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SEMILINEAR ELLIPTIC EQUATIONS
IN UNBOUNDED SYMMETRIC DOMAINS

Shyuh-yaur Tzeng and Hwai-chiuan Wang

Abstract. In this article we prove the existence of a minimizer of semi-
linear elliptic equations in axial symmetric domains.

1. Introduction

Throughout this article, let N ≥ 3, 1 < p < N+2
N−2 , and z = (x, y) be the

generic point of RN with x ∈ RN−1, y ∈ R. By an axial symmetric domain
Ω ⊂ RN , we mean that z = (x, y) ∈ Ω if and only if (|x|, 0, · · · , 0, y) ∈ Ω.
By an axial symmetric function u in Ω, we mean that there is a function
f : [0,∞)×R → R such that u(x, y) = f(|x|, y) for (x, y) ∈ Ω.

Let Ω ⊂ RN be a domain. Consider the problem




−∆u + u = up in Ω,
u > 0 in Ω,
u ∈ H1

0 (Ω).
(1)

Let Hs(Ω) be the H1-closure of the space {u ∈ C∞
0 (Ω) |u is axial symmetric},

αs(Ω) = inf
{∫

Ω
(| 5 u|2 + u2) | u ∈ Hs(Ω),

∫

Ω
|u|p+1 = 1

}
,

α(Ω) = inf
{∫

Ω
(| 5 u|2 + u2) | u ∈ H1

0 (Ω),
∫

Ω
|u|p+1 = 1

}
,

α = α(RN ) = inf
{∫

RN
(| 5 u|2 + u2) | u ∈ H1(RN ),

∫

RN
|u|p+1 = 1

}
.

Definition 1. Ω ⊂ RN is solvable if there is a solution of equation (1),
otherwise Ω is unsolvable.
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Many mathematicians have studiedthe solvability and unsolvability of Ω ⊂
RN as follows:

Example 2. If Ω is bounded or Ω = RN , then α(Ω) admits a minimizer
and that Ω is solvable.

Proof. Taking a minimizing sequence for α(Ω), then apply a compactness
imbedding theorem.

Example 3. If Ω is the upper half plane RN
+ or the upper half strip

S = ω ×Rn
+, where ω ⊂ Rm and N = m + n, then Ω is unsolvable.

Proof. Esteban-Lions [3] have derived an integral identity to prove it.

Theorem 4. If Ω1, Ω2 ⊂ RN such that Ω1∩Ω2 is bounded, α(Ω1) ≤ α(Ω2)
and α(Ω1) admits a minimizer, then α(Ω1 ∪ Ω2) admits a minimizer.

Proof. See Lien-Tzeng-Wang [4; Theorem 5.1]

Example 5. If S = ω × Rn
+, B(0, r) is a ball of radius r and Ωr =

S ∪B(0, r), then there is r0 > 0 such that Ωr is solvable provided that r ≥ r0.

Proof. Note α(S) > α and limr→∞ α(B(0, r)) = α. Then apply Theorem
2.

Example 6. The hyperboloid |x|2 − y2 = l2 in RN divides RN into two
axial symmetric domains Al and Al such that

1) Al contains the y-axis and satisfying, for any r > 0 there is ar > 0 such
that

{(x, y) ∈ RN | |x| ≤ l} ∪ {{(x, y) ∈ RN | |x| < r, |y| > ar} ⊂ Al.

2) Al satisfies

lim
r→∞ inf{|x| | (x, y) ∈ Al, |y| ≥ r} = ∞.

Example 7. There is l0 > 0 such that if l ≥ l0, then Al is solvable.

Proof. First establish a decomposition lemma of a (PS)-sequence to get
good energy levels (α(Al), 2(p−1)/(p+1)α(Al)). Then raise higher the energy to
be in the good level through that the center of mass done as Coron [1] and
that the length of l.
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But for the solvability of Al, it is nontrivial. In this article we shall establish
a surprising result (see Theorem 11) in Section 2 and then in Section 3 use it
to prove the solvability of Al as follows:

Main Theorem. Al is solvable and αs(Al) admits a minimizer.

2. An Analysis Theorem

In order to prove the Main Theorem , we need the following two known
results:

Proposition 8. Let m ≥ 1, k ≥ 2, ω be a smooth bounded open set in Rm,
and E = ω×Rk. Denote by (x, y) a generic point in Rm×Rk and consider the
space Hs(E) consisting of functions in H1

0 (E) which are spherically symmetric
in y-variable. Then the Sobolev imbedding from Hs(E) into Lq(E) is compact
for every q ∈

(
2, 2N

N−2

)
with N = m + k.

Proof. By Esteban [2].

Lemma 9. If {vk} ⊂ Hs(Ω) is a minimizing sequence for J , then {αs(Ω)
1

p−1 vk}
is a (PS)d−sequence of I, where d = (1

2 − 1
p+1)αs(Ω)(p+1)/(p−1),

I(u) =
1
2

∫

Ω
(| 5 u|2 + u2)− 1

p + 1

∫

Ω
|u|p+1 for u ∈ Hs(Ω),

and
J(u) =

1
2

∫

Ω
(| 5 u|2 + u2)

Proof. By routine computation.

Lemma 10. Let Br = {(x, y) ∈ RN | |x| > r} and r > 0. Then α(Br) = α
for each r > 0.

Proof See Lien-Tzeng-Wang [4].

However we have the following surprising result:

Theorem 11.
lim

r→∞αs(Br) = ∞.
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Proof. Assume limr→∞ αs(Br) = η < ∞. For n = 1, 2, · · ·, take αn =
αs(Bn). By a proof similar to that in Lien-Tzeng-Wang [4, Theorem 4.8], we
obtain that αs(Bn) admits a minimizer un. Then by the Maximum Principle

α1 < α2 < · · · ,

lim
n→∞αn = η,

{
‖ un ‖Hs(Bn)

}
is bounded,

∫

Bn

|un|p+1 = 1 for n = 1, 2, · · · .

Embed Hs(Bn) into Hs(RN ) by letting un = 0 outside Bn and consider
the concentration function Qn(t) of un :

Qn(t) = sup
y′∈R

∫

RN−1×(y′−t,y′+t)
|un(x, y)|p+1dxdy for t > 0.

Then for n = 1, 2, · · ·

Qn(t) is an increasing function of t,
limt→∞Qn(t) = 1,
limt→0+ Qn(t) = 0.

By the Helly Theorem, we may choose a subsequence {Qn} such that

lim
n→∞Qn(t) = Q(t) for t > 0,

where Q is a nondecreasing function in t with 0 ≤ Q ≤ 1. Claim that
limt→∞Q(t) 6= 0. For otherwise, assume limt→∞Q(t) = 0, then Q ≡ 0
and consequently limn→∞Qn(t) = 0 for t > 0. Take q and r such that
p + 1 < q < r < 2N

N−2 . By the Hölder Inequality and the Sobolev Imbed-
ding Theorem,

∫

RN

|un|q =
∞∑

j=−∞

∫

RN−1×[2j−1,2j+1]

|un|q

≤
∞∑

j=−∞

[∫

RN−1×[2j−1,2j+1]

|un|p+1

] r−q
r−p−1

[∫

RN−1×[2j−1,2j+1]

|un|r
] q−p−1

r−p−1

≤ cQn(1)
r−q

r−p−1

∞∑

j=−∞

[∫

RN−1×[2j−1,2j+1]

(| 5 un|2 + u2
n)

] r(q−p−1)
2(r−p−1)

.
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Since limr→q
r(q−p−1)
2(r−p−1) = q

2 > p+1
2 > 1, we can choose r so close to q that

r(q − p− 1)
2(r − p− 1)

> 1.

We have

∞∑

j=−∞

[∫

RN−1×[2j−1,2j+1]
(| 5 un|2 + u2

n)

] r(q−p−1)
2(r−p−1)

≤



∞∑

j=−∞

∫

RN−1×[2j−1,2j+1]
(| 5 un|2 + u2

n)




r(q−p−1)
2(r−p−1)

=
[∫

RN
(| 5 un|2 + u2

n)
] r(q−p−1)

2(r−p−1)

= α
r(q−p−1)
2(r−p−1)
n .

Therefore
∫

RN
|un|q ≤ cα

r(q−p−1)
2(r−p−1)
n Qn(1)

r−q
r−q−1 = o(1) as n →∞.

By the interpolation property, ‖ un ‖Lp+1= o(1) as n →∞, a contradiction.
Therefore limt→∞Q(t) = β > 0. Consequently there is R0 > 0 such that
Q(R0) > β

2 . Take n0 > 0 such that n ≥ n0 implies Qn(R0) > β
2 . Choose

{yn}∞n=n0
⊂ R such that

∫

RN−1×[yn−R0,yn+R0]
|un(x, y)|p+1 ≥ β

2
.

Let ũn(x, y) = un(x, y + yn). Then
∫

RN−1×[−R0,R0]
|ũn|p+1 ≥ β

2
for n ≥ n0 .(2)

By Proposition 8, if necessary, replace R0 by R0 + 1, then we can take a
subsequence {ũn} and ũ such that

lim
n→∞ ũn = ũ in Lp+1( RN−1 × [−R0, R0]).

By (2), 6≡ 0. But since ũn(x) ∈ Hs(Bn), we have

lim
n→∞ ũn(z) = 0 for z ∈ RN ,

a contradiction. Therefore

lim
r→∞αs(Br) = ∞.
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3. Solvability of Al

Note that by Lemma 10 and the Maximum Principle, α(Al) does not admit
any minimizer. However, in the following we will prove that αs(Al) admits a
minimizer.

Main Theorem. Al is solvable and αs(Al) admits a minimizer.

Proof. Take r1 > 0 such that Ir1 = {(x, y) ∈ Ω | |x| < r1} 6= ∅. For r ≥ r1,
decompose

Ω = Ir+1 ∪ IIr,

where
Is = {(x, y) ∈ Ω | |x| < s},
IIr = {(x, y) ∈ Ω | |x| > r}.

Then αs(Ir) is decreasing in r and αs(IIr) is increasing in r. Let

Br = {(x, y) ∈ RN | |x| > r}.

By Theorem 11
lim

r→∞αs(Br) = ∞.

Take r2 ≥ r1 such that
αs(Br2) ≥ αs(Ir1).

Therefore
αs(Ir2+1) ≤ αs(Ir1) ≤ αs(Br2) ≤ αs(IIr2).

Since
lim

r→∞ inf{|x|| (x, y) ∈ Ω, |y| ≥ r} = ∞,

Ir2+1 is bounded and axial symmetric. Therefore αs(Ir2+1) admits a minimizer.
By Theorem 4, αs(Al) admits a minimizer.

Remark 1. By the Main Theorem and the Maximum Principle, let Al be
as in the Main Theorem, we have

αs(Al) > α(Al).

Similar proof as in the Main Theorem can be applied to obtain the follow-
ing:

Corollary 12. For r > 0, let either
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1. Ω = {(x, y) ∈ RN−1 ×R | |x|2 − r < y < |x|2 + r}, or

2. Ω = {(x, y) | 0 < y < |x|2 + 2r}.

Then αs(Ω) admits a minimizer.
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