb{P}(Y_k \le x))^{\frac{1}{p}} \right|^p dx$$

Equivalence of Non-negative Random Translates

$$\begin{split} &= \sum_{k=1}^{\infty} \int_{0}^{\delta} \left| \int_{0}^{1} \frac{\mathbb{E}[f'_{\mathbf{X}}(x-sY_{k})Y_{k}:Y_{k} \leq x]}{p\mathbb{E}[f_{\mathbf{X}}(x-sY_{k}):Y_{k} \leq x]^{\frac{1}{q}}} ds \right|^{p} dx \\ &\leq \sum_{k=1}^{\infty} \int_{0}^{\delta} dx \frac{1}{p^{p}} \int_{0}^{1} \frac{1}{\mathbb{E}[f_{\mathbf{X}}(x-sY_{k}):Y_{k} \leq x]^{\frac{p}{q}}} \\ &\times \mathbb{E}\left[\frac{|f'_{\mathbf{X}}(x-sY_{k})|Y_{k}}{f_{\mathbf{X}}(x-sY_{k})^{\frac{1}{q}}} f_{\mathbf{X}}(x-sY_{k})^{\frac{1}{q}}:Y_{k} \leq x \right]^{p} ds \\ &\leq \frac{1}{p^{p}} \sum_{k=1}^{\infty} \int_{0}^{\delta} dx \int_{0}^{1} \mathbb{E}\left[\frac{|f'_{\mathbf{X}}(x-sY_{k})|^{p}|Y_{k}|^{p}}{f_{\mathbf{X}}(x-sY_{k})^{\frac{p}{q}}}:Y_{k} \leq x \right] ds \\ &\leq \frac{1}{p^{p}} \int_{0}^{\delta} \frac{|f'_{\mathbf{X}}(x)|^{p}}{f_{\mathbf{X}}(x)^{\frac{p}{q}}} dx \sum_{k=1}^{\infty} \mathbb{E}[|Y_{k}|^{p}:Y_{k} \leq \delta] < \infty. \end{split}$$

Next we prove the converse. Since $\mathbf{Y} \in \ell_p^+$ a.s., by Kolmogorov's three series theorem, $\sum_{k=1}^{\infty} \mathbb{P}(Y_k > 1) < \infty$ and $\sum_{k=1}^{\infty} \mathbb{E}[|Y_k|^p : Y_k \le 1] < \infty$, so that we have $\beta := \inf_k \mathbb{P}(Y_k \le 1) > 0$ (see also (C.3)). In order to prove the theorem, we shall show Kakutani's criterion (C.1). Decompose

$$\begin{aligned} \left| \sqrt{\mathbb{E}[f_{\mathbf{X}}(x-Y_{k})]} - \sqrt{f_{\mathbf{X}}(x)} \right|^{2} \\ &\leq \left| \sqrt{\mathbb{E}[f_{\mathbf{X}}(x-Y_{k}):Y_{k}>1]} - \sqrt{f_{\mathbf{X}}(x)\mathbb{P}(Y_{k}>1)} \right|^{2} \\ &+ 2\left| \sqrt{\mathbb{E}[f_{\mathbf{X}}(x-Y_{k}):Y_{k}\leq x,Y_{k}\leq 1]} - \sqrt{f_{\mathbf{X}}(x)\mathbb{P}(Y_{k}\leq x,Y_{k}\leq 1)} \right|^{2} \\ &+ 2\left| \sqrt{f_{\mathbf{X}}(x)\mathbb{P}(Y_{k}\leq x,Y_{k}\leq 1)]} - \sqrt{f_{\mathbf{X}}(x)\mathbb{P}(Y_{k}\leq 1)} \right|^{2} \\ &: \mathbf{U}_{k}(x) + 2\mathbf{V}_{k}(x) + 2\mathbf{W}_{k}(x). \end{aligned}$$

Then we have $\sum_{k=1}^{\infty} \int_0^{\infty} \mathbf{U}_k(x) dx \leq 2 \sum_{k=1}^{\infty} \mathbb{P}(Y_k > 1) < \infty$. For q > 1 defined by 1/p + 1/q = 1 we have

$$\sum_{k=1}^{\infty} \int_0^\infty \mathbf{V}_k(x) dx \le \frac{1}{p^p} \int_0^\infty \frac{|f'_{\mathbf{X}}(x)|^p}{f_{\mathbf{X}}(x)^{\frac{p}{q}}} dx \sum_{k=1}^\infty \mathbb{E}[|Y_k|^p : Y_k \le 1] < \infty,$$

by the same way as the last part of the necessity, and finally

=

$$\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbf{W}_{k}(x) dx$$

$$= \sum_{k=1}^{\infty} \int_{0}^{\infty} \left| \frac{\mathbb{P}(Y_{k} \le x, Y_{k} \le 1) - \mathbb{P}(Y_{k} \le 1)}{\sqrt{\mathbb{P}(Y_{k} \le x, Y_{k} \le 1)} + \sqrt{\mathbb{P}(Y_{k} \le 1)}} \right|^{2} f_{\mathbf{X}}(x) dx$$

$$\leq \frac{1}{\beta} \sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{P}(x < Y_{k})^{2} f_{\mathbf{X}}(x) dx < \infty.$$

5. EXPONENTIAL DISTRIBUTION

In the case where \mathbf{X} is exponentially distributed, we prove a necessary and sufficient condition for the admissibility of \mathbf{Y} without any additional assumptions on \mathbf{Y} .

Theorem 5.1. Let \mathbf{X} be exponentially distributed and \mathbf{Y} be non-negative. Then \mathbf{Y} is admissible if and only if

$$\sum_{k=1}^{\infty} \mathbb{P}(\gamma_k \le Y_k) + \sum_{k=1}^{\infty} e^{-\lambda \gamma_k} + \sum_{k=1}^{\infty} \int_0^{\gamma_k} e^{\lambda y} \mathbb{P}(y < Y_k < \gamma_k)^2 dy < \infty,$$

where $\gamma_k := \sup \{ x \ge 0 \mid \mathbb{E} [e^{\lambda Y_k} : Y_k \le x] < 2 \}.$

Fact 5.2.

(i) If the distribution of Y_k is continuous, then

$$Z_k(x) = \mathbb{E}[e^{\lambda Y_k} : Y_k \le x] - 1$$

is also continuous in x, and $\gamma_k < \infty$ implies $Z_k(\gamma_k) = 1$.

- (ii) By definition we have $\mathbb{E}[e^{\lambda Y_k} : Y_k < \gamma_k] \le 2$, and in particular, if $\gamma_k = \infty$ then we have $\mathbb{E}[e^{\lambda Y_k}] \le 2$.
- (iii) If $\gamma_k < \infty$, then we have $2 \leq \mathbb{E}[e^{\lambda Y_k} : Y_k \leq \gamma_k] < \infty$.

Proof of Theorem 5.1. We shall first prove the case where $\lambda = 1$. We use (C.2) for the admissibility of **Y**. We show that (3.1) is equivalent to

(5.1)
$$\sum_{k=1}^{\infty} \mathbb{P}(\gamma_k \le Y_k) + \sum_{k=1}^{\infty} e^{-\gamma_k} < \infty$$

and that under (3.1), (3.2) is equivalent to

(5.2)
$$\sum_{k=1}^{\infty} \int_{0}^{\gamma_{k}} e^{y} \mathbb{P}(y < Y_{k} < \gamma_{k})^{2} dy < \infty.$$

In order to prove that (3.1) implies (5.1), we have only to consider k with $\gamma_k < \infty$. By Fubini's theorem and Fact 5.2 (iii), we have

(5.3)
$$\mathbb{E}[Z_k(X_k) : Z_k(X_k) \ge 1] = \int_{\gamma_k}^{\infty} e^{-x} \left(\mathbb{E}[e^{Y_k} : Y_k \le x] - 1 \right) dx$$
$$= e^{-\gamma_k} \mathbb{E}[e^{Y_k} : Y_k \le \gamma_k] + \mathbb{P}(Y_k > \gamma_k) - e^{-\gamma_k}$$
$$\ge \mathbb{P}(Y_k > \gamma_k) + e^{-\gamma_k}$$

which implies (5.1). On the other hand, since $Y_k \ge 0$ a.s. we have

$$\mathbb{E}[Z_k(X_k): Z_k(X_k) \ge 1] = e^{-\gamma_k} \mathbb{E}[e^{Y_k}: Y_k < \gamma_k] + \mathbb{P}(Y_k \ge \gamma_k) - e^{-\gamma_k}$$
$$\ge e^{-\gamma_k} \mathbb{P}(Y_k < \gamma_k) + \mathbb{P}(\gamma_k \le Y_k) - e^{-\gamma_k} = (1 - e^{-\gamma_k}) \mathbb{P}(\gamma_k \le Y_k).$$

Since (5.1) implies $\gamma_k \to \infty$ as $k \to \infty$, (3.1) implies (5.1).

Conversely, we have by Fact 5.2 (ii),

$$\mathbb{E}[Z_k(X_k): Z_k(X_k) \ge 1] = e^{-\gamma_k} \mathbb{E}[e^{Y_k}: Y_k < \gamma_k] + \mathbb{P}(Y_k \ge \gamma_k) - e^{-\gamma_k}$$
$$\le 2e^{-\gamma_k} + \mathbb{P}(Y_k \ge \gamma_k) - e^{-\gamma_k} = e^{-\gamma_k} + \mathbb{P}(Y_k \ge \gamma_k),$$

so that (5.1) implies (3.1). Therefore (3.1) is equivalent to (5.1).

Next, assume (3.1) and denote by $\{Y'_k\}$ an independent copy of $\{Y_k\}$. Then by Fubini's theorem, we have

$$\begin{split} \mathbb{E}[Z_k(X_k)^2 : Z_k(X_k) < 1] \\ &= \int_0^{\gamma_k} e^{-x} \left(\mathbb{E}[e^{Y_k + Y'_k} : Y_k, Y'_k \le x] - 2\mathbb{E}[e^{Y_k} : Y_k \le x] + 1 \right) dx \\ &= \mathbb{E}\left[e^{Y_k + Y'_k} \int_{Y_k \lor Y'_k}^{\gamma_k} e^{-x} dx : Y_k, Y'_k \le \gamma_k \right] \\ &- 2\mathbb{E}[e^{Y_k} \int_{Y_k}^{\gamma_k} e^{-x} dx : Y_k \le \gamma_k] + \int_0^{\gamma_k} e^{-x} dx \\ &= \mathbb{E}[e^{Y_k \land Y'_k} - e^{-\gamma_k + Y_k + Y'_k} : Y_k, Y'_k \le \gamma_k] \\ &- 2\mathbb{P}(Y_k \le \gamma_k) + 2e^{-\gamma_k} \mathbb{E}[e^{Y_k} : Y_k \le \gamma_k] + 1 - e^{-\gamma_k} \\ &= \mathbb{E}[e^{Y_k \land Y'_k} : Y_k, Y'_k \le \gamma_k] - e^{-\gamma_k} \mathbb{E}[e^{Y_k} : Y_k \le \gamma_k]^2 + \mathbb{P}(Y_k > \gamma_k) \\ &- \mathbb{P}(Y_k \le \gamma_k) + 2e^{-\gamma_k} \mathbb{E}[e^{Y_k} : Y_k \le \gamma_k] - e^{-\gamma_k} \\ &= \mathbb{E}[e^{Y_k \land Y'_k} : Y_k, Y'_k < \gamma_k] - \mathbb{P}(Y_k < \gamma_k) - e^{-\gamma_k} \mathbb{E}[e^{Y_k} : Y_k < \gamma_k]^2 \\ &+ \mathbb{P}(Y_k \ge \gamma_k) + 2e^{-\gamma_k} \mathbb{E}[e^{Y_k} : Y_k < \gamma_k] - e^{-\gamma_k}, \end{split}$$

where $a \lor b := \max\{a, b\}$. By Fact 5.2 (ii) and by (5.1), the last four terms in the final expression are summable. Therefore, under (3.1), (3.2) is equivalent to the convergence of the series:

$$\sum_{k=1}^{\infty} \left\{ \mathbb{E}[e^{Y_k \wedge Y'_k} : Y_k, Y'_k < \gamma_k] - \mathbb{P}(Y_k < \gamma_k) \right\}.$$

Since $\mathbb{P}(Y_k < \gamma_k) = \mathbb{P}(Y_k < \gamma_k, Y'_k < \gamma_k) + \mathbb{P}(Y_k < \gamma_k, Y'_k \ge \gamma_k)$, we have $\sum_{k=1}^{\infty} \left\{ \mathbb{E}[e^{Y_k \wedge Y'_k} : Y_k, Y'_k < \gamma_k] - \mathbb{P}(Y_k < \gamma_k) \right\}$ $= \sum_{k=1}^{\infty} \mathbb{E}[e^{Y_k \wedge Y'_k} - 1 : Y_k, Y'_k < \gamma_k] - \sum_{k=1}^{\infty} \mathbb{P}(Y_k < \gamma_k) \mathbb{P}(Y'_k \ge \gamma_k),$

where the second sum in the right expression is finite by (5.1). Thus under (3.1), (3.2) is equivalent to

$$\int_0^{\gamma_k} e^y \mathbb{P}(y < Y_k < \gamma_k)^2 dy = \mathbb{E}\left[\int_0^{Y_k \wedge Y'_k} e^y dy : Y_k, Y'_k < \gamma_k\right]$$
$$= \sum_{k=1}^\infty \mathbb{E}[e^{Y_k \wedge Y'_k} - 1 : Y_k, Y'_k < \gamma_k] < \infty.$$

Therefore, (3.2) is equivalent to (5.2) under (3.1).

Combining (5.1) and (5.2), we obtain a necessary and sufficient condition for $\mu_{X+Y} \sim \mu_X$ as

(5.4)
$$\sum_{k=1}^{\infty} \mathbb{P}(\gamma_k \le Y_k) + \sum_{k=1}^{\infty} e^{-\gamma_k} + \sum_{k=1}^{\infty} \int_0^{\gamma_k} e^y \mathbb{P}(y < Y_k < \gamma_k)^2 dy < \infty.$$

Finally We shall prove the case where $\lambda \neq 1$. In this case we have $\gamma_k = \sup \{x \ge 0 \mid \mathbb{E} [e^{\lambda \gamma_k} : Y_k \le x] < 2\}$. We have $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ if and only if $\mu_{\lambda \mathbf{X}+\lambda \mathbf{Y}} \sim \mu_{\lambda \mathbf{X}}$. Since $d\mu_{\lambda X_1}(x) = e^{-x} \mathbf{I}_{[0,\infty)}(x) dx$, replacing \mathbf{Y} with $\lambda \mathbf{Y}$ in (5.4), we have the conclusion.

As a corollary of Theorem , we obtain a necessary and sufficient condition in the case where X is exponentially distributed and Y is a Bernoulli sequence.

Corollary 5.3. Let **X** be exponentially distributed and $\mathbf{Y} = \{\varepsilon(a_k, p_k)\}$ be a Bernoulli sequence. Then **Y** is admissible if and only if

$$\sum_{k=1}^{\infty} \frac{e^{\lambda a_k} - 1}{(e^{(\lambda \vee \sigma_k)a_k} - 1)(e^{\sigma_k a_k} - 1)} < \infty,$$

where $\sigma_k := (1/a_k) \log \{(1+p_k)/p_k\}.$

Example 5.4. Let $f_{\mathbf{X}}(x) = e^{-x}\mathbf{I}_{[0,\infty)}(x)$ and $\mathbf{Y} = \{\varepsilon(a_k, p_k)\}$, where $a_k = \log(k+2), p_k = 1/(k+1), k \ge 1$. Then (C.6) and (C.7) hold but \mathbf{Y} is not admissible.

Proof. We have

$$\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{P}(Y_{k} > x)^{2} f_{\mathbf{X}}(x) dx = \sum_{k=1}^{\infty} \int_{0}^{a_{k}} p_{k}^{2} e^{-x} dx = \sum_{k=1}^{\infty} p_{k}^{2} (1 - e^{-a_{k}})$$
$$= \sum_{k=1}^{\infty} \frac{1}{k^{2} + 3k + 2} < \infty$$

and

$$\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{E}[Y_{k}; Y_{k} \le x]^{2} f_{\mathbf{X}}(x) dx = \sum_{k=1}^{\infty} \int_{a_{k}}^{\infty} (a_{k}p_{k})^{2} e^{-x} dx = \sum_{k=1}^{\infty} a_{k}^{2} p_{k}^{2} e^{-a_{k}}$$
$$= \sum_{k=1}^{\infty} \frac{(\log(k+2))^{2}}{(k+1)^{2}(k+2)} < \infty.$$

We show Y is not admissible. Since $\sigma_k := \frac{1}{a_k} \log \frac{1+p_k}{p_k} = 1$, Y is admissible if and only if

$$\sum_{k=1}^{\infty} \frac{e^{a_k} - 1}{(e^{a_k} - 1)(e^{a_k} - 1)} = \sum_{k=1}^{\infty} \frac{1}{e^{a_k} - 1} < \infty.$$

But

$$\sum_{k=1}^{\infty} \frac{1}{e^{a_k} - 1} = \sum_{k=1}^{\infty} \frac{1}{k+1} = \infty.$$

Example 5.5. Let $f_{\mathbf{X}}(x) = e^{-x} \mathbf{I}_{[0,\infty)}(x)$ and $\mathbf{Y} = \{\varepsilon(a_k, 1/2)\}, k \ge 1$ be a Bernoulli sequence. Then \mathbf{Y} is admissible if and only if $\boldsymbol{a} = \{a_k\} \in \ell_1^+$.

Proof. We may assume $a_k \leq \log 3$. Then $\sigma_k = \frac{\log 3}{a_k}$ and

$$\sum_{k=1}^{\infty} \frac{e^{a_k} - 1}{(e^{(1 \vee \sigma_k)a_k} - 1)(e^{\sigma_k a_k} - 1)} = \sum_{k=1}^{\infty} \frac{e^{a_k} - 1}{4}.$$

 $\sum_{k=1}^{\infty} \frac{e^{a_k}-1}{4} < \infty$ if and only if $\boldsymbol{a} = \{a_k\} \in \ell_1^+$.

In the case where the distributions of all Y_k 's are continuous, Theorem 5.1 is simplified as follows.

Theorem 5.6. Let X be exponentially distributed and the distributions of Y_k 's be continuous. Then we have $\mu_{X+Y} \sim \mu_X$ if and only if

$$\sum_{k=1}^{\infty} \mathbb{P}(\gamma_k \le Y_k) + \sum_{k=1}^{\infty} \int_0^{\gamma_k} e^{\lambda y} \mathbb{P}(y < Y_k < \gamma_k)^2 dy < \infty.$$

Proof. Let the distributions of Y_k 's be continuous. Then by Fact 5.2 (i), we have $\mathbb{E}\left[e^{\lambda Y_k}: Y_k \leq \gamma_k\right] - 1 = 1$ and it follows that

$$\lambda \int_{0}^{\gamma_{k}} e^{y} \mathbb{P}(y < Y_{k} \le \gamma_{k}) dy = \mathbb{E}\left[e^{\lambda Y_{k}} - 1 : Y_{k} \le \gamma_{k}\right]$$
$$= \mathbb{E}\left[e^{\lambda Y_{k}} : Y_{k} \le \gamma_{k}\right] - 1 + \mathbb{P}(Y > \gamma_{k}) = 1 + \mathbb{P}(Y_{k} > \gamma_{k}),$$

which implies

$$\mathbb{E}[e^{\lambda Y_k} - 1 : Y_k \le \gamma_k] = \lambda \int_0^{\gamma_k} e^{\lambda y} \mathbb{P}(y < Y_k \le \gamma_k) dy = 1 + \mathbb{P}(Y_k > \gamma_k).$$

If $\gamma_k < \infty$, then by the Schwarz inequality

$$1 \leq \left[1 + \mathbb{P}(Y_k > \gamma_k)\right]^2 = \lambda^2 \left| \int_0^{\gamma_k} e^{\lambda y} \mathbb{P}(y < Y_k \leq \gamma_k) dy \right|^2$$

$$\leq \lambda^2 \int_0^{\gamma_k} e^{\lambda u} du \int_0^{\gamma_k} e^{\lambda y} \mathbb{P}(y < Y_k \leq \gamma_k)^2 dy$$

$$\leq \lambda e^{\lambda \gamma_k} \int_0^{\gamma_k} e^{\lambda y} \mathbb{P}(y < Y_k \leq \gamma_k)^2 dy,$$

which implies $e^{-\lambda \gamma_k} \leq \lambda \int_0^{\gamma_k} e^{\lambda y} \mathbb{P}(y < Y_k \leq \gamma_k)^2 dy$. Therefore we have

$$\sum_{k=1}^{\infty} e^{-\lambda \gamma_k} = \sum_{k: \gamma_k < \infty} e^{-\lambda \gamma_k} \le \sum_{k=1}^{\infty} \int_0^{\gamma_k} e^{\lambda y} \mathbb{P}(y < Y_k \le \gamma_k)^2 dy$$

and if the distributions of Y_k 's are continuous, then $\mathbb{P}(y < Y_k < \gamma_k) = \mathbb{P}(y < Y_k \le \gamma_k)$, and Theorem 5.1 implies the assertion.

Example 5.7. Let $f_{\mathbf{X}}(x) = e^{-x} \mathbf{I}_{[0,\infty)}(x)$ and Y_k obey to the uniform distribution

$$d\mu_k(y) = \frac{1}{a_k} \mathbf{I}_{[0,a_k]}(y) dy, \ k \ge 1$$

where $a_k > 0$. Then we have $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ if and only if $\sum_{k=1}^{\infty} a_k < \infty$.

Proof. Let $\kappa > 0$ be the unique positive solution of $e^t = 1 + 2t$. For a_k with $a_k \ge \tau$, we have $\gamma_k = \log(1 + 2a_k)$ and

$$\mathbb{P}(Y_k \ge \gamma_k) = \frac{1}{a_k} \int_{\gamma_k}^{a_k} dy = 1 - \frac{\log(1+2a_k)}{a_k},$$

and, by Theorem 5.6, $\sum_{k=1}^{\infty} \mathbb{P}(Y_k \ge \gamma_k) < \infty$ implies $\lim_k a_k = \kappa > 0$.

On the other hand, we have

$$\int_{0}^{\gamma_{k}} e^{y} \mathbb{P}(y < Y_{k} < \gamma_{k})^{2} dy = \frac{2}{a_{k}^{2}} \left[e^{\gamma_{k}} - \left(1 + \gamma_{k} + \frac{\gamma_{k}^{2}}{2} \right) \right]$$
$$\geq \frac{|\log(1 + 2a_{k})|^{3}}{3a_{k}^{2}} \to \frac{|\log(1 + 2\kappa)|^{3}}{3\kappa^{2}} > 0,$$

which contradicts to $\sum_{k=1}^{\infty} \int_{0}^{\gamma_{k}} e^{y} \mathbb{P}(y < Y_{k} < \gamma_{k})^{2} dy < \infty$. Therefore, but for finite number of a_k 's, we may assume $a_k < \kappa$.

For a_k such that $a_k < \kappa$, we have $\gamma_k = \infty$ and

$$\int_0^{\gamma_k} e^y \mathbb{P}(y < Y_k < \gamma_k)^2 dy = \frac{2}{a_k^2} \left[e^{a_k} - \left(1 + a_k + \frac{a_k^2}{2} \right) \right] \ge \frac{a_k}{3},$$

and Theorem 5.6 implies $\sum_{k=1}^{\infty} a_k < \infty$. Conversely, $\sum_{k=1}^{\infty} a_k < \infty$ implies $\lim_k a_k = 0$ so that, without loss of generality, we may assume that $a_k < \kappa$ and $\gamma_k = \infty$. Then we have $\int_0^{\gamma_k} e^y \mathbb{P}(y < Y_k < y_k)$ $(\gamma_k)^2 dy \le a_k e^{\kappa}/3 < \infty$ and Theorem 5.6 proves the example.

REFERENCES

- 1. M. Hino, On equivalence of product measures by random translation, J. Math. Kyoto Univ. 34 (1994), 755-765.
- 2. S. Kakutani, On equivalence of infinite product measures, Ann. of Math., 49 (1948), 214-224.
- 3. K. Kitada and H. Sato, On the absolute continuity of infinite product measure and its convolution, Probab. Theory Related Fields, 81 (1989), 609-627.
- 4. Y. Okazaki, On equivalence of product measure by symmetric random ℓ_4 -translation, J. Funct. Anal., 115 (1993), 100-103.
- 5. Y. Okazaki and H. Sato, Distinguishing a random sequence from a random translate of itself, Ann. Probab., 22 (1994), 1092-1096.
- 6. H. Sato and M. Tamashiro, Absolute continuity of one-sided random translations, Stochastic Process. Appl., 58 (1995), 187-204.
- 7. H. Sato and C. Watari, Some integral inequalities and absolute continuity of a symmetric random translation, J. Funct. Anal., 114 (1993), 257-266.
- 8. L.A. Shepp, Distinguishing a sequence of random variables from a translate of itself, Ann. Math. Statist.36 (1965), 1107-1112.

Aoi Honda Kyushu Institute of Technology, 680-4, Kawazu, Iizuka 820-8502, Japan and Université de Paris I Panthéon-Sorbonne, 90 rue de Tolbiac, 75634 Paris, France E-mail: aoi@ces.kyutech.ac.jp

Yoshiaki Okazaki Kyushu Institute of Technology, 680-4, Kawazu, Iizuka 820-8502, Japan E-mail: okazaki@ces.kyutech.ac.jp

Hiroshi Sato Kyushu University, Faculty of Mathematics, Fukuoka 812-8581, Japan E-mail: sato@math.kyushu-u.ac.jp