EQUIVALENCE OF NON-NEGATIVE RANDOM TRANSLATES OF AN IID RANDOM SEQUENCE

Aoi Honda, Yoshiaki Okazaki and Hiroshi Sato

Abstract

Let $\mathbf{X}=\left\{X_{k}\right\}$ be an IID random sequence and $\mathbf{Y}=\left\{Y_{k}\right\}$ be an independent random sequence also independent of \mathbf{X}. Denote by $\mu_{\mathbf{X}}$ and $\mu_{\mathbf{X}+\mathbf{Y}}$ the probability measures on the sequence space induced by \mathbf{X} and $\mathbf{X}+\mathbf{Y}=\left\{X_{k}+Y_{k}\right\}$, respectively. The problem is to characterize $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ in terms of $\mu_{\mathbf{Y}}$ in the case where \mathbf{X} is non-negative. Sato and Tamashiro[6] first discussed this problem assuming the existence of $f_{\mathbf{X}}(x)=\frac{d \mu_{X_{1}}}{d x}(x)$. They gave several necessary or sufficient conditions for $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ under some additional assumptions on $f_{\mathbf{X}}$ or on \mathbf{Y}.

The authors precisely improve these results. First they rationalize the assumption of the existence of $f_{\mathbf{X}}$. Then they prove that the condition (C.6) is necessary for wider classes of $f_{\mathbf{X}}$ with local regularities. They also prove if the p-integral $I_{p}^{0}(\mathbf{X})<\infty$ and $\mathbf{Y} \in \ell_{p}^{+}$a.s., then (C.6) is necessary and sufficient. Furthermore, in the typical case where \mathbf{X} is exponentially distributed, they prove an explicit necessary and sufficient condition for $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$.

1. Introduction

For σ-finite measures μ and ν on a measurable space, $\mu \ll \nu$ means that μ is absolutely continuous with respect to $\nu, \mu \perp \nu$ that they are singular, and $\mu \sim \nu$ that they are equivalent (mutually absolutely continuous). In the sequel, for a probability measure ν on \mathbb{R} and some $-\infty \leq \theta<\infty$, we say " $\nu \sim m$ on $[\theta, \infty)$ " if ν is supported by the half line $[\theta, \infty)$ and $\nu \sim m$ there, where m is the Lebesgue measure. If $\theta=-\infty$, then $[-\infty, \infty)$ should be read as $(-\infty, \infty)$.

Throughout this paper $\mathbf{X}=\left\{X_{k}\right\}$ denotes an independent identically distributed (IID) random sequence and $\mathbf{Y}=\left\{Y_{k}\right\}$ an independent random sequence, which

[^0]is also independent of \mathbf{X}, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Denote by $\mu_{\mathbf{X}}$ and $\mu_{\mathbf{X}+\mathbf{Y}}$ the probability measures on the sequence space induced by \mathbf{X} and $\mathbf{X}+\mathbf{Y}=\left\{X_{k}+Y_{k}\right\}$, respectively. Furthermore, we always assume
\[

$$
\begin{equation*}
\mu_{X_{k}+Y_{k}} \sim \mu_{X_{k}}, k \geq 1, \tag{C.0}
\end{equation*}
$$

\]

where $\mu_{X_{k}+Y_{k}}$ and $\mu_{X_{k}}$ are the marginal distributions of $X_{k}+Y_{k}$ and X_{k}, respectively (see also (C.3)). \mathbf{Y} is said to be admissible (for \mathbf{X}) if $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$.

Let $1 \leq p<\infty$ and $-\infty \leq \theta<\infty$. Let $f(x)$ be a probability density function on \mathbb{R} which vanishes on $(-\infty, \theta)$ and $f(x)>0$ a.e. (m) on (θ, ∞). Then we say $I_{p}^{\theta}(f)<\infty$ if $f(x)^{1 / p}$ is absolutely continuous on $[\theta, \infty)$ and the p-integral defined by

$$
I_{p}^{\theta}(f):=p^{p} \int_{\theta}^{\infty}\left|\frac{d}{d x}\left(f(x)^{\frac{1}{p}}\right)\right|^{p} d x<\infty
$$

In the case where $\theta=-\infty, I_{p}^{-\infty}(f)$ is simply denoted by $I_{p}(f)$. In particular $I_{2}(f)$ coincides with the Shepp's integral (Shepp[8]). For an IID random sequence $\mathbf{X}=\left\{X_{k}\right\}, I_{p}^{\theta}(\mathbf{X})$ is defined by $I_{p}^{\theta}(\mathbf{X}):=I_{p}^{\theta}\left(f_{\mathbf{X}}\right)$, where $f_{\mathbf{X}}(x)$ is the probability density function of $\mu_{X_{1}}$ if exists.

For sequences of non-negative numbers $a_{k} \geq 0,0 \leq p_{k}<1, k \geq 1$, a Bernoulli sequence $\left\{\varepsilon\left(a_{k}, p_{k}\right)\right\}$ is an independent random sequence such that $\varepsilon\left(a_{k}, p_{k}\right)$ takes two values a_{k} and 0 with probability p_{k} and $1-p_{k}$, respectively.

Kakutani's dichotomy theorem implies either $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ or $\mu_{\mathbf{X}+\mathbf{Y}} \perp \mu_{\mathbf{X}}$, and he also proved

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(1-\mathbb{E}\left[\sqrt{\frac{d \mu_{X_{k}+Y_{k}}}{d \mu_{X_{k}}}\left(X_{k}\right)}\right]\right)<\infty, \tag{C.1}
\end{equation*}
$$

is necessary and sufficient for the admissibility of \mathbf{Y} (Kakutani[2]).
On the other hand, defining $Z_{k}(x):=\frac{d \mu_{X_{k}+Y_{k}}}{d \mu_{X_{k}}}(x)-1, k \geq 1$, Kitada and Sato[3] proved

$$
\begin{equation*}
\text { the almost sure convergence of } \sum_{k=1}^{\infty} Z_{k}\left(\mathbf{X}_{k}\right) \tag{C.2}
\end{equation*}
$$

is necessary and sufficient for the admissibility of \mathbf{Y}.
The problem is to characterize the admissibility of \mathbf{Y} only in terms of the distribution of \mathbf{Y}. In other words, the problem is to characterize the uniform integrability of the positive martingale

$$
M_{n}=\prod_{k=1}^{n} \frac{d \mu_{X_{k}+Y_{k}}}{d \mu_{X_{k}}}\left(X_{k}\right), n \geq 1
$$

in terms of the distribution of \mathbf{Y}. We shall study the problem by utilizing the criteria (C.1) and (C.2).

The case where \mathbf{Y} is a deterministic sequence $\boldsymbol{a}=\left\{a_{k}\right\}$ was first discussed systematically by [8]. He proved that $\mu_{\mathbf{X}+\boldsymbol{a}} \sim \mu_{\mathbf{X}}$ implies $\boldsymbol{a} \in \ell_{2}$, and that $\mu_{\mathbf{X}+\boldsymbol{a}} \sim \mu_{\mathbf{X}}$ for every $\boldsymbol{a} \in \ell_{2}$ if and only if $I_{2}(\mathbf{X})<\infty$.

Define $\boldsymbol{a} \boldsymbol{\varepsilon}:=\left\{a_{k} \varepsilon_{k}\right\}$ where $\left\{\varepsilon_{k}\right\}$ is a Rademacher sequence and $\left\{a_{k}\right\}$ is a deterministic sequence. Then it was proved that the admissibility of $a \varepsilon$ implies $\left\{a_{k}\right\} \in \ell_{4}$, and that $\mu_{\mathbf{X}+\boldsymbol{a} \varepsilon} \sim \mu_{\mathbf{X}}$ for every $\left\{a_{k}\right\} \in \ell_{4}$ if and only if

$$
J_{2}(\mathbf{X}):=\int_{-\infty}^{\infty} \frac{f_{\mathbf{X}}^{\prime \prime}(x)^{2}}{f_{\mathbf{X}}(x)} d x<\infty
$$

(Okazaki[4], Okazaki and Sato[5], Sato and Watari[7]). Furthermore, if \mathbf{Y} is symmetric and $J_{2}(\mathbf{X})<\infty$, then $\mathbf{Y} \in \ell_{4}$ a.s. implies the admissibility of \mathbf{Y} ([7]).

Sato and Tamashiro[6] discussed the problem under the assumption of the existence of the density $f_{\mathbf{X}}(x)=\frac{d \mu_{X_{1}}}{d x}(x)$.

In Section 2, we shall prove that a Bernoulli sequence $\mathbf{Y}=\left\{\varepsilon\left(a_{k}, 1 / 2\right)\right\}$ is admissible for every $\left\{a_{k}\right\} \in \ell_{2}^{+}$if and only if there exists $\theta \geq-\infty$ such that $\mu_{X_{1}} \sim m$ on $[\theta, \infty), I_{2}^{\theta}(\mathbf{X})<\infty$ and $f_{\mathbf{X}}(+\theta):=\lim _{x \backslash \theta} f_{\mathbf{X}}(x)=0$ (Theorem 2.2). This shows that the assumption of the existence of $f_{\mathbf{X}}(x)=\frac{d \mu_{X_{1}}}{d x}(x)$ on $[\theta, \infty)$ in [6] is reasonable.

In Sections 3, 4 and 5, we assume $\theta=0$, that is, $X_{1} \geq 0$ a.s. and there exists $f_{\mathbf{X}}(x)=\frac{d \mu_{X_{1}}}{d x}(x)$ for $x \geq 0$. In this case, if \mathbf{Y} is admissible for \mathbf{X}, then \mathbf{Y} is necessarily non-negative, that is, $Y_{k} \geq 0$ a.s., $k \geq 1$, and no deterministic sequence is admissible unless trivial. On the other hand, if $\theta=0$, the condition (C. 0) is equivalent to

$$
\begin{equation*}
\mathbb{P}\left(Y_{k}<\varepsilon\right)>0 \text { for every } \varepsilon>0, k \geq 1 . \tag{C.3}
\end{equation*}
$$

In Section 3, we shall study the necessary condition for the admissibility of \mathbf{Y}. It is known that if \mathbf{X} and \mathbf{Y} are non-negative and \mathbf{Y} is admissible, then we have

$$
\begin{gather*}
\sum_{k=1}^{\infty} \mathbb{E}\left[Y_{k}: Y_{k} \leq \alpha\right]^{2}<\infty \tag{C.4}\\
\sum_{k=1}^{\infty} \mathbb{P}\left(Y_{k}>\alpha\right)^{2}<\infty \tag{C.5}
\end{gather*}
$$

for some (and any) $\alpha>0$ (Hino[1], see also [3], [6]). [6] strengthened the necessary condition (C.5) to

$$
\begin{equation*}
\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{P}\left(Y_{k}>x\right)^{2} f_{\mathbf{X}}(x) d x<\infty \tag{C.6}
\end{equation*}
$$

in the case where \mathbf{Y} is a Bernoulli sequence ([6], Theorem 3.1), or where $f_{\mathbf{X}}(+0)>$ $0, f_{\mathbf{X}}$ is absolutely continuous in an interval $[0, \delta]$ and $\operatorname{ess} . \sup _{0 \leq x \leq \delta}\left|f_{\mathbf{X}}^{\prime}(x)\right|<\infty$ ([6], Theorem 3.3(B)). We shall prove (C.6) under new assumptions of the local increase (Theorem 3.1) or the integrability $\int_{0}^{\delta} x^{-2} f_{\mathbf{X}}(x) d x<\infty$ (Theorem 3.2) on $f_{\mathbf{X}}$, which include the case $f_{\mathbf{X}}(+0)=0$. These results exhaust most cases of $f_{\mathbf{X}}$ and it is not known any examples of $f_{\mathbf{X}}$ where \mathbf{Y} is admissible but (C.6) does not hold. We conjecture that (C.6) is a necessary condition for the admissibility of \mathbf{Y} in general.

Furthermore, we shall strengthen (C.4) to

$$
\begin{equation*}
\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{E}\left[Y_{k}: Y_{k} \leq x\right]^{2} f_{\mathbf{X}}(x) d x<\infty \tag{C.7}
\end{equation*}
$$

(C.7) is necessary for admissibility of \mathbf{Y} if $\mathbb{E}\left[\left|X_{1}\right|^{2}\right]<\infty$ (Theorem 3.4). However there exist examples of \mathbf{X}, with $\mathbb{E}\left[\left|X_{1}\right|^{2}\right]<\infty$ and admissible \mathbf{Y} which do not satisfy (C.7) (Example 3.5). On the other hand, in general, (C.6) and (C.7) are not sufficient for the admissibility of \mathbf{Y} (Example 5.4).

In Section 4, we shall study \mathbf{X} with $I_{p}^{0}(\mathbf{X})<\infty, 1 \leq p \leq 2$. We shall prove that if $I_{p}^{0}(\mathbf{X})<\infty$ and $\mathbf{Y} \in \ell_{p}^{+}$a.s., then \mathbf{Y} is admissible if and only if (C.6) holds (Theorem 4.1).

In Section 5 , we shall study the case where \mathbf{X} is exponentially distributed, that is, $f_{\mathbf{X}}(x)=\lambda e^{-\lambda x} \mathbf{I}_{[0, \infty)}(x)$ for some $\lambda>0$ as the most typical and simplest case. [6] gave a necessary and sufficient condition of this case for the admissibility of \mathbf{Y} under the additional assumption

$$
\begin{equation*}
\sum_{k=1}^{\infty} \mathbb{P}\left(Y_{k}>\alpha\right)<\infty \tag{C.8}
\end{equation*}
$$

for some $\alpha>0$ ([6], Theorem 4.1). We shall give a necessary and sufficient condition for the admissibility of \mathbf{Y} without any additional assumptions on \mathbf{Y} (Theorem 5.1).

2. Non-negative Random Translates

To begin with, we shall prove the following lemma.
Lemma 2.1. For a probability ν on $(\mathbb{R}, \mathcal{B})$, define $\nu_{s}(A)=\nu(A-s), A \in$ $\mathcal{B}, s \in \mathbb{R}_{+}$. Then $\nu_{s} \ll \nu$ for every $s \in \mathbb{R}_{+}$if and only if $\nu \sim m$ on $[\theta, \infty)$ for some $-\infty \leq \theta<\infty$.

Proof. Assume $\nu_{s} \ll \nu$ for every $s \in \mathbb{R}_{+}$. Then for every open interval (a, b) such that $\nu((a, b))=0$, we have $\nu((a, b)-s)=\mu_{s}((a, b))=0$ for every $s \geq 0$.

Consequently there exists $-\infty \leq \theta<\infty$ such that ν is supported by the half line $[\theta, \infty)$.

Next we show $\nu \ll m$. Assume $m(A)=0$ for $A \in \mathcal{B}$. Then we have

$$
0=m(A+1)=\int_{\mathbb{R}} d \nu(x) \int_{0}^{1} \mathbf{I}_{A+1}(s+x) d s=\int_{0}^{1} \nu(A+1-s) d s
$$

Hence there exists an $s \in[0,1)$ such that $\nu(A+1-s)=0$. Since $\nu_{(1-s)} \ll \nu$, we have $\nu(A)=\nu_{(1-s)}(A+1-s)=0$.

Finally we show $m \ll \nu$ on $[\theta, \infty)$. For every Borel set $A \subset[\theta, \infty)$ such that $\nu(A)=0$, we have
$0=\int_{0}^{\infty} \nu_{s}(A) d s=\int_{0}^{\infty} d s \int_{[\theta, \infty)} \mathbf{I}_{A-s}(x) d \nu(x)=\int_{[\theta, \infty)} m\left((A-x) \cap \mathbb{R}_{+}\right) d \nu(x)$,
so that $F(x):=m\left((A-x) \cap \mathbb{R}_{+}\right)=0$ a.s. $(d \nu)$. Then by the minimality of the support $[\theta, \infty)$, we can find a sequence $\theta_{n} \downarrow \theta$ such that $F\left(\theta_{n}\right)=0$ and have

$$
m(A)=\lim _{n} m\left(\left(A-\theta_{n}\right) \cap \mathbb{R}_{+}\right)=0
$$

The converse statement of the lemma is evident.
Theorem 2.2. Let $\mathbf{X}=\left\{X_{k}\right\}$ be an IID random sequence of real (not necessarily non-negative) random variables and $\mathbf{Y}=\left\{\varepsilon\left(a_{k}, 1 / 2\right)\right\}$ be a Bernoulli sequence. Then we have
(A) The admissibility of \mathbf{Y} implies $\left\{a_{k}\right\} \in \ell_{2}^{+}$.
(B) \mathbf{Y} is admissible for every $\left\{a_{k}\right\} \in \ell_{2}^{+}$if and only if there exits $\theta \geq-\infty$ such that $\mu_{X_{1}} \sim m$ on $[\theta, \infty), I_{2}^{\theta}(\mathbf{X})<\infty$ and $f_{\mathbf{X}}(+\theta)=0$.

Proof.

(A) is due to [6, Theorem 3.1], [1, Theorem 1.8].
(B) Since $a_{k} \geq 0$ is arbitrary, Lemma 1 is applicable to $\nu=\mu_{X_{1}}$ and we have $\mu_{X_{1}} \sim m$ on $[\theta, \infty)$ for some $\theta \geq-\infty$.

On the other hand, Kakutani's criterion (C.1) implies that \mathbf{Y} is admissible for every $\left\{a_{k}\right\} \in \ell_{2}^{+}$if and only if

$$
\sum_{k=1}^{\infty} \int_{-\infty}^{\infty}\left|\sqrt{f_{\mathbf{X}}\left(x-a_{k}\right)}-\sqrt{f_{\mathbf{X}}(x)}\right|^{2} d x<\infty
$$

for every $\left\{a_{k}\right\} \in \ell_{2}^{+}$. Consequently we have $\sqrt{f_{\mathbf{X}}(x)}$ is absolutely continuous on \mathbb{R} and $I_{2}^{\theta}(\mathbf{X})<\infty$ by applying the arguments similar to [8].

The condition $f_{\mathbf{X}}(+\theta)=0$ is crucial since $I_{2}^{\theta}(\mathbf{X})<\infty$ implies the absolute continuity of $\sqrt{f_{\mathbf{X}}(x)}$ on the whole real line \mathbb{R}. In fact, if \mathbf{X} is exponentially distributed, where $f_{\mathbf{X}}(+0)>0$ and $I_{2}^{0}(\mathbf{X})<\infty$, then the Bernoulli sequence $\left\{\varepsilon\left(a_{k}, 1 / 2\right)\right\}$ is admissible if and only if $\left\{a_{k}\right\} \in \ell_{1}^{+}$(Example 5.5).

3. Necessary Conditions for Admissibility

We shall discuss the necessity of (C.6) and show that (C.6) is necessary for the admissibility of \mathbf{Y} under the various assumptions on $f_{\mathbf{X}}$.

By Kolmogorov's three series theorem, (C.2) is equivalent to the following two conditions.

$$
\begin{align*}
& \sum_{k=1}^{\infty} \mathbb{E}\left[\left|Z_{k}\left(\mathbf{X}_{k}\right)\right|:\left|Z_{k}\left(\mathbf{X}_{k}\right)\right| \geq \alpha\right]<\infty \tag{3.1}\\
& \sum_{k=1}^{\infty} \mathbb{E}\left[Z_{k}\left(\mathbf{X}_{k}\right)^{2}:\left|Z_{k}\left(\mathbf{X}_{k}\right)\right|<\alpha\right]<\infty \tag{3.2}
\end{align*}
$$

for some (and any) $\alpha>0$.
In the following two theorems, we shall prove the necessity of (C.6) under the assumption of local regularities on $f_{\mathbf{X}}$. These results include the case $f_{\mathbf{X}}(+0)=0$.

Theorem 3.1. Assume that there exists some $\delta>0$ such that $f_{\mathbf{X}}(x)$ is nondecreasing on the interval $[0, \delta]$. Then the admissibility of \mathbf{Y} implies (C.6).

Proof. Since $f_{\mathbf{X}}(x)$ is non-decreasing in $[0, \delta]$ and $f_{\mathbf{X}}(x)=0$ for $x<0$, we have for any $y>0$,

$$
0 \leq 1-\frac{f_{\mathbf{X}}(x-y)}{f_{\mathbf{X}}(x)} \leq 1,
$$

and (3.2) implies

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{P}\left(Y_{k}>x\right)^{2} f_{\mathbf{X}}(x) d x \\
= & \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{E}\left[1-\frac{f_{\mathbf{X}}\left(x-Y_{k}\right)}{f_{\mathbf{X}}(x)}: Y_{k}>x\right]^{2} f_{\mathbf{X}}(x) d x \\
\leq & \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{E}\left[1-\frac{f_{\mathbf{X}}\left(x-Y_{k}\right)}{f_{\mathbf{X}}(x)}\right]^{2} f_{\mathbf{X}}(x) d x \\
= & \sum_{k=1}^{\infty} \int_{0}^{\delta}\left(1-\frac{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right)\right]}{f_{\mathbf{X}}(x)}\right)^{2} f_{\mathbf{X}}(x) d x \\
\leq & \sum_{k=1}^{\infty} \mathbb{E}\left[Z_{k}\left(X_{k}\right)^{2}: Z_{k}\left(X_{k}\right) \leq 1\right]<\infty .
\end{aligned}
$$

Theorem 3.2. Assume that $\int_{0}^{\delta} x^{-2} f_{\mathbf{X}}(x) d x<\infty$ for some $\delta>0$. Then the admissibility of \mathbf{Y} implies (C.6).

Proof. By Chebyshev's inequality, we have $\mathbb{P}\left(x<Y_{k} \leq \delta\right) \leq \mathbb{E}\left[Y_{k} ; Y_{k} \leq \delta\right] / x$, and

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{P}\left(Y_{k}>x\right)^{2} f_{\mathbf{X}}(x) d x \\
= & \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{P}\left(x<Y_{k} \leq \delta\right)^{2} f_{\mathbf{X}}(x) d x+\sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{P}\left(x<Y_{k}, Y_{k}>\delta\right)^{2} f_{\mathbf{X}}(x) d x \\
= & : A+B .
\end{aligned}
$$

Then we have by using (C.4) and (C.5)

$$
\begin{aligned}
& A \leq \sum_{k=1}^{\infty} \int_{0}^{\delta} x^{-2} \mathbb{E}\left[Y_{k} ; Y_{k} \leq \delta\right]^{2} f_{\mathbf{X}}(x) d x=\sum_{k=1}^{\infty} \mathbb{E}\left[Y_{k} ; Y_{k} \leq \delta\right]^{2} \int_{0}^{\delta} x^{-2} f_{\mathbf{X}}(x) d x<\infty \\
& B \leq \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{P}\left(Y_{k}>\delta\right)^{2} f_{\mathbf{X}}(x) d x=\sum_{k=1}^{\infty} \mathbb{P}\left(Y_{k}>\delta\right)^{2} \int_{0}^{\delta} f_{\mathbf{X}}(x) d x<\infty
\end{aligned}
$$

The following theorem reformulates [6, Theorem 3.3(B)].
Theorem 3.3. Assume that $f_{\mathbf{X}}(+0)>0$ and there exist $\delta>0$ and $K>0$ satisfying

$$
\left|f_{\mathbf{X}}(y)-f_{\mathbf{X}}(x)\right| \leq K|y-x| \quad \text { for } x, y \in[0, \delta] .
$$

Then the admissibility of \mathbf{Y} implies (C.6).
Proof. Taking δ sufficiently small, we may assume $K \delta<f_{\mathbf{X}}(+0) / 2$. Then for $x \in[0, \delta]$ we have $0<f_{\mathbf{X}}(+0) / 2<f_{\mathbf{X}}(x)<3 f_{\mathbf{X}}(+0) / 2$ and

$$
\begin{aligned}
& \left|Z_{k}(x)\right|=\left|\frac{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right)\right]}{f_{\mathbf{X}}(x)}-1\right| \\
= & \left|\frac{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right)-f_{\mathbf{X}}(x): Y_{k}<x\right]}{f_{\mathbf{X}}(x)}-\mathbb{P}\left(Y_{k} \geq x\right)\right| \\
\leq & \frac{K \delta}{f_{\mathbf{X}}(x)}+1 \leq 2 .
\end{aligned}
$$

Consequently by (3.2) and (C.4) we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{P}\left(Y_{k}>x\right)^{2} f_{\mathbf{X}}(x) d x \\
= & \sum_{k=1}^{\infty} \int_{0}^{\delta}\left[\left(\frac{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right)\right]}{f_{\mathbf{X}}(x)}-1\right) f_{\mathbf{X}}(x)-\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right)-f_{\mathbf{X}}(x): Y_{k} \leq x\right]\right]^{2} \frac{d x}{f_{\mathbf{X}}(x)} \\
\leq & 2 \sum_{k=1}^{\infty} \int_{0}^{\delta} Z_{k}(x)^{2} f_{\mathbf{X}}(x) d x+4 \frac{K^{2} \delta}{f_{\mathbf{X}}(+0)} \sum_{k=1}^{\infty} \mathbb{E}\left[Y_{k}: Y_{k} \leq \delta\right]^{2} \\
\leq & 2 \sum_{k=1}^{\infty} \mathbb{E}\left[Z_{k}\left(X_{k}\right)^{2}:\left|Z_{k}\left(X_{k}\right)\right| \leq 2\right]+2 K \sum_{k=1}^{\infty} \mathbb{E}\left[Y_{k}: Y_{k} \leq \delta\right]^{2}<\infty .
\end{aligned}
$$

On the other hand, we have strengthen (C.4) to (C.7) as follows.
Theorem 3.4. Assume $\mathbb{E}\left[\left|X_{1}\right|^{2}\right]<\infty$ and \mathbf{Y} is admissible. Then we have (C.7).

Proof. We have

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{E}\left[Y_{k}: Y_{k} \leq x\right]^{2} f_{\mathbf{X}}(x) d x \\
\leq & \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{E}\left[Y_{k}: Y_{k} \leq x\right]^{2} f_{\mathbf{X}}(x) d x+2 \sum_{k=1}^{\infty} \int_{\delta}^{\infty} \mathbb{E}\left[Y_{k}: Y_{k} \leq \delta\right]^{2} f_{\mathbf{X}}(x) d x \\
& +2 \sum_{k=1}^{\infty} \int_{\delta}^{\infty} \mathbb{E}\left[Y_{k}: \delta<Y_{k} \leq x\right]^{2} f_{\mathbf{X}}(x) d x=: A+2 B+2 C .
\end{aligned}
$$

By (C.4) and (C.5), we have

$$
\begin{aligned}
& A=\sum_{k=1}^{\infty} \mathbb{E}\left[Y_{k}: Y_{k} \leq \delta\right]^{2} \int_{0}^{\delta} f_{\mathbf{X}}(x) d x<\infty, \\
& B \leq \sum_{k=1}^{\infty} \mathbb{E}\left[Y_{k}: Y_{k} \leq \delta\right]^{2} \int_{\delta}^{\infty} f_{\mathbf{X}}(x) d x<\infty, \\
& C=\sum_{k=1}^{\infty} \int_{\delta}^{\infty} \mathbb{E}\left[Y_{k}: \delta<Y_{k} \leq x\right]^{2} f_{\mathbf{X}}(x) d x \leq \sum_{k=1}^{\infty} \int_{\delta}^{\infty} x^{2} \mathbb{P}\left(Y_{k}>\delta\right)^{2} f_{\mathbf{X}}(x) d x<\infty .
\end{aligned}
$$

The integrability $\mathbb{E}\left[X_{1}^{2}\right]<\infty$ is crucial in the above theorem. For instance, we have the following example.

Example 3.5. Let $f_{\mathbf{X}}(x)=2 /\left\{\pi\left(1+x^{2}\right)\right\}$ and $\mathbf{Y}=\left\{\varepsilon\left(k^{3}, 1 / k^{2}\right)\right\}, k \geq 1$ be a Bernoulli sequence. Then \mathbf{Y} is admissible but (C.7) does not hold.

Proof. Let $f_{\mathbf{X}}(x)=2 /\left\{\pi\left(1+x^{2}\right)\right\}$ and $\mathbf{Y}=\left\{a_{k}, p_{k}\right\}$, where $a_{k}=k^{3}$ and $p_{k}=1 / k^{2}$. By estimating Kakutani's criterion (C.1), we have

$$
\begin{aligned}
\infty> & \sum_{k=1}^{\infty} \int_{0}^{\infty}\left|\sqrt{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right)\right]}-\sqrt{f_{\mathbf{X}}(x)}\right|^{2} d x \\
= & \sum_{k=1}^{\infty}\left(\sqrt{1-p_{k}}-1\right)^{2} \int_{0}^{a_{k}} f_{\mathbf{X}}(x) d x \\
& +\sum_{k=1}^{\infty} \int_{a_{k}}^{\infty}\left|\sqrt{f_{\mathbf{X}}(x)+p_{k}\left(f_{\mathbf{X}}\left(x-a_{k}\right)-f_{\mathbf{X}}(x)\right)}-\sqrt{f_{\mathbf{X}}(x)}\right|^{2} d x=I_{1}+I_{2}
\end{aligned}
$$

Since $1 \leq\left(\sqrt{1-p_{k}}+1\right)^{2} \leq 4$, we have

$$
I_{1}=\sum_{k=1}^{\infty} \frac{\left(p_{k}\right)^{2}}{\left(\sqrt{1-p_{k}}+1\right)^{2}} \int_{0}^{a_{k}} f_{\mathbf{X}}(x) d x \leq \sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{P}\left(Y_{k}>y\right)^{2} f_{\mathbf{X}}(y) d y \leq 4 I_{1}
$$

which shows $I_{1}<\infty$ if and only if (C.6) holds. We have

$$
\begin{aligned}
I_{2} & =\sum_{k=1}^{\infty}\left(p_{k}\right)^{2} \int_{a_{k}}^{\infty} \frac{\left(f_{\mathbf{X}}\left(x-a_{k}\right)-f_{\mathbf{X}}(x)\right)^{2}}{\left(\sqrt{f_{\mathbf{X}}(x)+p_{k}\left(f_{\mathbf{X}}\left(x-a_{k}\right)-f_{\mathbf{X}}(x)\right)}+\sqrt{f_{\mathbf{X}}(x)}\right)^{2}} d x \\
& \leq \sum_{k=1}^{\infty}\left(p_{k}\right)^{2} \int_{a_{k}}^{\infty} \frac{a_{k}^{2}\left(2 x-a_{k}\right)^{2} f_{\mathbf{X}}(x)^{2} f_{\mathbf{X}}\left(x-a_{k}\right)^{2}}{p_{k} f_{\mathbf{X}}\left(x-a_{k}\right)} d x \\
& =\sum_{k=1}^{\infty}\left(a_{k}\right)^{2} p_{k} \int_{a_{k}}^{\infty}\left(2 x-a_{k}\right)^{2} f_{\mathbf{X}}(x)^{2} f_{\mathbf{X}}\left(x-a_{k}\right) d x \\
& \leq\left(\frac{2}{\pi}\right)^{2} \sum_{k=1}^{\infty} p_{k} \int_{a_{k}}^{\infty} \frac{a_{k}^{2}}{1+a_{k}^{2}} \frac{4 x^{2}}{1+x^{2}} f_{\mathbf{X}}\left(x-a_{k}\right) d x \\
& \leq \frac{16}{\pi^{2}} \sum_{k=1}^{\infty} p_{k} \int_{0}^{\infty} f_{\mathbf{X}}(x) d x=\frac{16}{\pi^{2}} \sum_{k=1}^{\infty} p_{k}
\end{aligned}
$$

Consequently, if $\sum_{k=1}^{\infty} p_{k}<\infty$ then $I_{1} \leq \sum_{k=1}^{\infty} p_{k}^{2}<\infty$ and \mathbf{Y} is admissible.
On the other hand, for $a_{k} \geq 1$,

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{E}\left[Y_{k}: Y_{k} \leq x\right]^{2} f_{\mathbf{X}}(x) d x=\frac{2}{\pi} \sum_{k=1}^{\infty}\left(a_{k} p_{k}\right)^{2} \int_{a_{k}}^{\infty} \frac{1}{\left(1+x^{2}\right)} d x \\
\geq & \frac{1}{\pi} \sum_{k=1}^{\infty}\left(a_{k} p_{k}\right)^{2} \int_{a_{k}}^{\infty} \frac{1}{x^{2}} d x=\frac{1}{\pi} \sum_{k=1}^{\infty} a_{k}\left(p_{k}\right)^{2}
\end{aligned}
$$

which implies that (C.7) is equivalent to $\sum_{k=1}^{\infty} a_{k}\left(p_{k}\right)^{2}<\infty$ if $a_{k} \geq 1$. But $\sum_{k=1}^{\infty} p_{k}=\sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty$ and $\sum_{k=1}^{\infty} a_{k}\left(p_{k}\right)^{2}=\sum_{k=1}^{\infty} \frac{1}{k}=\infty$, so that (C.7) does not hold.

Conversely, even if both (C.6) and (C.7) hold, \mathbf{Y} is not necessarily admissible in general (Example 5.4).

4. The p-Integral

In this section, we shall prove that (C.6) is necessary and sufficient condition for the admissibility of \mathbf{Y} if $I_{p}^{0}(\mathbf{X})<\infty$ and $\mathbf{Y} \in \ell_{p}^{+}$a.s. for some $1 \leq p \leq 2$. In the case $p=2$, [6] proved the sufficiency of (C.6), and the necessity of (C.6) under the condition ess.sup $0 \leq x \leq \delta\left|f_{\mathbf{X}}^{\prime}(x)\right|<\infty$.

Theorem 4.1. Assume $I_{p}^{0}(\mathbf{X})<\infty$ and $\mathbf{Y}=\left\{Y_{k}\right\} \in \ell_{p}^{+}$a.s. for some $1 \leq p \leq 2$. Then \mathbf{Y} is admissible if and only if (C.6) holds.

Proof. Assume $\mathbf{Y} \in \ell_{p}^{+}$a.s. Then Kolmogorov's three series theorem implies $\sum_{k=1}^{\infty} \mathbb{P}\left(Y_{k}>\delta\right)<\infty$ and $\sum_{k=1}^{\infty} \mathbb{E}\left[\left|Y_{k}\right|^{p}: Y_{k} \leq \delta\right]<\infty$. We have

$$
\begin{aligned}
& \frac{1}{4} \sum_{k=1}^{\infty} \int_{0}^{\delta} \mathbb{P}\left(Y_{k}>x\right)^{2} f_{\mathbf{X}}(x) d x \leq \sum_{k=1}^{\infty} \int_{0}^{\delta}\left|\frac{f_{\mathbf{X}}(x) \mathbb{P}\left(Y_{k}>x\right)}{\sqrt{f_{\mathbf{X}}(x)}+\sqrt{f_{\mathbf{X}}(x) \mathbb{P}\left(Y_{k} \leq x\right)}}\right|^{2} d x \\
& \leq \sum_{k=1}^{\infty} \int_{0}^{\delta}\left|\sqrt{f_{\mathbf{X}}(x)}-\sqrt{f_{\mathbf{X}}(x) \mathbb{P}\left(Y_{k} \leq x\right)}\right|^{2} d x \\
& \leq \sum_{k=1}^{\infty} \int_{0}^{\delta} 2\left[\left(\sqrt{f_{\mathbf{X}}(x)}-\sqrt{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right)\right]}\right)^{2}\right. \\
& \left.\quad+\left(\sqrt{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right)\right]}-\sqrt{f_{\mathbf{X}}(x) \mathbb{P}\left(Y_{k} \leq x\right)}\right)^{2}\right] d x
\end{aligned}
$$

The first term is finite by Kakutani's criterion (C.1).
On the other hand by inequality $\left|a^{\frac{1}{r}}-b^{\frac{1}{r}}\right|^{r} \geq\left|a^{\frac{1}{s}}-b^{\frac{1}{s}}\right|^{s}, a, b \geq 0,0<r \leq s$, we have for $q>1$ such that $1 / p+1 / q=1$,

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \int_{0}^{\delta}\left|\sqrt{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right): Y_{k} \leq x\right]}-\sqrt{f_{\mathbf{X}}(x) \mathbb{P}\left(Y_{k} \leq x\right)}\right|^{2} d x \\
\leq & \sum_{k=1}^{\infty} \int_{0}^{\delta}\left|\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right): Y_{k} \leq x\right]^{\frac{1}{p}}-\left(f_{\mathbf{X}}(x) \mathbb{P}\left(Y_{k} \leq x\right)\right)^{\frac{1}{p}}\right|^{p} d x
\end{aligned}
$$

$$
\begin{aligned}
&= \sum_{k=1}^{\infty} \int_{0}^{\delta}\left|\int_{0}^{1} \frac{\mathbb{E}\left[f_{\mathbf{X}}^{\prime}\left(x-s Y_{k}\right) Y_{k}: Y_{k} \leq x\right]}{p \mathbb{E}\left[f_{\mathbf{X}}\left(x-s Y_{k}\right): Y_{k} \leq x\right]^{\frac{1}{q}}} d s\right|^{p} d x \\
& \leq \sum_{k=1}^{\infty} \int_{0}^{\delta} d x \frac{1}{p^{p}} \int_{0}^{1} \frac{1}{\mathbb{E}\left[f_{\mathbf{X}}\left(x-s Y_{k}\right): Y_{k} \leq x\right]^{\frac{p}{q}}} \\
& \times \mathbb{E}\left[\frac{\left|f_{\mathbf{X}}^{\prime}\left(x-s Y_{k}\right)\right| Y_{k}}{f_{\mathbf{X}}\left(x-s Y_{k}\right)^{\frac{1}{q}}} f_{\mathbf{X}}\left(x-s Y_{k}\right)^{\frac{1}{q}}: Y_{k} \leq x\right]^{p} d s \\
& \leq \frac{1}{p^{p}} \sum_{k=1}^{\infty} \int_{0}^{\delta} d x \int_{0}^{1} \mathbb{E}\left[\frac{\left|f_{\mathbf{X}}^{\prime}\left(x-s Y_{k}\right)\right|^{p}\left|Y_{k}\right|^{p}}{f_{\mathbf{X}}\left(x-s Y_{k}\right)^{\frac{p}{q}}}: Y_{k} \leq x\right] d s \\
& \leq \frac{1}{p^{p}} \int_{0}^{\delta} \frac{\left|f_{\mathbf{X}}^{\prime}(x)\right|^{p}}{f_{\mathbf{X}}(x)^{\frac{p}{q}}} d x \sum_{k=1}^{\infty} \mathbb{E}\left[\left|Y_{k}\right|^{p}: Y_{k} \leq \delta\right]<\infty .
\end{aligned}
$$

Next we prove the converse. Since $\mathbf{Y} \in \ell_{p}^{+}$a.s., by Kolmogorov's three series theorem, $\sum_{k=1}^{\infty} \mathbb{P}\left(Y_{k}>1\right)<\infty$ and $\sum_{k=1}^{\infty} \mathbb{E}\left[\left|Y_{k}\right|^{p}: Y_{k} \leq 1\right]<\infty$, so that we have $\beta:=\inf _{k} \mathbb{P}\left(Y_{k} \leq 1\right)>0$ (see also (C.3)). In order to prove the theorem, we shall show Kakutani's criterion (C.1). Decompose

$$
\begin{aligned}
& \left|\sqrt{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right)\right.}-\sqrt{f_{\mathbf{X}}(x)}\right|^{2} \\
& \leq\left|\sqrt{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right): Y_{k}>1\right]}-\sqrt{f_{\mathbf{X}}(x) \mathbb{P}\left(Y_{k}>1\right)}\right|^{2} \\
& +2\left|\sqrt{\mathbb{E}\left[f_{\mathbf{X}}\left(x-Y_{k}\right): Y_{k} \leq x, Y_{k} \leq 1\right]}-\sqrt{f_{\mathbf{X}}(x) \mathbb{P}\left(Y_{k} \leq x, Y_{k} \leq 1\right)}\right|^{2} \\
& +2\left|\sqrt{f_{\mathbf{X}}(x) \mathbb{P}\left(Y_{k} \leq x, Y_{k} \leq 1\right)}-\sqrt{f_{\mathbf{X}}(x) \mathbb{P}\left(Y_{k} \leq 1\right)}\right|^{2} \\
= & \mathbf{U}_{k}(x)+2 \mathbf{V}_{k}(x)+2 \mathbf{W}_{k}(x) .
\end{aligned}
$$

Then we have $\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbf{U}_{k}(x) d x \leq 2 \sum_{k=1}^{\infty} \mathbb{P}\left(Y_{k}>1\right)<\infty$. For $q>1$ defined by $1 / p+1 / q=1$ we have

$$
\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbf{V}_{k}(x) d x \leq \frac{1}{p^{p}} \int_{0}^{\infty} \frac{\left|f_{\mathbf{X}}^{\prime}(x)\right|^{p}}{f_{\mathbf{X}}(x)^{\frac{p}{q}}} d x \sum_{k=1}^{\infty} \mathbb{E}\left[\left|Y_{k}\right|^{p}: Y_{k} \leq 1\right]<\infty,
$$

by the same way as the last part of the necessity, and finally

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbf{W}_{k}(x) d x \\
= & \sum_{k=1}^{\infty} \int_{0}^{\infty}\left|\frac{\mathbb{P}\left(Y_{k} \leq x, Y_{k} \leq 1\right)-\mathbb{P}\left(Y_{k} \leq 1\right)}{\sqrt{\mathbb{P}\left(Y_{k} \leq x, Y_{k} \leq 1\right)}+\sqrt{\mathbb{P}\left(Y_{k} \leq 1\right)}}\right|^{2} f_{\mathbf{X}}(x) d x \\
\leq & \frac{1}{\beta} \sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{P}\left(x<Y_{k}\right)^{2} f_{\mathbf{X}}(x) d x<\infty .
\end{aligned}
$$

5. Exponential Distribution

In the case where \mathbf{X} is exponentially distributed, we prove a necessary and sufficient condition for the admissibility of \mathbf{Y} without any additional assumptions on \mathbf{Y}.

Theorem 5.1. Let \mathbf{X} be exponentially distributed and \mathbf{Y} be non-negative. Then \mathbf{Y} is admissible if and only if

$$
\sum_{k=1}^{\infty} \mathbb{P}\left(\gamma_{k} \leq Y_{k}\right)+\sum_{k=1}^{\infty} e^{-\lambda \gamma_{k}}+\sum_{k=1}^{\infty} \int_{0}^{\gamma_{k}} e^{\lambda y} \mathbb{P}\left(y<Y_{k}<\gamma_{k}\right)^{2} d y<\infty,
$$

where $\gamma_{k}:=\sup \left\{x \geq 0 \mid \mathbb{E}\left[e^{\lambda Y_{k}}: Y_{k} \leq x\right]<2\right\}$.

Fact 5.2.

(i) If the distribution of Y_{k} is continuous, then

$$
Z_{k}(x)=\mathbb{E}\left[e^{\lambda Y_{k}}: Y_{k} \leq x\right]-1
$$

is also continuous in x, and $\gamma_{k}<\infty$ implies $Z_{k}\left(\gamma_{k}\right)=1$.
(ii) By definition we have $\mathbb{E}\left[e^{\lambda Y_{k}}: Y_{k}<\gamma_{k}\right] \leq 2$, and in particular, if $\gamma_{k}=\infty$ then we have $\mathbb{E}\left[e^{\lambda Y_{k}}\right] \leq 2$.
(iii) If $\gamma_{k}<\infty$, then we have $2 \leq \mathbb{E}\left[e^{\lambda Y_{k}}: Y_{k} \leq \gamma_{k}\right]<\infty$.

Proof of Theorem 5.1. We shall first prove the case where $\lambda=1$. We use (C.2) for the admissibility of \mathbf{Y}. We show that (3.1) is equivalent to

$$
\begin{equation*}
\sum_{k=1}^{\infty} \mathbb{P}\left(\gamma_{k} \leq Y_{k}\right)+\sum_{k=1}^{\infty} e^{-\gamma_{k}}<\infty \tag{5.1}
\end{equation*}
$$

and that under (3.1), (3.2) is equivalent to

$$
\begin{equation*}
\sum_{k=1}^{\infty} \int_{0}^{\gamma_{k}} e^{y} \mathbb{P}\left(y<Y_{k}<\gamma_{k}\right)^{2} d y<\infty \tag{5.2}
\end{equation*}
$$

In order to prove that (3.1) implies (5.1), we have only to consider k with $\gamma_{k}<\infty$. By Fubini's theorem and Fact 5.2 (iii), we have

$$
\begin{align*}
& \mathbb{E}\left[Z_{k}\left(X_{k}\right): Z_{k}\left(X_{k}\right) \geq 1\right]=\int_{\gamma_{k}}^{\infty} e^{-x}\left(\mathbb{E}\left[e^{Y_{k}}: Y_{k} \leq x\right]-1\right) d x \\
= & e^{-\gamma_{k}} \mathbb{E}\left[e^{Y_{k}}: Y_{k} \leq \gamma_{k}\right]+\mathbb{P}\left(Y_{k}>\gamma_{k}\right)-e^{-\gamma_{k}} \tag{5.3}\\
\geq & \mathbb{P}\left(Y_{k}>\gamma_{k}\right)+e^{-\gamma_{k}}
\end{align*}
$$

which implies (5.1). On the other hand, since $Y_{k} \geq 0$ a.s. we have

$$
\begin{aligned}
& \mathbb{E}\left[Z_{k}\left(X_{k}\right): Z_{k}\left(X_{k}\right) \geq 1\right]=e^{-\gamma_{k}} \mathbb{E}\left[e^{Y_{k}}: Y_{k}<\gamma_{k}\right]+\mathbb{P}\left(Y_{k} \geq \gamma_{k}\right)-e^{-\gamma_{k}} \\
\geq & e^{-\gamma_{k}} \mathbb{P}\left(Y_{k}<\gamma_{k}\right)+\mathbb{P}\left(\gamma_{k} \leq Y_{k}\right)-e^{-\gamma_{k}}=\left(1-e^{-\gamma_{k}}\right) \mathbb{P}\left(\gamma_{k} \leq Y_{k}\right) .
\end{aligned}
$$

Since (5.1) implies $\gamma_{k} \rightarrow \infty$ as $k \rightarrow \infty$, (3.1) implies (5.1).
Conversely, we have by Fact 5.2 (ii),

$$
\begin{aligned}
& \mathbb{E}\left[Z_{k}\left(X_{k}\right): Z_{k}\left(X_{k}\right) \geq 1\right]=e^{-\gamma_{k}} \mathbb{E}\left[e^{Y_{k}}: Y_{k}<\gamma_{k}\right]+\mathbb{P}\left(Y_{k} \geq \gamma_{k}\right)-e^{-\gamma_{k}} \\
\leq & 2 e^{-\gamma_{k}}+\mathbb{P}\left(Y_{k} \geq \gamma_{k}\right)-e^{-\gamma_{k}}=e^{-\gamma_{k}}+\mathbb{P}\left(Y_{k} \geq \gamma_{k}\right)
\end{aligned}
$$

so that (5.1) implies (3.1). Therefore (3.1) is equivalent to (5.1).
Next, assume (3.1) and denote by $\left\{Y_{k}^{\prime}\right\}$ an independent copy of $\left\{Y_{k}\right\}$. Then by Fubini's theorem, we have

$$
\begin{aligned}
& \mathbb{E}\left[Z_{k}\left(X_{k}\right)^{2}: Z_{k}\left(X_{k}\right)<1\right] \\
= & \int_{0}^{\gamma_{k}} e^{-x}\left(\mathbb{E}\left[e^{Y_{k}+Y_{k}^{\prime}}: Y_{k}, Y_{k}^{\prime} \leq x\right]-2 \mathbb{E}\left[e^{Y_{k}}: Y_{k} \leq x\right]+1\right) d x \\
= & \mathbb{E}\left[e^{Y_{k}+Y_{k}^{\prime}} \int_{Y_{k} \vee Y_{k}^{\prime}}^{\gamma_{k}} e^{-x} d x: Y_{k}, Y_{k}^{\prime} \leq \gamma_{k}\right] \\
& -2 \mathbb{E}\left[e^{Y_{k}} \int_{Y_{k}}^{\gamma_{k}} e^{-x} d x: Y_{k} \leq \gamma_{k}\right]+\int_{0}^{\gamma_{k}} e^{-x} d x \\
= & \mathbb{E}\left[e^{Y_{k} \wedge Y_{k}^{\prime}}-e^{-\gamma_{k}+Y_{k}+Y_{k}^{\prime}}: Y_{k}, Y_{k}^{\prime} \leq \gamma_{k}\right] \\
& -2 \mathbb{P}\left(Y_{k} \leq \gamma_{k}\right)+2 e^{-\gamma_{k}} \mathbb{E}\left[e^{Y_{k}}: Y_{k} \leq \gamma_{k}\right]+1-e^{-\gamma_{k}} \\
= & \mathbb{E}\left[e^{Y_{k} \wedge Y_{k}^{\prime}}: Y_{k}, Y_{k}^{\prime} \leq \gamma_{k}\right]-e^{-\gamma_{k}} \mathbb{E}\left[e^{Y_{k}}: Y_{k} \leq \gamma_{k}\right]^{2}+\mathbb{P}\left(Y_{k}>\gamma_{k}\right) \\
& -\mathbb{P}\left(Y_{k} \leq \gamma_{k}\right)+2 e^{-\gamma_{k}} \mathbb{E}\left[e^{Y_{k}}: Y_{k} \leq \gamma_{k}\right]-e^{-\gamma_{k}} \\
= & \mathbb{E}\left[e^{Y_{k} \wedge Y_{k}^{\prime}}: Y_{k}, Y_{k}^{\prime}<\gamma_{k}\right]-\mathbb{P}\left(Y_{k}<\gamma_{k}\right)-e^{-\gamma_{k}} \mathbb{E}\left[e^{Y_{k}}: Y_{k}<\gamma_{k}\right]^{2} \\
& +\mathbb{P}\left(Y_{k} \geq \gamma_{k}\right)+2 e^{-\gamma_{k}} \mathbb{E}\left[e^{Y_{k}}: Y_{k}<\gamma_{k}\right]-e^{-\gamma_{k}},
\end{aligned}
$$

where $a \vee b:=\max \{a, b\}$. By Fact 5.2 (ii) and by (5.1), the last four terms in the final expression are summable. Therefore, under (3.1), (3.2) is equivalent to the convergence of the series:

$$
\sum_{k=1}^{\infty}\left\{\mathbb{E}\left[e^{Y_{k} \wedge Y_{k}^{\prime}}: Y_{k}, Y_{k}^{\prime}<\gamma_{k}\right]-\mathbb{P}\left(Y_{k}<\gamma_{k}\right)\right\}
$$

Since $\mathbb{P}\left(Y_{k}<\gamma_{k}\right)=\mathbb{P}\left(Y_{k}<\gamma_{k}, Y_{k}^{\prime}<\gamma_{k}\right)+\mathbb{P}\left(Y_{k}<\gamma_{k}, Y_{k}^{\prime} \geq \gamma_{k}\right)$, we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left\{\mathbb{E}\left[e^{Y_{k} \wedge Y_{k}^{\prime}}: Y_{k}, Y_{k}^{\prime}<\gamma_{k}\right]-\mathbb{P}\left(Y_{k}<\gamma_{k}\right)\right\} \\
= & \sum_{k=1}^{\infty} \mathbb{E}\left[e^{Y_{k} \wedge Y_{k}^{\prime}}-1: Y_{k}, Y_{k}^{\prime}<\gamma_{k}\right]-\sum_{k=1}^{\infty} \mathbb{P}\left(Y_{k}<\gamma_{k}\right) \mathbb{P}\left(Y_{k}^{\prime} \geq \gamma_{k}\right)
\end{aligned}
$$

where the second sum in the right expression is finite by (5.1). Thus under (3.1), (3.2) is equivalent to

$$
\begin{aligned}
\int_{0}^{\gamma_{k}} e^{y} \mathbb{P}\left(y<Y_{k}<\gamma_{k}\right)^{2} d y & =\mathbb{E}\left[\int_{0}^{Y_{k} \wedge Y_{k}^{\prime}} e^{y} d y: Y_{k}, Y_{k}^{\prime}<\gamma_{k}\right] \\
& =\sum_{k=1}^{\infty} \mathbb{E}\left[e^{Y_{k} \wedge Y_{k}^{\prime}}-1: Y_{k}, Y_{k}^{\prime}<\gamma_{k}\right]<\infty
\end{aligned}
$$

Therefore, (3.2) is equivalent to (5.2) under (3.1).
Combining (5.1) and (5.2), we obtain a necessary and sufficient condition for $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ as

$$
\begin{equation*}
\sum_{k=1}^{\infty} \mathbb{P}\left(\gamma_{k} \leq Y_{k}\right)+\sum_{k=1}^{\infty} e^{-\gamma_{k}}+\sum_{k=1}^{\infty} \int_{0}^{\gamma_{k}} e^{y} \mathbb{P}\left(y<Y_{k}<\gamma_{k}\right)^{2} d y<\infty \tag{5.4}
\end{equation*}
$$

Finally We shall prove the case where $\lambda \neq 1$. In this case we have $\gamma_{k}=$ $\sup \left\{x \geq 0 \mid \mathbb{E}\left[e^{\lambda \gamma_{k}}: Y_{k} \leq x\right]<2\right\}$. We have $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ if and only if $\mu_{\lambda \mathbf{X}+\lambda \mathbf{Y}} \sim$ $\mu_{\lambda \mathbf{X}}$. Since $d \mu_{\lambda X_{1}}(x)=e^{-x} \mathbf{I}_{[0, \infty)}(x) d x$, replacing \mathbf{Y} with $\lambda \mathbf{Y}$ in (5.4), we have the conclusion.

As a corollary of Theorem, we obtain a necessary and sufficient condition in the case where \mathbf{X} is exponentially distributed and \mathbf{Y} is a Bernoulli sequence.

Corollary 5.3. Let \mathbf{X} be exponentially distributed and $\mathbf{Y}=\left\{\varepsilon\left(a_{k}, p_{k}\right)\right\}$ be a Bernoulli sequence. Then \mathbf{Y} is admissible if and only if

$$
\sum_{k=1}^{\infty} \frac{e^{\lambda a_{k}}-1}{\left(e^{\left(\lambda \vee \sigma_{k}\right) a_{k}}-1\right)\left(e^{\sigma_{k} a_{k}}-1\right)}<\infty
$$

where $\sigma_{k}:=\left(1 / a_{k}\right) \log \left\{\left(1+p_{k}\right) / p_{k}\right\}$.
Example 5.4. Let $f_{\mathbf{X}}(x)=e^{-x} \mathbf{I}_{[0, \infty)}(x)$ and $\mathbf{Y}=\left\{\varepsilon\left(a_{k}, p_{k}\right)\right\}$, where $a_{k}=$ $\log (k+2)$, $p_{k}=1 /(k+1), k \geq 1$. Then (C.6) and (C.7) hold but \mathbf{Y} is not admissible.

Proof. We have

$$
\begin{aligned}
\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{P}\left(Y_{k}>x\right)^{2} f_{\mathbf{X}}(x) d x & =\sum_{k=1}^{\infty} \int_{0}^{a_{k}} p_{k}^{2} e^{-x} d x=\sum_{k=1}^{\infty} p_{k}^{2}\left(1-e^{-a_{k}}\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{2}+3 k+2}<\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=1}^{\infty} \int_{0}^{\infty} \mathbb{E}\left[Y_{k} ; Y_{k} \leq x\right]^{2} f_{\mathbf{X}}(x) d x & =\sum_{k=1}^{\infty} \int_{a_{k}}^{\infty}\left(a_{k} p_{k}\right)^{2} e^{-x} d x=\sum_{k=1}^{\infty} a_{k}^{2} p_{k}^{2} e^{-a_{k}} \\
& =\sum_{k=1}^{\infty} \frac{(\log (k+2))^{2}}{(k+1)^{2}(k+2)}<\infty
\end{aligned}
$$

We show \mathbf{Y} is not admissible. Since $\sigma_{k}:=\frac{1}{a_{k}} \log \frac{1+p_{k}}{p_{k}}=1, \mathbf{Y}$ is admissible if and only if

$$
\sum_{k=1}^{\infty} \frac{e^{a_{k}}-1}{\left(e^{a_{k}}-1\right)\left(e^{a_{k}}-1\right)}=\sum_{k=1}^{\infty} \frac{1}{e^{a_{k}}-1}<\infty .
$$

But

$$
\sum_{k=1}^{\infty} \frac{1}{e^{a_{k}}-1}=\sum_{k=1}^{\infty} \frac{1}{k+1}=\infty
$$

Example 5.5. Let $f_{\mathbf{X}}(x)=e^{-x} \mathbf{I}_{[0, \infty)}(x)$ and $\mathbf{Y}=\left\{\varepsilon\left(a_{k}, 1 / 2\right)\right\}, k \geq 1$ be a Bernoulli sequence. Then \mathbf{Y} is admissible if and only if $\boldsymbol{a}=\left\{a_{k}\right\} \in \ell_{1}^{+}$.

Proof. We may assume $a_{k} \leq \log 3$. Then $\sigma_{k}=\frac{\log 3}{a_{k}}$ and

$$
\sum_{k=1}^{\infty} \frac{e^{a_{k}}-1}{\left(e^{\left(1 \vee \sigma_{k}\right) a_{k}}-1\right)\left(e^{\sigma_{k} a_{k}}-1\right)}=\sum_{k=1}^{\infty} \frac{e^{a_{k}}-1}{4}
$$

$\sum_{k=1}^{\infty} \frac{e^{a_{k}-1}}{4}<\infty$ if and only if $\boldsymbol{a}=\left\{a_{k}\right\} \in \ell_{1}^{+}$.
In the case where the distributions of all Y_{k} 's are continuous, Theorem 5.1 is simplified as follows.

Theorem 5.6. Let \mathbf{X} be exponentially distributed and the distributions of Y_{k} 's be continuous. Then we have $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ if and only if

$$
\sum_{k=1}^{\infty} \mathbb{P}\left(\gamma_{k} \leq Y_{k}\right)+\sum_{k=1}^{\infty} \int_{0}^{\gamma_{k}} e^{\lambda y} \mathbb{P}\left(y<Y_{k}<\gamma_{k}\right)^{2} d y<\infty
$$

Proof. Let the distributions of Y_{k} 's be continuous. Then by Fact 5.2 (i), we have $\mathbb{E}\left[e^{\lambda Y_{k}}: Y_{k} \leq \gamma_{k}\right]-1=1$ and it follows that

$$
\begin{aligned}
& \lambda \int_{0}^{\gamma_{k}} e^{y} \mathbb{P}\left(y<Y_{k} \leq \gamma_{k}\right) d y=\mathbb{E}\left[e^{\lambda Y_{k}}-1: Y_{k} \leq \gamma_{k}\right] \\
= & \mathbb{E}\left[e^{\lambda Y_{k}}: Y_{k} \leq \gamma_{k}\right]-1+\mathbb{P}\left(Y>\gamma_{k}\right)=1+\mathbb{P}\left(Y_{k}>\gamma_{k}\right),
\end{aligned}
$$

which implies

$$
\mathbb{E}\left[e^{\lambda Y_{k}}-1: Y_{k} \leq \gamma_{k}\right]=\lambda \int_{0}^{\gamma_{k}} e^{\lambda y} \mathbb{P}\left(y<Y_{k} \leq \gamma_{k}\right) d y=1+\mathbb{P}\left(Y_{k}>\gamma_{k}\right)
$$

If $\gamma_{k}<\infty$, then by the Schwarz inequality

$$
\begin{aligned}
1 & \leq\left[1+\mathbb{P}\left(Y_{k}>\gamma_{k}\right)\right]^{2}=\lambda^{2}\left|\int_{0}^{\gamma_{k}} e^{\lambda y} \mathbb{P}\left(y<Y_{k} \leq \gamma_{k}\right) d y\right|^{2} \\
& \leq \lambda^{2} \int_{0}^{\gamma_{k}} e^{\lambda u} d u \int_{0}^{\gamma_{k}} e^{\lambda y} \mathbb{P}\left(y<Y_{k} \leq \gamma_{k}\right)^{2} d y \\
& \leq \lambda e^{\lambda \gamma_{k}} \int_{0}^{\gamma_{k}} e^{\lambda y} \mathbb{P}\left(y<Y_{k} \leq \gamma_{k}\right)^{2} d y
\end{aligned}
$$

which implies $e^{-\lambda \gamma_{k}} \leq \lambda \int_{0}^{\gamma_{k}} e^{\lambda y} \mathbb{P}\left(y<Y_{k} \leq \gamma_{k}\right)^{2} d y$. Therefore we have

$$
\sum_{k=1}^{\infty} e^{-\lambda \gamma_{k}}=\sum_{k: \gamma_{k}<\infty} e^{-\lambda \gamma_{k}} \leq \sum_{k=1}^{\infty} \int_{0}^{\gamma_{k}} e^{\lambda y} \mathbb{P}\left(y<Y_{k} \leq \gamma_{k}\right)^{2} d y
$$

and if the distributions of Y_{k} 's are continuous, then $\mathbb{P}\left(y<Y_{k}<\gamma_{k}\right)=\mathbb{P}\left(y<Y_{k} \leq\right.$ γ_{k}), and Theorem 5.1 implies the assertion.

Example 5.7. Let $f_{\mathbf{X}}(x)=e^{-x} \mathbf{I}_{[0, \infty)}(x)$ and Y_{k} obey to the uniform distribution

$$
d \mu_{k}(y)=\frac{1}{a_{k}} \mathbf{I}_{\left[0, a_{k}\right]}(y) d y, k \geq 1
$$

where $a_{k}>0$. Then we have $\mu_{\mathbf{X}+\mathbf{Y}} \sim \mu_{\mathbf{X}}$ if and only if $\sum_{k=1}^{\infty} a_{k}<\infty$.
Proof. Let $\kappa>0$ be the unique positive solution of $e^{t}=1+2 t$.
For a_{k} with $a_{k} \geq \tau$, we have $\gamma_{k}=\log \left(1+2 a_{k}\right)$ and

$$
\mathbb{P}\left(Y_{k} \geq \gamma_{k}\right)=\frac{1}{a_{k}} \int_{\gamma_{k}}^{a_{k}} d y=1-\frac{\log \left(1+2 a_{k}\right)}{a_{k}}
$$

and, by Theorem 5.6, $\sum_{k=1}^{\infty} \mathbb{P}\left(Y_{k} \geq \gamma_{k}\right)<\infty$ implies $\lim _{k} a_{k}=\kappa>0$.

On the other hand, we have

$$
\begin{aligned}
& \int_{0}^{\gamma_{k}} e^{y} \mathbb{P}\left(y<Y_{k}<\gamma_{k}\right)^{2} d y=\frac{2}{a_{k}^{2}}\left[\mathrm{e}^{\gamma_{k}}-\left(1+\gamma_{k}+\frac{\gamma_{k}^{2}}{2}\right)\right] \\
\geq & \frac{\left|\log \left(1+2 a_{k}\right)\right|^{3}}{3 a_{k}^{2}} \rightarrow \frac{|\log (1+2 \kappa)|^{3}}{3 \kappa^{2}}>0
\end{aligned}
$$

which contradicts to $\sum_{k=1}^{\infty} \int_{0}^{\gamma_{k}} e^{y} \mathbb{P}\left(y<Y_{k}<\gamma_{k}\right)^{2} d y<\infty$. Therefore, but for finite number of a_{k} 's, we may assume $a_{k}<\kappa$.

For a_{k} such that $a_{k}<\kappa$, we have $\gamma_{k}=\infty$ and

$$
\int_{0}^{\gamma_{k}} e^{y} \mathbb{P}\left(y<Y_{k}<\gamma_{k}\right)^{2} d y=\frac{2}{a_{k}^{2}}\left[\mathrm{e}^{a_{k}}-\left(1+a_{k}+\frac{a_{k}^{2}}{2}\right)\right] \geq \frac{a_{k}}{3}
$$

and Theorem 5.6 implies $\sum_{k=1}^{\infty} a_{k}<\infty$.
Conversely, $\sum_{k=1}^{\infty} a_{k}<\infty$ implies $\lim _{k} a_{k}=0$ so that, without loss of generality, we may assume that $a_{k}<\kappa$ and $\gamma_{k}=\infty$. Then we have $\int_{0}^{\gamma_{k}} e^{y} \mathbb{P}\left(y<Y_{k}<\right.$ $\left.\gamma_{k}\right)^{2} d y \leq a_{k} e^{\kappa} / 3<\infty$ and Theorem 5.6 proves the example.

References

1. M. Hino, On equivalence of product measures by random translation, J. Math. Kyoto Univ. 34 (1994), 755-765.
2. S. Kakutani, On equivalence of infinite product measures, Ann. of Math., 49 (1948), 214-224.
3. K. Kitada and H. Sato, On the absolute continuity of infinite product measure and its convolution, Probab. Theory Related Fields, 81 (1989), 609-627.
4. Y. Okazaki, On equivalence of product measure by symmetric random ℓ_{4}-translation, J. Funct. Anal., 115 (1993), 100-103.
5. Y. Okazaki and H. Sato, Distinguishing a random sequence from a random translate of itself, Ann. Probab., 22 (1994), 1092-1096.
6. H. Sato and M. Tamashiro, Absolute continuity of one-sided random translations, Stochastic Process. Appl., 58 (1995), 187-204.
7. H. Sato and C. Watari, Some integral inequalities and absolute continuity of a symmetric random translation, J. Funct. Anal., 114 (1993), 257-266.
8. L.A. Shepp, Distinguishing a sequence of random variables from a translate of itself, Ann. Math. Statist. 36 (1965), 1107-1112.

Aoi Honda
Kyushu Institute of Technology,
680-4, Kawazu,
Iizuka 820-8502,
Japan
and
Université de Paris I Panthéon-Sorbonne,
90 rue de Tolbiac,
75634 Paris,
France
E-mail: aoi@ces.kyutech.ac.jp
Yoshiaki Okazaki
Kyushu Institute of Technology,
680-4, Kawazu,
Iizuka 820-8502,
Japan
E-mail: okazaki@ces.kyutech.ac.jp
Hiroshi Sato
Kyushu University,
Faculty of Mathematics,
Fukuoka 812-8581,
Japan
E-mail: sato@math.kyushu-u.ac.jp

[^0]: Accepted March 13, 2007.
 Communicated by Hui-Hsiung Kuo.
 2000 Mathematics Subject Classification: Primary 60G30, 28C20; Secondary 60B11, 46G12.
 Key words and phrases: Non-negative random translates, Admissible, Kakutani’s dichotomy theorem, Kitada-Sato criterion, p-integral, Exponential distribution.

