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ON THE C0-SEMIGROUPS GENERATED BY SECOND ORDER
DIFFERENTIAL OPERATORS ON THE REAL LINE

Francesco Altomare and Sabina Milella

Abstract. In this paper we deal with special classes of second order elliptic
differential operators on the real line. We show that these operators are gen-
erators of positive C0-semigroups on weighted spaces of continuous functions
and we represent them as limits of iterates of integral-type operators.

By means of such representation, some qualitative properties of the semi-
groups are stated.

1. INTRODUCTION

In this paper we consider some classes of (possibly degenerate) elliptic second
order differential operators defined on the whole real line and we study them in
the setting of weighted spaces of continuous functions, by investigating both their
generation properties and the constructive approximation of the semigroup generated
by them, through iterates of suitable positive linear operators.

This kind of approach, which is very useful to the study of the qualitative
properties of the solutions of diffusion equations, has been applied to a wide class
of evolution problems in the setting of continuous function spaces on compact
intervals [2-4, 13-15, 22-24], on the interval [0, +∞[ ([6, 8-10, 12, 16, 19, 20] and
on compact convex subsets of Rn (see [7, Chapter 6]). In the case of the whole
real line this problem seems to be treated here for the first time.

The paper is organized as follows. In Section 2, for given functions α, β, γ ∈
C(R), γ bounded, we prove that the differential operator Lu := αu′′ + βu′ + γu,
defined on a suitable subspace Dm(L) of the weighted space Cwm

0 (R) :=
{
f ∈

C(R) | lim
x→±∞

f(x)
1 + x2m

= 0
}
, generates a strongly continuous positive semigroup

(Tm(t))t≥0 on Cwm
0 (R).
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Moreover we show that this semigroup is the transition semigroup associated
with a suitable Markov process on R.

We also investigate the existence of cores for (L, Dm(L)) and, in particular, we
find conditions under which the space K 2(R) of twice continuously differentiable
functions with compact support is such a core.

In Section 3 we represent (Tm(t))t≥0 as limit of iterates of integral-type operators
introduced and studied in [11]. From the properties of these operators we obtain
some information on the behavior of such semigroup on several classes of continuous
function such as monotone, convex and Lipschitz continuous functions.

In the last section we analyse the particular case where β = γ = 0 and we state
some weaker conditions under which similar generation and approximation results
hold true.

2. THE DIFFERENTIAL OPERATOR (L, Dm (L))

As usual we shall denote by C(R) the space of all real valued continuous
functions on R and with Cb(R) (resp. C0(R)) the Banach lattice of all bounded
continuous functions (resp. continuous functions that vanish at infinity) endowed
with the natural order and the uniform norm ‖·‖∞.

We shall also consider the closed subspace C∗(R) of all functions f ∈ Cb(R)
such that lim

x→±∞f(x) ∈ R.

The symbol C2(R) will stand for the space of all twice continuously differen-
tiable functions on R.

For m ∈ N, setting

wm(x) :=
1

1 + x2m
(x ∈ R),

we shall denote by Cwm
0 (R) the Banach lattice of all functions f ∈ C(R) such

that wmf ∈ C0(R), endowed with the natural order and the weighted norm ‖·‖m

defined by ‖f‖m := ‖wmf‖∞ (f ∈ Cwm
0 (R)).

Observe that Cb(R) ⊂ Cwm
0 (R) ⊂ C

wm+1

0 (R), ‖·‖m ≤ ‖·‖∞ on Cb(R) and

‖·‖m+1 ≤ m + 2
m + 1

‖·‖m on Cwm
0 (R).

Moreover C0(R) is dense in Cwm
0 (R).

From now on we shall fix α, β ∈ C(R) and γ ∈ Cb(R) such that

(2.1) α(x) > 0 for every x ∈ R,

(2.2) α(x) = O(x2) and β(x) = O(|x|) as x → ±∞.
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We shall also assume that

(2.3)
the function x �→

∫ x

x0

β (s)
α (s)

ds is locally bounded at + ∞

or β (x) ≥ 0 for x ≥ δ,

and

(2.4)
the function x �→

∫ x

x0

β (s)
α (s)

ds is locally bounded at −∞

or β (x) ≤ 0 for x ≤ −δ,

for some δ > 0 and x0 ∈ R.
Consider the differential operators

(2.5) Lu := αu′′ + βu′ + γu

defined on

(2.6) Dm(L) :=
{

u ∈ Cwm
0 (R) ∩ C2(R) | lim

x→±∞
(αu′′ + βu′)(x)

1 + x2m
= 0
}

and

(2.7) L̃u := Lu

defined on

(2.8) D(L̃) :=
{

u ∈ C∗(R) ∩ C2(R) | lim
x→±∞(αu′′ + βu′)(x) = 0

}
.

We can state the following result.

Theorem 2.1. For every m ≥ 1, the operator (L, Dm(L)) is the genera-
tor of a strongly continuous positive semigroup (T m(t))t≥0 on Cwm

0 (R) such that
‖Tm(t)‖ ≤ e(ω+‖γ‖∞)t for every t ≥ 0, where

ω := sup
x∈R

∣∣(4m2 − 2m)α(x)x2m−2 + 2mβ(x)x2m−1
∣∣

1 + x2m
.

Moreover, if γ(x) ≤ 0 for every x ∈ R, the restriction of (Tm(t))t≥0 to C0(R) is a
Feller semigroup on C0(R) whose generator is (L̃, D(L̃) ∩ C0(R)).

Finally, if γ ∈ C∗(R) and γ(x) ≤ 0 for every x ∈ R, then the restric-
tion of (Tm(t))t≥0 to C∗(R) is a Feller semigroup on C∗(R) whose generator
is (L̃, D(L̃)).



28 Francesco Altomare and Sabina Milella

Proof. We shall infer our result by using Theorem 3.1 in [6] and, to this end,
we shall verify the assumptions made there by adopting the same notation.

Set

W (x) := exp
(
−
∫ x

x0

β (s)
α (s)

ds

)
(x ∈ R),

and

ω1 := sup
x∈R

|α(x)(2w′
m(x)2 − wm(x)w′′

m(x)) − β(x)wm(x)w′
m(x)|

wm(x)2
.

We shall prove that ω1 ∈ R and

(2.9)
∫ +∞

x0

W (x)
∫ +∞

x

dtdx

α(t)W (t)
=
∫ x0

−∞
W (x)

∫ x

−∞

dtdx

α(t)W (t)
dtdx = +∞.

Actually, it is easy to check that ω1 = ω.

Now assume that the function x �→
∫ x

x0

β (s)
α (s)

ds is locally bounded at +∞ so

that there exist δ, m, M > 0 such that m ≤ W (x) ≤ M for every x ≥ δ.
On the other hand, by (2.2), there exist δ1 ≥ max(|x0| , δ) and Cα > 0 such

that

(2.10) α (x) ≤ Cαx2 for |x| ≥ δ1.

Then, for x ≥ δ1

W (x)
∫ +∞

x

dt

α(t)W (t)
≥ m

∫ +∞

δ1

dt

α(t)W (t)
≥ m

MCα

∫ +∞

δ1

dt

t2
=

m

δ1MCα

and hence (2.9) follows.
If we assume that there exists δ > 0 such that β(x) ≥ 0 for every x ≥ δ, then

W is decreasing in [δ, +∞[ and, setting again δ1 ≥ max(|x0| , δ), satisfying (2.10),
we get∫ +∞

x0

W (x)
∫ +∞

x

dtdx

α(t)W (t)
≥
∫ +∞

δ1

W (x)
∫ +∞

x

dtdx

α(t)W (t)

=
∫ +∞

δ1

dt

∫ t

δ1

W (x)
α(t)W (t)

dx ≥
∫ +∞

δ1

t − δ1

α(t)
dt ≥ 1

Cα

∫ +∞

δ1

t − δ1

t2
dt = +∞

so that (2.9) follows.
A similar reasoning can be done by replacing +∞ with −∞ and hence the

proof is complete.
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Remark 2.2. In the light of Proposition 2.2 and Theorem 2.3 of [6], the
same proof as above actually shows that, under the same assumptions of Theorem
2.1, the operators (L̃− γI, D(L̃)∩C0(R)) and (L− γI, Dm(L)) generate strongly
continuous positive semigroups on C0(R) and Cwm

0 (R), respectively. Here I denotes
the identity operator.

Consider now the evolution problem associated with the differential operator
(L, Dm(L)), i.e.,

(2.11)



∂u

∂t
(x, t) = α (x)

∂2u

∂x2
(x, t)

+β (x)
∂u

∂x
(x, t) + γ (x)u (x, t) x ∈ R, t > 0,

u (x, 0) = u0 (x) x ∈ R,

lim
x→±∞

u (x, t)
1 + x2m

= 0 t ≥ 0,

lim
x→±∞

1
1 + x2m

(
α (x)

∂2u

∂x2
(x, t) + β (x)

∂u

∂x
(x, t)

)
= 0 t ≥ 0.

From a well known result in semigroup theory (see, e.g., [17, Proposition 6.2]) it
follows that, for every m ≥ 1 and u0 ∈ Dm(L), there exists a unique continuous
solution u : R× [0, +∞[ → R of (2.11), expressed by the semigroup (Tm(t))t≥0 as

u(x, t) = Tm(t)(u0)(x) (x ∈ R, t ≥ 0)

and such that for every t ≥ 0 and x ∈ R

(1) u (·, t) ∈ C2 (R) ∩ Cwm
0 (R);

(2) |u (x, t)| ≤ (1 + x2m)e(ω+‖γ‖∞)t ‖u0‖m;

(3) if u0 is positive, then u (·, t) is positive.
By the next theorem, which is a direct consequence of Theorem 3.3 in [6], we

shall establish the existence of a Markov process generated by L and, at the same
time, by means of such process, we shall obtain a first representation formula of the
semigroup (Tm(t))t≥0.

Theorem 2.3. Under the same assumptions of Theorem 2.1 suppose further
that γ ∈ C∗(R) and γ(x) ≤ 0 for every x ∈ R. Then there exists a Markov
process (Ω,F , (P x)x∈[−∞,+∞] , (Zt)0≤t≤+∞) with state space [−∞, +∞], whose
paths are continuous almost surely, such that for every t ≥ 0 and x ∈ R

(i) Px{Zt = −∞} = Px{Zt = +∞} = 0;
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(ii) the distribution P x
Zt
of the random variable Z t with respect to P x possesses

finite moments of order up to 2m;

(iii) Tm(t)f(x) =
∫

Ω

f∗(Zt)dPx for every f ∈ Cwm
0 (R),

where f∗ denotes the extension of f to [−∞, +∞], vanishing at −∞ and +∞.

Remark 2.4.
1. Since (ii) holds true for every m ≥ 1, the distributions P x

Zt
have finite mo-

ments of every order, so their characteristic functions are infinitely many times
continuously differentiable.

2. For every m ≥ 1 and t ≥ 0, by (iii), we have that Tm(t) = Tm+1(t) on
Cwm

0 (R).

In Section 3 we shall present a further representation formula of (Tm(t))t≥0 as
limit of iterates of suitable positive linear operators on Cwm

0 (R). To this purpose it
is important to find a core for (L, Dm(L)).

Let us recall that a core for a linear operator (B, D(B)) on a Banach space E

is a subspace D which is dense in D(B) with respect to the graph norm ‖u‖B :=
‖u‖ + ‖Bu‖ (u ∈ D(B)).
If (B, D(B)) is closed and if λI − B is invertible for some λ ∈ C, then a sub
space D of D(B) is a core for (B, D(B)) if and only if (λI − B)(D) is dense in
E , where I stands for the identity operator on E .

We also point out that, since γ ∈ Cb(R), a subspaceD is a core for (L, Dm(L))
if and only if it is a core for the operator (L − γI, Dm(L)).

The next result allows us to investigate the existence of cores for (L, Dm(L)),
by simply determining cores for the operator (L̃ − γI, D(L̃) ∩ C0(R)). Denote by
S the space of all functions f ∈ C2 (R) which are constant on some neighborhoods
of +∞ and −∞.

Proposition 2.5. Let D be a subspace of D(L̃) ∩ C0(R). If D is a core for
(L̃ − γI, D(L̃) ∩ C0(R)) then D is a core for (L, Dm(L)).

Moreover the linear subspace D̃ generated by D ∪ S is a core for (L̃, D(L̃)).

Proof. Since (L− γI, Dm(L)) and (L̃− γI, D(L̃)∩C0(R)) generate strongly
continuous semigroups in Cwm

0 (R) and C0(R), respectively (see Remark 2.2), there
exists λ ∈ R such that λI − (L− γI) is invertible from Dm (L) into Cwm

0 (R) and
λI − (L̃− γI) is invertible from D(L̃) ∩ C0(R) into C0(R).
So, if D is a core for (L̃− γI, D(L̃)∩C0(R)), then (λI − (L̃− γI)) (D) is dense
in (C0(R), ‖·‖∞). Therefore (λI − (L − γI)) (D) = (λI− (L̃−γI)) (D) is dense
in (Cwm

0 (R) , ‖·‖m) and hence D is a core for (L − γI, Dm (L)), that is D is a
core for (L, Dm (L)).



Positive Semigroups Generated by Differential Operators 31

Now let f ∈ D(L̃) and ε > 0; consider a function g ∈ S such that

g (x) =


lim

t→+∞f (t) if x ≥ 1,

lim
t→−∞f (t) if x ≤ −1.

Clearly f − g ∈ D(L̃) ∩ C0(R) and hence, since D is a core for (L̃ − γI, D(L̃) ∩
C0(R)), there exists h ∈ D such that

‖f − (g + h)‖
L̃−γI

= ‖(f − g)− h‖
L̃−γI

≤ ε

and g + h ∈ D̃.

Consider now the following subspaces of D(L̃) ∩ C0(R) :

(2.12) D1 :=

{
u ∈ C0(R) ∩ C2 (R) |

u = 0 on a neighborhood of+ ∞
and lim

x→−∞ (αu′′ + βu′) (x) = 0

}

and

(2.13) D2 :=

{
u ∈ C0(R) ∩ C2 (R) |

u = 0 on a neighborhood of −∞
and lim

x→+∞ (αu′′ + βu′) (x) = 0

}

In the sequel we shall denote by K2 (R) the subspace of all functions f ∈ C2 (R)
having compact support.

Proposition 2.6. The following statements hold true:

(i) If

(2.14) lim
x→+∞

α (x)u′ (x)
x

= 0 for every u ∈ D(L̃) ∩ C0(R),

then D1 is a core for (L̃ − γI, D(L̃) ∩ C0(R)).
(ii) If

(2.15) lim
x→−∞

α (x)u′ (x)
x

= 0 for every u ∈ D(L̃) ∩ C0(R),

then D2 is a core for (L̃ − γI, D(L̃) ∩ C0(R)).

(iii) If both conditions (2.14) and (2.15) are satisfied, then K 2 (R) is a core for
(L̃ − γI, D(L̃) ∩ C0(R)).
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Proof. Let u ∈ D(L̃) ∩ C0(R) satisfying condition (2.14). Adapting the
methods of [1, Theorem 3.1], we shall construct a sequence (un)n≥1 in D1, tending
to u with respect to the norm ‖·‖

L̃−γI
.

Consider ϕ ∈ K2 (R) such that

(i) 0 ≤ ϕ ≤ 1,

(ii) ϕ (x) = 1 for |x| ≤ 1,

(iii) ϕ (x) = 0 for |x| ≥ 2,

and, for n ≥ 1 and x ∈ R, set

(2.16) un (x) :=

 u (x)ϕ
(x

n

)
if x > n,

u (x) if x ≤ n.

Clearly un ∈ D1.

From (2.2) and (2.14) it follows that, for a given ε > 0, there exists δ > 0 such
that for every x ≥ δ

|u (x)| ≤ ε,
∣∣α (x)u′′ (x) + β (x) u′ (x)

∣∣ ≤ ε

4
,∣∣∣∣α (x) u′ (x)

x

∣∣∣∣ ≤ ε

16 ‖ϕ′‖∞
,

∣∣∣∣β (x)u (x)
x

∣∣∣∣ ≤ ε

8 ‖ϕ′‖∞
,∣∣∣∣α (x)u (x)

x2

∣∣∣∣ ≤ ε

16 ‖ϕ′′‖∞
.

Then, for n ≥ δ and x ≥ 2n, we obtain

|u (x)− un (x)| =
∣∣∣(1 − ϕ

(x

n

))
u (x)

∣∣∣ = |u (x)| ≤ ε,

|(L− γI)(u) (x)− (L − γI)(un) (x)| = |(L − γI)(u) (x)| ≤ ε.

On the other hand, for n ≤ x ≤ 2n, we have

|u (x) − un (x)| =
∣∣∣(1 − ϕ

(x

n

))
u (x)

∣∣∣ ≤ |u (x)| ≤ ε

and

|(L − γI)(u) (x) − (L − γI)(un) (x)|

=
∣∣∣∣α (x)u′′ (x) + β (x)u′ (x) − α (x)u′′ (x) ϕ

(x

n

)
− 2α (x)

u′ (x)
n

ϕ′
(x

n

)
− α (x)

u′ (x)
n2

ϕ′′
(x

n

)
− β (x) u′ (x)ϕ

(x

n

)
− β (x)

u (x)
n

ϕ′
(x

n

)∣∣∣∣
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≤
∣∣∣(α (x)u′′ (x) + β (x) u′ (x)

) (
1− ϕ

(x

n

))∣∣∣+ 2
‖ϕ′‖∞

n

∣∣α (x)u′ (x)
∣∣

+
‖ϕ′′‖∞

n2
|α (x)u (x)|+ ‖ϕ′‖∞

n
|β (x)u (x)|

≤ ε

4
+ 2

‖ϕ′‖∞
n

ε

16 ‖ϕ′‖∞
|x| + ‖ϕ′′‖∞

n2

ε

16 ‖ϕ′′‖∞
x2 +

‖ϕ′‖∞
n

ε

8 ‖ϕ′‖∞
|x|

≤ ε

4
+

ε

8n
2n +

ε

16n2
4n2 +

ε

8n
2n = ε.

Therefore, for n ≥ δ

‖u − un‖
L̃−γI

= sup
x≥n

|u − un| + sup
x≥n

|(L − γI) (u − un)| ≤ 2ε.

In the same manner we can prove statements (ii) and (iii) by replacing the sequence
in (2.16) with

vn (x) :=

{
u (x)ϕ

(x

n

)
if x < −n,

u (x) if x ≥ −n,

in the case (ii) and, in the case (iii), with

wn (x) :=

{
u (x) ϕ

(x

n

)
if |x| > n,

u (x) if |x| ≤ n.

The proof is now complete.

Here we present some criteria to deduce some information on the growth at
infinity of the first derivative of functions belonging to D(L̃) ∩ C0(R).

Proposition 2.7. Assume that α ∈ C2 (]δ, +∞[) and β ∈ C1 (]δ, +∞[) for
some δ > 0. Further assume that:

(i) (α′ − β) (x) = O (x) as x → +∞,
(ii) (α′′ − β′)(x) = O (1) as x → +∞.

Then lim
x→+∞

α (x) u′ (x)
x

= 0 for every u ∈ D(L̃) ∩ C0(R).

Proof. Let u ∈ D(L̃) ∩ C0(R) and ε > 0; then there exists δ1 > δ such that,
for x ≥ δ1, we have |u (x)| ≤ ε and |(αu′′ + βu′) (x)| ≤ ε. Since∫ x

δ1

(
αu′′ + βu′) (s) ds = α (x)u′ (x) − α (δ1)u′ (δ1)

− (α′ (x) − β (x)
)
u (x) +

(
α′ (δ1)− β (δ1)

)
u (δ1)

+
∫ x

δ1

(
α′′ (s) − β′ (s)

)
u (s) ds,
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we get

|α (x)u′ (x)| ≤
∣∣∣∣∫ x

δ1

(
αu′′ + βu′) (s) ds

∣∣∣∣
+
∣∣α′ (x) − β (x)

∣∣ |u (x)| + ∣∣(α′ (δ1)− β (δ1)
)
u (δ1)

− α (δ1)u′ (δ1)
∣∣+ ∥∥α′′ − β′∥∥

∞

∣∣∣∣∫ x

δ1

u (s) ds

∣∣∣∣
≤ ε |x − δ1| + ε

∥∥α′ − β
∥∥
∞ +

∣∣(α′ (δ1) − β (δ1)
)
u (δ1)

− α (δ1)u′ (δ1)
∣∣+ ε

∥∥α′′ − β′∥∥
∞ |x − δ1| ,

which proves the statement.

Proposition 2.8. Let δ > 0 and let ϕ : [δ, +∞[ → R be a differentiable
function such that ϕ (x) �= 0, for every x ≥ δ. Define again

(2.17) W (x) := exp
(
−
∫ x

δ

β(s)
α(s)

ds

)
(x ∈ R)

and suppose that 1
αW

∈ L1 ([δ, +∞[).
Assume that one of the following conditions is satisfied:

(a) lim
x→+∞ϕ (x)W (x) = 0;

(b) lim
x→+∞ϕ (x)W (x) ∈ R\ {0} and 1

ϕ
/∈ L1 ([δ, +∞[);

(c) (i) lim
x→+∞ϕ (x)W (x) ∈ {−∞, +∞},

(ii) W /∈ L1 ([δ, +∞[), (ϕβ − ϕ′α)(x) �= 0 for x ≥ δ and
ϕ2

ϕβ − ϕ′α
=

O (1) as x → +∞.
Then lim

x→+∞ϕ (x)u′ (x) = 0, for every u ∈ D(L̃) ∩ C0(R).

Proof. Observe that, for every u ∈ D(L̃) ∩ C0(R) and x ∈ R,(
u′

W

)′
(x) =

α (x)u′′ (x) + β (x)u′ (x)
α (x)W (x)

so that, for x ≥ δ,

(2.18) ϕ (x)u′ (x) = ϕ (x) W (x)
[
u′ (δ) +

∫ x

δ

(αu′′ + βu′) (s)
α (s)W (s)

ds

]
.
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On the other hand, since αu′′ + βu′ is bounded and
1

αW
∈ L1 (δ, +∞), we have

that

(2.19)
∫ +∞

δ

(αu′′ + βu′) (s)
α (s) W (s)

ds ∈ R,

that is

(2.20) lim
x→+∞

u′ (x)
W (x)

= u′ (δ) +
∫ +∞

δ

(αu′′ + βu′) (s)
α (s) W (s)

ds

is finite. Therefore, in case (a), the statement immediately follows.
In case (b), again by (2.19), there exists lim

x→+∞ϕ (x)u′ (x) =: l ∈ R. Suppose
that l > 0. Then there exists δ1 > δ such that, for x ≥ δ1

u′ (x) >
l

2ϕ (x)

and hence

(2.21) u (x) − u (δ1) =
∫ x

δ1

u′ (s) ds >
l

2

∫ x

δ1

1
ϕ (s)

ds.

Since
∫ +∞

δ1

1
ϕ (s)

ds = +∞, from (2.21) it follows that lim
x→+∞u (x) = +∞ which

contradicts the assumption u ∈ C0(R). The conclusion is the same if l < 0 and
hence the limit is necessarily equal to zero.

Finally, suppose that the assumptions of case (c) are satisfied. First note that

lim
x→+∞

u′ (x)
W (x)

= 0. This follows by case (b) because, setting η :=
1
W
, we have

lim
x→+∞η (x)W (x) = 1 and

1
η

/∈ L1 (δ, +∞) .

Hence by De L’Hôpital’s rule and by condition (iii) we obtain

lim
x→+∞ϕ (x)u′ (x) = lim

x→+∞
u′ (x)W (x)−1

(ϕ (x)W (x))−1

= lim
x→+∞

(
u′′W + u′β

α
W

)
(x) (W (x))−2(

−ϕ′W + ϕW
β

α

)
(x) (ϕ (x)W (x))−2

= lim
x→+∞

ϕ (x)2 (αu′′ + βu′) (x)
−ϕ′ (x) α (x) + ϕ (x)β (x)

= 0.
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So the statement is completely proved.

In what follows the hypothesis on the integrability of the function
1

αW
is

dropped.

Proposition 2.9. Let δ > 0 and let ϕ : [δ, +∞[ → R be a differentiable
function such that ϕ (x) �= 0, for every x ≥ δ. Define W as in (2.17) and assume
that

(i) lim
x→+∞ϕ (x)W (x) = 0,

(ii) (ϕβ − ϕ′α)(x) �= 0 for x ≥ δ and
ϕ2

ϕβ − ϕ′α
= O (1) as x → +∞.

Then lim
x→+∞ϕ (x)u′ (x) = 0, for every u ∈ D(L̃) ∩ C0(R).

Proof. By making use of formula (2.18), the result immediately follows if∫ +∞

δ

|αu′′ + βu′| (s)
α (s) W (s)

ds < +∞. If
∫ +∞

δ

|αu′′ + βu′| (s)
α (s)W (s)

ds = +∞ then, again by

De L’Hôpital’s rule and by (ii),

lim
x→+∞ ϕ(x)W (x)

∫ x

δ

|αu′′ + βu′| (s)
α (s)W (s)

ds

= lim
x→+∞

|αu′′ + βu′| (x)
α (x)W (x)

−ϕ(x)2W (x)2(
ϕ′W − ϕW

β

α

)
(x)

= lim
x→+∞

ϕ (x)2 |αu′′ + βu′| (x)
−ϕ′ (x) α (x) + ϕ (x) β (x)

= 0.

On the other hand, by (2.18), for every x ≥ δ

|ϕ (x)u′ (x) | ≤ |ϕ (x) |W (x)
(
|u′ (δ) | +

∫ x

δ

|αu′′ + βu′| (s)
α (s)W (s)

ds

)
and hence lim

x→+∞ϕ (x)u′ (x) = 0.

A similar reasoning may be used to study the behavior of u′ at −∞. Therefore,
combining Propositions 2.5-2.9 we obtain the next result.

Theorem 2.10. Let δ > 0. In each of the following cases:

(1) (i) α ∈ C2 (R\[−δ, δ]) and β ∈ C1 (R\[−δ, δ]),
(ii) (α′ − β) (x) = O (x) and (α′′ − β′)(x) = O (1) as x → ±∞;
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(2) (i) α ∈ C1 (R\[−δ, δ]),

(ii)
1

αW
∈ L1 (] −∞,−δ]) ∩ L1 ([δ, +∞[),

(iii) lim
x→±∞

α (x) W (x)
x

∈ {−∞, +∞},
(iv) W /∈ L1 ([δ, +∞[) and W /∈ L1 (] −∞,−δ]),
(v) x(β − α′)(x) + α(x) �= 0 for |x| ≥ δ and

α(x)
x(β − α′)(x) + α(x)

= O (1) as x → ±∞;

(3) (i) α ∈ C1 (R\[−δ, δ]),

(ii) lim
x→±∞

α (x) W (x)
x

= 0,

(iii) x(β − α′)(x) + α(x) �= 0 for |x| ≥ δ and
α(x)

x(β − α′)(x) + α(x)
= O (1) as x → ±∞;

the space K2(R) is a core for (L, Dm(L)), for every m ≥ 1. Moreover the space
of all functions which are twice continuously differentiable and constant at infinity
is a core for (L̃, D(L̃)).

Proof. By Proposition 2.6, we have to prove that, for every u ∈ D(̃L)∩C0(R),

lim
x→±∞

α (x) u′ (x)
x

= 0.

In case (1) such limits hold true because of Proposition 2.7.

In the cases (2) and (3) it is enough to apply Propositions 2.8-(c) and 2.9, with

ϕ(x) :=
α(x)

x
(|x| ≥ δ). Thus the statements follows from Proposition 2.5.

3. ON THE SEMIGROUP (Tm(t))t≥0

As in [11] we shall denote by E(R) the space of all functions f ∈ C(R) such
that

(3.1)
∫ +∞

−∞
|f(ay + b)| e−y2/2dy < +∞ for every a ≥ 0 and b ∈ R.

It is easy to check that Cwm
0 (R) ⊂ E(R), for every m ≥ 1.

For every n ≥ 1, consider the positive linear operator G∗
n defined by setting

(3.2) G∗
n (f) := Gn

((
1 +

γ

n

)
f
)

(f ∈ E(R)),
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where, for every f ∈ E(R) and x ∈ R,

(3.3) Gn(f)(x) :=
1√
2π

∫ +∞

−∞
f

(√
2α (x)

n
y + x +

β (x)
n

)
e−y2/2dy.

In [11, Section 5] we proved that, for every m ≥ 1, each G∗
n maps continuously

Cwm
0 (R) into itself and there exists a constant Mm > 0, independent of n, such
that

(3.4) ‖G∗
n‖Cwm

0 (R) ≤
(

1 +
Mm

n

)(
1 +

‖γ‖∞
n

)
(see formulas (2.10) and (5.2) in [11]).

Moreover, the sequence (G∗
n)n≥1 is an approximation process on Cwm

0 (R)
and, denoted by UC2

b (R) the space of all twice differentiable functions on R

with uniformly continuous and bounded second derivative, then, for m ≥ 2 and
f ∈ UC2

b (R), the following asymptotic formula is satisfied

(3.5) lim
n→∞n (G∗

n (f) − f) = αf ′′ + βf ′ + γf = L(f) in Cwm
0 (R) .

Therefore, as a consequence of a Trotter’s theorem (see [25], Theorem 5.3) we can
obtain the next result.

Theorem 3.1. Let m ≥ 2. Assume that the functions α, β satisfy conditions
(2.1)− (2.4) as well as one of conditions (1)− (3) of Theorem 2.10. Denoted by
(Tm (t))t≥0 the semigroup generated by (L, Dm(L)), then, for every f ∈ Cwm

0 (R)
and t ≥ 0

(3.6) Tm (t) f = lim
n→+∞

(G∗
n)k(n) f in Cwm

0 (R) ,

where (k (n))n≥1 is an arbitrary sequence of positive integers such that
k(n)/n → t and (G∗

n)k(n) denotes the iterate of order k (n) of G ∗
n.

In particular the limit holds uniformly on compact subsets of R.

Proof. From (3.4) we infer that

‖(G∗
n)p‖Cwm

0 (R) ≤ exp
(
(Mm + ‖γ‖∞)

p

n

)
for every n, p ≥ 1.

Moreover, sinceK2(R) is a core for the generator (L, Dm(L)), (λI−L)(K2(R))
is dense in Cwm

0 (R) for λ > 0 sufficiently large.
Finally, as we previously pointed out, if u ∈ K2(R) ⊂ UC2

b (R) then lim
n→∞n (G∗

n

(u)−u) = Lu in Cwm
0 (R). Hence the result follows from a consequence of a
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Trotter’s theorem ([25, Theorem 5.3], see also [17, Corollary 5.3] or [21, Chapter
3, Theorem 6.7])

Remark 3.2. If γ ∈ R, by (3.6) we can obtain an estimate for the norm of
Tm(t) sharper than the one given in Theorem 2.1. Indeed, denoted by (S(t))t≥0

the semigroup generated by (L − γI, Dm(L)), we have that for every t ≥ 0 and
f ∈ Cwm

0 (R)

Tm(t)f = lim
n→∞(G∗

n)k(n)f = lim
n→∞

(
1 +

γ

n

)k(n)
(Gn)k(n)f = eγtS(t)f

whence ‖Tm(t)‖ ≤ eγt ‖S(t)‖ ≤ e(ω+γ)t.

From formula (3.6) and from some shape preserving properties of the operators
G∗

n we can deduce several qualitative information on (Tm (t))t≥0 and hence on the
solution of the differential problem (2.11).

As usual, for k ≥ 0 and M > 0, the symbol Lip(k, M) will stand for the class
of all functions f ∈ C(R) such that

|f(x) − f(y)| ≤ M |x − y|k for every x, y ∈ R.

Moreover we set em(x) := xm (x ∈ R), for every m ≥ 1.
If a ∈ R ∪ {−∞, +∞}, we shall set

Da(R) :=



{f ∈ Cwm
0 (R) | f is convex and increasing on R} if a = −∞,{

f ∈ Cwm
0 (R) | f is convex, increasing on

[a, +∞[and decreasing on ]−∞, a]
}

if a ∈ R,

{f ∈ Cwm
0 (R) | f is convex and decreasing on R} if a = +∞.

Corollary 3.3. Let a ∈ R ∪ {−∞, +∞} and ν ≥ 1. Under the same assump-
tions of the Theorem 3.1, the following statements hold true.

(1) Assume that
(
1 +

γ

n

)
f ∈ Da(R) for every convex function f ∈ Da(R) and

n ≥ υ. If β is positive on ]a, +∞[ and negative on ]−∞, a[, then

Tm(t)f(x) ≥ eγ(x)tf(x)

for every t ≥ 0, f ∈ Da(R) and x ∈ R.
(2) Assume that β is affine and γ is constant. Then each T m(t) maps affine

functions into affine functions.
In particular, if β = 0, Tm(t)f(x) = eγtf(x), for every affine function f and
for every x ∈ R.
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(3) Assume that α is constant, β is affine and
(
1 +

γ

n

)
f is convex, for every

convex function f ∈ Cwm
0 (R) and for every n ≥ ν.

Then each Tm(t) maps convex functions into convex functions.

(4) Assume that α is constant, β is convex, e1 +
β

n
is increasing and

(
1 +

γ

n

)
f

is increasing and convex, for every increasing convex function f ∈ C wm
0 (R)

and for every n ≥ ν.
Then each Tm(t) maps increasing convex functions into increasing convex
functions.

(5) Assume that α is constant, e1+
β

n
is increasing and

(
1 +

γ

n

)
f is increasing,

for every increasing function f ∈ C wm
0 (R) and for every n ≥ ν.

Then each Tm(t) maps increasing functions into increasing functions.
(6) Assume that α and γ are constant and β ∈ Lip (1, M β), then Tm (t) f ∈

Lip(k, M exp((kMβ + |γ|)t)), for every f ∈ Lip (k, M) ∩ Cwm
0 (R) and

t ≥ 0.

Proof. Given f ∈ Da(R), from formula (4.1) in [11] it follows that, for every
x ∈ R

G∗
n(f)(x) = Gn

((
1 +

γ

n

)
f
)

(x) ≥
((

1 +
γ

n

)
f
)(

x +
β (x)

n

)
≥
((

1 +
γ

n

)
f
)

(x) =
(

1 +
γ(x)
n

)
f(x),

whence, by the positivity of G∗
n, for every k ∈ N

(G∗
n)k(f)(x) ≥

(
1 +

γ(x)
n

)k

f(x).

Therefore, if t ≥ 0 and (k(n))n≥1 is a sequence of positive integers such that
k(n)/n → t, by Theorem 3.1 we obtain

Tm (t) (f) (x) = lim
n→∞(G∗

n)k(n)(f)(x) ≥ eγ(x)tf(x),

so (1) is fulfilled.
Properties (2)-(5) follow directly from statements (1)-(4) of Theorem 5.4 in [11]

and Theorem 3.1. Analogously, as regards (6), by statement (5) of Theorem 5.4 in
[11], we get

(G∗
n)k(n) (Lip (k, M)) ⊂ Lip

(
k, M

∣∣∣1 +
γ

n

∣∣∣k(n)
exp

(
k (n) kMβ

n

))
;
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thus, if f ∈ Lip (k, M) ∩ Cw
0 (R), we have

|Tm (t) (f) (x) − Tm (t) (f) (y)| = lim
n→∞

∣∣∣(G∗
n)k(n) (f) (x) − (G∗

n)k(n) (f) (y)
∣∣∣

≤ M exp((kMβ + |γ|)t) |x − y|k .

The proof is now complete.

By adapting the proof of Proposition 9.1 in [19] and by applying Corollary 3.6
in [11] we deduce the next result.

Corollary 3.3. Let γ = 0. Under the same assumptions of Theorem ??, for
every f ∈ Cwm

0 (R), the following statements are equivalent.

(a) ‖Gn(f) − f‖m = o(1/n) as n → ∞;
(b) ‖Tm(t)(f)− f‖m = o(t) as t → 0+;
(c) there exist c1, c2 ∈ R such that

f (x) = c1

∫ x

0

exp
(
−
∫ t

0

β (s)
α (s)

ds

)
dt + c2 (x ∈ R).

4. THE CASE β = γ = 0

If β = γ = 0, then conditions (2.3) and (2.4) are obviously satisfied. Moreover,
in order to determine a core for the operator (L, Dm(L)), we may require not so
much regularity for the coefficient α as in the general case investigated in the last
sections; indeed it is enough that there exist δ, C1, C2 > 0 and p ∈ C1([δ, +∞[)
such that

(4.1) C1p(x) ≤ α(x) ≤ C2p(x) for x ≥ δ.

Consider the following subspace D1 of C0(R) defined by (2.12), i.e.

D1 =

{
u ∈ C0(R) ∩ C2 (R) |

u = 0 on a neighborhood of + ∞
and lim

x→−∞α(x)u′′ (x) = 0

}
.

Moreover denote by D̃1 the linear subspace generated by D1 ∪ S (see Proposition
2.5)

Theorem 4.1. Suppose that conditions (2.1), (2.2) and (4.1) are satisfied.
Then, in each of the following cases:
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(1) p ∈ C2([δ, +∞[) and p(r)(x) = O(x2−r) as x → +∞ for r = 0, 1, 2;

(2) (i)
1
p
∈ L1([δ, +∞[) and lim

x→+∞
p(x)
x

= +∞

or lim
x→+∞

p(x)
x

= 0;

(ii) p ∈ C1([δ, +∞[), xp′(x) − p(x) �= 0 for x ≥ δ and
p(x)

xp′(x) − p(x)
= O (1) as x → +∞;

the space D1 is a core for (L, Dm(L)), for every m ≥ 1. Moreover D̃1 is a core
for (L̃, D(L̃)).

Proof. By virtue of Proposition 2.6 , D1 is a core for (L̃, D(L̃) ∩ C0(R)) if,
for every u ∈ D(L̃) ∩ C0(R),

lim
x→+∞

α (x)u′ (x)
x

= 0.

Then, taking (4.1) into account, we have to prove that lim
x→+∞

p (x)u′ (x)
x

= 0.
In case (1), such limit relation follows immediately from Proposition 2.7.
As regards case (2), it follows from Proposition 2.8-(c) and 2.9, where ϕ(x) :=

p (x)
x

(x ≥ δ). By Proposition 2.5 we also deduce the final assertion.

Assume now that there exists α0 > 0 such that

(4.2) α(x) ≥ α0 for x ≤ −δ.

Then u′′ ∈ C0(R), for every u ∈ D1 and hence D1 ⊂ UC2
b (R).

Therefore, from (3.5) we also get

lim
n→∞n(Gn(u) − u) = αu′′ = Lu in Cwm

0 (R)

for every u ∈ D1 and m ≥ 2.
At this point, by reasoning as in the proof of Theorem 3.1, we can represent the

semigroup (Tm(t))t≥0 in terms of iterates of the operators Gn, which in this case
we can write as

Gn(f)(x) =
1√
2π

∫ +∞

−∞
f

(√
2α(x)

n
y + x

)
e−y2/2dy (f ∈ E(R), x ∈ R).
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Theorem 4.2. Let m ≥ 2. Assume that α satisfies conditions (2.1), (2.2),
(4.1) and (4.2) as well as on of conditions (1) or (2) of Theorem 4.1. Then, for
every f ∈ Cwm

0 (R) and t ≥ 0

Tm(t)f = lim
n→∞Gk(n)

n f in Cwm
0 (R),

where (k (n))n≥1 is an arbitrary sequence of positive integers such that
k(n)/n → t and Gn

k(n) denotes the iterate of order k (n) of G ∗
n.

In particular the limit holds uniformly on compact subsets of R.

Remark 4.3. Consider the Markov process associated with the semigroup
(Tm(t))t≥0, as stated in Theorem 2.3. Then the mean value Ex(Zt) of the random
variable Zt with respect to P x is equal to x, for every x ∈ R and t ≥ 0. Moreover
there exist C > 0 and x0 > 0 such that the variance Vx(Zt) ≤ (eCt − 1)x2, for
|x| ≥ x0.

Indeed, since Gn(e1) = e1 for every n ≥ 1, by applying Theorem 4.2 for a
given m ≥ 2 we obtain

Ex(Zt) = Tm (t) (e1) (x) = lim
n→∞(Gn)k(n)(e1)(x) = x,

where (k(n))n≥1 is a sequence of positive integer such that k(n)/n → t.
From (2.2) it follows that there exist C > 0 and x0 > 0 such that 2α(x) ≤ Cx2,

for |x| ≥ x0, therefore, since

Gn(e2)(x) =
2α(x)

n
+ x2 ≤

(
C

n
+ 1
)

x2

we have

Tm (t) (e2) (x) = lim
n→∞(Gn)k(n)(e2)(x) ≤ x2 lim

n→∞

(
C

n
+ 1
)k(n)

= eCtx2

which implies

Vx(Zt) = Ex((Zt)2) − (Ex(Zt))2 = Tm (t) (e2) (x)− x2 ≤ (eCt − 1)x2.

Similar estimates have been obtained in [12, Remark 3.6] for Markov processes
with state space [0, +∞].

By adapting the proof of Theorem 3.1 in [10] and applying Theorem 4.1 and
4.2 in [11] and Theorem 4.2, we obtain the following result which complements the
ones stated in Corollaries 3.3 and 3.4. The detailed verification is left to the reader.

Corollary 4.4. Under the same assumptions of Theorem 4.2, for every f ∈
Cwm

0 (R) the following statements are equivalent.
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(a) f is convex;
(b) Gn+1 (f) (x) ≤ Gn (f) (x), for every x ∈ R and n ≥ 1;

(c) f (x) ≤ Gn (f) (x), for every x ∈ R and n ≥ 1;

(d) f (x) ≤ Tm (t) (f) (x), for every x ∈ R and t ≥ 0.

Moreover, if α is constant, then the statements (a)-(d) are equivalent to
(e) T (t) (f) is convex.

Finally, if one of the statements (a)-(d) is satisfied, then for every x ∈ R and
0 ≤ s ≤ t

Tm (s) (f) (x) ≤ Tm (t) (f) (x)

and hence there exists lim
t→+∞Tm (t) (f) (x) ∈ R ∪ {+∞}.
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