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SEMILINEAR ELLIPTIC EQUATIONS
IN UNBOUNDED SYMMETRIC DOMAINS

Shyuh-yaur Tzeng and Hwai-chiuan Wang

Abstract. In this article we prove the existence of a minimizer of semi-
linear elliptic equations in axial symmetric domains.

1. INTRODUCTION

Throughout this article, let N > 3,1 <p < %, and z = (z,y) be the
generic point of RY with x € RN~1, y € R. By an axial symmetric domain
Q c RY, we mean that z = (z,y) € Q if and only if (|z],0,---,0,y) € Q.
By an axial symmetric function w in 2, we mean that there is a function

f:]0,00) x R — R such that u(x,y) = f(|z|,y) for (z,y) € Q.
Let Q € RY be a domain. Consider the problem

—Au+u=uP in Q,

(1) u>0 in Q,
u € HE (D).

Let Hs(2) be the H!-closure of the space {u € C§°(2) | u is axial symmetric},

0s() —inf{/Q(]vu\z—i—uQ)\ e Hy(Q), /Q\u\pﬂ _1},
a@) =it { [ (7 uP +?) | we my@), [ apt =1},
o = a(RN) :inf{/RN(| Vul’+u2) | ue H(RY), /RN P = 1}.

Definition 1. Q c RY is solvable if there is a solution of equation (1),
otherwise ) is unsolvable.
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Many mathematicians have studiedthe solvability and unsolvability of 2 C
RY as follows:

Example 2. If Q is bounded or Q = RN, then a(Q) admits a minimizer
and that Q is solvable.

Proof. Taking a minimizing sequence for a(£2), then apply a compactness
imbedding theorem. ]

Example 3. If Q is the upper half plane Rf or the upper half strip
S =w xR, where w C R™ and N = m + n, then € is unsolvable.

Proof. Esteban-Lions [3] have derived an integral identity to prove it. m

Theorem 4. IfQ, Qs C RN such that Q1N is bounded, a (1) < a(Q2)
and a(€1) admits a minimizer, then a(Qq U Q2) admits a minimizer.

Proof. See Lien-Tzeng-Wang [4; Theorem 5.1] [ ]

Example 5. If S = w x R}, B(0,7) is a ball of radius v and Q, =
S U B(0,7), then there is rg > 0 such that Q, is solvable provided that r > rg.

Proof. Note a(S) > a and lim,_,o, a(B(0,7)) = . Then apply Theorem
2. u

Example 6. The hyperboloid |x|?> — y? = 12 in RY divides RN into two
azial symmetric domains Al and A; such that

1) Al contains the y-axis and satisfying, for any r > 0 there is a, > 0 such
that

{(z,y) € RN | 2| <3 U{{(2,y) € RY | Ja| <, [yl > ar} C A
2) A; satisfies

Tlggo inf{|z| | (z,y) € 4;, |y| > r} = 0.

Example 7. There is lg > 0 such that if | > lo, then Al is solvable.

Proof. First establish a decomposition lemma of a (PS)-sequence to get
good energy levels (a(A),2(=D/+1)q(AY)). Then raise higher the energy to
be in the good level through that the center of mass done as Coron [1] and
that the length of [. [
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But for the solvability of A;, it is nontrivial. In this article we shall establish
a surprising result (see Theorem 11) in Section 2 and then in Section 3 use it
to prove the solvability of A; as follows:

Main Theorem. A; is solvable and as(A;) admits a minimizer.

2. AN ANALYSIS THEOREM

In order to prove the Main Theorem , we need the following two known
results:

Proposition 8. Letm > 1, k > 2, w be a smooth bounded open set in R™,
and E = wxRF. Denote by (z,y) a generic point in R™ xR and consider the
space Hs(E) consisting of functions in Hi(E) which are spherically symmetric

in y-variable. Then the Sobolev imbedding from Hy(E) into L1(E) is compact

for every q € (2, %) with N =m + k.

Proof. By Esteban [2]. [

Lemma 9. If{vi} C Hs(Q2) is a minimizing sequence for J, then {aS(Q)P%lvk}

is a (PS)q—sequence of I, where d = (% - Iﬁ)as(ﬁ)(p‘*‘l)/(p_l),

1 1
1w =g [(7ul+ut) = —= [t for ue H©)
and .
Tw) =5 [(vul?+u?)
Q
Proof. By routine computation. [

Lemma 10. Let B, = {(z,y) € RY| || > r} andr > 0. Then a(B,) = «
for each r > 0.

Proof See Lien-Tzeng-Wang [4]. ]
However we have the following surprising result:

Theorem 11.

lim o(B,) = oo.
T—00
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Proof. Assume lim, . as(B,) = n < co. Forn = 1,2, -, take a;, =
as(By,). By a proof similar to that in Lien-Tzeng-Wang [4, Theorem 4.8], we
obtain that as(B,) admits a minimizer u,. Then by the Maximum Principle

ap <og < ---,

lim o, =1,
n—oo

{H U, HHS(Bn)} is bounded,
/ lu,[PT =1 for n=1,2,---.
By

Embed Hy(B,) into Hy(RY) by letting u, = 0 outside B, and consider
the concentration function @, (t) of u,, :

Qn(t) = sup lu (, y) [P dady  for t > 0.

yeR /RN—1 x (y' —t,y’ +t)
Then forn=1,2,---

Qn(t) is an increasing function of t,
limy 00 Qn(t) =1,

By the Helly Theorem, we may choose a subsequence {@,,} such that

lim Q,(t) = Q(t) for ¢t >0,

n—oo

where () is a nondecreasing function in ¢t with 0 < @ < 1. Claim that
lim¢ o Q(t) # 0. For otherwise, assume lim;,o, Q(t) = 0, then Q = 0
and consequently lim,, o @Qn(t) = 0 for ¢t > 0. Take ¢ and r such that
p+l<g<r< % By the Holder Inequality and the Sobolev Imbed-
ding Theorem,

oo
[ =3 l
RN RN -1x[2j—1,2j+1]

j=—o00
_r—4q_ a—p—1
o) r—p—1 r—p—1
+1 r
<> |f n]? / |
j=—00 RN-1x([2j—1,25+1] RN -1x[2j—1,25+1]
r(g—p—1)
oo I(r—p—1)

<) Y / (17 wnl® +u2)
RN-1x[2j—1,2j+1]

j=—o0
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Since lim,_.q % = 2> 2Hl 5 1 we can choose r so close to ¢ that
rig—p—1
(g=p-1 _
2(r—p—-1)
We have
r(g—p=1)
o0 9 9 2(r—p—1)
> [/N (TP )
j=——o0 RN—1x[2j-1,2j+1]
r(g—p—1)
00 2(r—p—1)
<1y (17 unl? + )
L:z_:oo RN=1x[2j—1,2j+1] "
s
2, 2y
[ [ 0w +ad)]
RN
r(g—p—1)
_ O5721(“17*1).
Therefore

r(g—p—1) e
/ N |un|q < Caﬁ(r_p_l)Qn(l)r7q31 = 0(1) as n — 0.
R

By the interpolation property, || u, ||r»+1= 0(1) as n — oo, a contradiction.
Therefore limy_,o, Q(t) = S > 0. Consequently there is Ry > 0 such that
Q(Ro) > g Take ng > 0 such that n > ng implies Q,(Ry) > g Choose
{yn}nZs, C R such that

|p+1 > ﬁ

‘Un($,y) 2 °

/]-{N_IX[ynRO:ynJFRO}
Let un(x,y) = un(z,y + yn). Then

(2)

|, [P > g for n > mng.

Ale[—RO,RO]
By Proposition 8, if necessary, replace Ry by Rg + 1, then we can take a
subsequence {u,} and @ such that

lim u, =u in LPY( RM~! x [~Ry, Ro)).

n—oo

By (2), # 0. But since uy,(z) € Hy(B,), we have
lim @,(z) =0 for ze RY,
n—oo
a contradiction. Therefore
lim a4(B,) = oc.

r—00
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3. SOLVABILITY OF A;

Note that by Lemma 10 and the Maximum Principle, «(4;) does not admit
any minimizer. However, in the following we will prove that a4(A;) admits a
minimizer.

Main Theorem. A; is solvable and as(A;) admits a minimizer.

Proof. Take r1 > 0 such that I,, = {(z,y) € Q ||| <r1} # 0. For r > rq,
decompose
O =1, UTL,

where
Iy = {(z,y) € Q||| < s},

II, = {(z,y) € Q||z| > r}.

Then as(I,) is decreasing in r and «a,(IL,) is increasing in r. Let
B, = {(z,y) € R ||z > r}.

By Theorem 11

lim as(B,) = oo.
r—00

Take r9 > r1 such that
as(Bry) = as(Iry).

Therefore
s(lryy1) < as(lyy) < as(Br,) < as(Ily,).

Since
Tim inf{la]| (2,) € . Jy] = r} = oc,

I, 41 is bounded and axial symmetric. Therefore as(I,,+1) admits a minimizer.
By Theorem 4, a4(A;) admits a minimizer. ]

Remark 1. By the Main Theorem and the Maximum Principle, let A; be
as in the Main Theorem, we have

Oés(Al) > a(Al).

Similar proof as in the Main Theorem can be applied to obtain the follow-
ing:

Corollary 12. For r > 0, let either
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L Q={(z,y) eR" I xR| [z?—r<y<|z|>+7}, or
2. Q={(z,9)| 0 <y <|z|*+2r}.

Then as(2) admits a minimizer.
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