SEMILINEAR ELLIPTIC EQUATIONS IN UNBOUNDED SYMMETRIC DOMAINS

Shyuh-yaur Tzeng and Hwai-chiuan Wang

Abstract. In this article we prove the existence of a minimizer of semilinear elliptic equations in axial symmetric domains.

1. Introduction

Throughout this article, let $N \geq 3$, 1 , and <math>z = (x,y) be the generic point of \mathbf{R}^N with $x \in \mathbf{R}^{N-1}$, $y \in \mathbf{R}$. By an axial symmetric domain $\Omega \subset \mathbf{R}^N$, we mean that $z = (x,y) \in \Omega$ if and only if $(|x|,0,\cdots,0,y) \in \Omega$. By an axial symmetric function u in Ω , we mean that there is a function $f:[0,\infty) \times \mathbf{R} \to \mathbf{R}$ such that u(x,y) = f(|x|,y) for $(x,y) \in \Omega$.

Let $\Omega \subset \mathbf{R}^N$ be a domain. Consider the problem

(1)
$$\begin{cases} -\Delta u + u = u^p & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u \in H_0^1(\Omega). \end{cases}$$

Let $H_s(\Omega)$ be the H^1 -closure of the space $\{u \in C_0^{\infty}(\Omega) \mid u \text{ is axial symmetric}\},$

$$\alpha_{s}(\Omega) = \inf \left\{ \int_{\Omega} (|\nabla u|^{2} + u^{2}) | u \in H_{s}(\Omega), \int_{\Omega} |u|^{p+1} = 1 \right\},$$

$$\alpha(\Omega) = \inf \left\{ \int_{\Omega} (|\nabla u|^{2} + u^{2}) | u \in H_{0}^{1}(\Omega), \int_{\Omega} |u|^{p+1} = 1 \right\},$$

$$\alpha = \alpha(R^{N}) = \inf \left\{ \int_{R^{N}} (|\nabla u|^{2} + u^{2}) | u \in H^{1}(R^{N}), \int_{R^{N}} |u|^{p+1} = 1 \right\}.$$

Definition 1. $\Omega \subset \mathbf{R}^N$ is solvable if there is a solution of equation (1), otherwise Ω is unsolvable.

Received February 26, 1996

Communicated by S.-B. Hsu.

1991 Mathematics Subject Classification: 35J20, 35J25.

Key words and phrases: Semilinear elliptic equation, unbounded symmetric domain.

Many mathematicians have studied the solvability and unsolvability of $\Omega \subset \mathbf{R}^N$ as follows:

Example 2. If Ω is bounded or $\Omega = \mathbb{R}^N$, then $\alpha(\Omega)$ admits a minimizer and that Ω is solvable.

Proof. Taking a minimizing sequence for $\alpha(\Omega)$, then apply a compactness imbedding theorem.

Example 3. If Ω is the upper half plane \mathbf{R}_+^N or the upper half strip $S = \omega \times \mathbf{R}_+^n$, where $\omega \subset R^m$ and N = m + n, then Ω is unsolvable.

Proof. Esteban-Lions [3] have derived an integral identity to prove it.

Theorem 4. If $\Omega_1, \Omega_2 \subset \mathbf{R}^N$ such that $\Omega_1 \cap \Omega_2$ is bounded, $\alpha(\Omega_1) \leq \alpha(\Omega_2)$ and $\alpha(\Omega_1)$ admits a minimizer, then $\alpha(\Omega_1 \cup \Omega_2)$ admits a minimizer.

Proof. See Lien-Tzeng-Wang [4; Theorem 5.1]

Example 5. If $S = \omega \times \mathbf{R}^n_+$, B(0,r) is a ball of radius r and $\Omega_r = S \cup B(0,r)$, then there is $r_0 > 0$ such that Ω_r is solvable provided that $r \geq r_0$.

Proof. Note $\alpha(S) > \alpha$ and $\lim_{r\to\infty} \alpha(B(0,r)) = \alpha$. Then apply Theorem 2.

Example 6. The hyperboloid $|x|^2 - y^2 = l^2$ in \mathbb{R}^N divides \mathbb{R}^N into two axial symmetric domains A^l and A_l such that

1) A^l contains the y-axis and satisfying, for any r > 0 there is $a_r > 0$ such that

$$\{(x,y) \in \mathbb{R}^N \mid |x| \le l\} \cup \{\{(x,y) \in \mathbb{R}^N \mid |x| < r, |y| > a_r\} \subset \mathbb{A}^l.$$

2) A_l satisfies

$$\lim_{r \to \infty} \inf\{|x| \mid (x,y) \in A_l, |y| \ge r\} = \infty.$$

Example 7. There is $l_0 > 0$ such that if $l \ge l_0$, then A^l is solvable.

Proof. First establish a decomposition lemma of a (PS)-sequence to get good energy levels $(\alpha(A^l), 2^{(p-1)/(p+1)}\alpha(A^l))$. Then raise higher the energy to be in the good level through that the center of mass done as Coron [1] and that the length of l.

But for the solvability of A_l , it is nontrivial. In this article we shall establish a surprising result (see Theorem 11) in Section 2 and then in Section 3 use it to prove the solvability of A_l as follows:

Main Theorem. A_l is solvable and $\alpha_s(A_l)$ admits a minimizer.

2. An Analysis Theorem

In order to prove the Main Theorem , we need the following two known results:

Proposition 8. Let $m \geq 1$, $k \geq 2$, ω be a smooth bounded open set in \mathbf{R}^m , and $E = \omega \times \mathbf{R}^k$. Denote by (x,y) a generic point in $\mathbf{R}^m \times \mathbf{R}^k$ and consider the space $H_s(E)$ consisting of functions in $H_0^1(E)$ which are spherically symmetric in y-variable. Then the Sobolev imbedding from $H_s(E)$ into $L^q(E)$ is compact for every $q \in \left(2, \frac{2N}{N-2}\right)$ with N = m + k.

Proof. By Esteban [2].

Lemma 9. If $\{v_k\} \subset H_s(\Omega)$ is a minimizing sequence for J, then $\{\alpha_s(\Omega)^{\frac{1}{p-1}}v_k\}$ is a $(PS)_d$ -sequence of I, where $d = (\frac{1}{2} - \frac{1}{p+1})\alpha_s(\Omega)^{(p+1)/(p-1)}$,

$$I(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + u^2) - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} \quad for \ u \in H_s(\Omega),$$

and

$$J(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + u^2)$$

Proof. By routine computation.

Lemma 10. Let $B_r = \{(x,y) \in \mathbf{R}^N | |x| > r\}$ and r > 0. Then $\alpha(B_r) = \alpha$ for each r > 0.

Proof See Lien-Tzeng-Wang [4].

However we have the following surprising result:

Theorem 11.

$$\lim_{r\to\infty}\alpha_s(B_r)=\infty.$$

Proof. Assume $\lim_{r\to\infty} \alpha_s(B_r) = \eta < \infty$. For $n=1,2,\cdots$, take $\alpha_n = \alpha_s(B_n)$. By a proof similar to that in Lien-Tzeng-Wang [4, Theorem 4.8], we obtain that $\alpha_s(B_n)$ admits a minimizer u_n . Then by the Maximum Principle

$$\alpha_1 < \alpha_2 < \cdots,$$

$$\lim_{n \to \infty} \alpha_n = \eta,$$

$$\left\{ \| u_n \|_{H_s(B_n)} \right\} \text{ is bounded,}$$

$$\int_{B_n} |u_n|^{p+1} = 1 \text{ for } n = 1, 2, \cdots.$$

Embed $H_s(B_n)$ into $H_s(R^N)$ by letting $u_n = 0$ outside B_n and consider the concentration function $Q_n(t)$ of u_n :

$$Q_n(t) = \sup_{y' \in \mathbf{R}} \int_{\mathbf{R}^{N-1} \times (y'-t, y'+t)} |u_n(x, y)|^{p+1} dx dy \text{ for } t > 0.$$

Then for $n = 1, 2, \cdots$

$$Q_n(t)$$
 is an increasing function of t,
 $\lim_{t\to\infty}Q_n(t)=1,$
 $\lim_{t\to 0^+}Q_n(t)=0.$

By the Helly Theorem, we may choose a subsequence $\{Q_n\}$ such that

$$\lim_{n \to \infty} Q_n(t) = Q(t) \quad \text{for } t > 0,$$

where Q is a nondecreasing function in t with $0 \le Q \le 1$. Claim that $\lim_{t\to\infty}Q(t)\neq 0$. For otherwise, assume $\lim_{t\to\infty}Q(t)=0$, then $Q\equiv 0$ and consequently $\lim_{n\to\infty}Q_n(t)=0$ for t>0. Take q and r such that $p+1< q< r<\frac{2N}{N-2}$. By the Hölder Inequality and the Sobolev Imbedding Theorem,

$$\int_{\mathbf{R}^{N}} |u_{n}|^{q} = \sum_{j=-\infty}^{\infty} \int_{\mathbf{R}^{N-1} \times [2j-1,2j+1]} |u_{n}|^{q}
\leq \sum_{j=-\infty}^{\infty} \left[\int_{\mathbf{R}^{N-1} \times [2j-1,2j+1]} |u_{n}|^{p+1} \right]^{\frac{r-q}{r-p-1}} \left[\int_{\mathbf{R}^{N-1} \times [2j-1,2j+1]} |u_{n}|^{r} \right]^{\frac{q-p-1}{r-p-1}}
\leq cQ_{n}(1)^{\frac{r-q}{r-p-1}} \sum_{j=-\infty}^{\infty} \left[\int_{\mathbf{R}^{N-1} \times [2j-1,2j+1]} (|\nabla u_{n}|^{2} + u_{n}^{2}) \right]^{\frac{r(q-p-1)}{2(r-p-1)}}.$$

Since $\lim_{r\to q} \frac{r(q-p-1)}{2(r-p-1)} = \frac{q}{2} > \frac{p+1}{2} > 1$, we can choose r so close to q that

$$\frac{r(q-p-1)}{2(r-p-1)} > 1.$$

We have

$$\sum_{j=-\infty}^{\infty} \left[\int_{R^{N-1} \times [2j-1,2j+1]} (|\bigtriangledown u_n|^2 + u_n^2) \right]^{\frac{r(q-p-1)}{2(r-p-1)}}$$

$$\leq \left[\sum_{j=-\infty}^{\infty} \int_{R^{N-1} \times [2j-1,2j+1]} (|\bigtriangledown u_n|^2 + u_n^2) \right]^{\frac{r(q-p-1)}{2(r-p-1)}}$$

$$= \left[\int_{R^N} (|\bigtriangledown u_n|^2 + u_n^2) \right]^{\frac{r(q-p-1)}{2(r-p-1)}}$$

$$= \alpha_n^{\frac{r(q-p-1)}{2(r-p-1)}}.$$

Therefore

$$\int_{\mathbf{R}^N} |u_n|^q \le c \alpha_n^{\frac{r(q-p-1)}{2(r-p-1)}} Q_n(1)^{\frac{r-q}{r-q-1}} = o(1) \quad as \quad n \to \infty.$$

By the interpolation property, $||u_n||_{L^{p+1}} = o(1)$ as $n \to \infty$, a contradiction. Therefore $\lim_{t\to\infty} Q(t) = \beta > 0$. Consequently there is $R_0 > 0$ such that $Q(R_0) > \frac{\beta}{2}$. Take $n_0 > 0$ such that $n \ge n_0$ implies $Q_n(R_0) > \frac{\beta}{2}$. Choose $\{y_n\}_{n=n_0}^{\infty} \subset \mathbf{R}$ such that

$$\int_{\mathbf{R}^{N-1} \times [y_n - R_0, y_n + R_0]} |u_n(x, y)|^{p+1} \ge \frac{\beta}{2}.$$

Let $\widetilde{u_n}(x,y) = u_n(x,y+y_n)$. Then

(2)
$$\int_{\mathbf{R}^{N-1}\times[-R_0,R_0]} |\widetilde{u_n}|^{p+1} \ge \frac{\beta}{2} \quad \text{for } n \ge n_0.$$

By Proposition 8, if necessary, replace R_0 by $R_0 + 1$, then we can take a subsequence $\{\widetilde{u_n}\}$ and \widetilde{u} such that

$$\lim_{n \to \infty} \widetilde{u_n} = \widetilde{u} \quad in \ L^{p+1}(\mathbf{R}^{N-1} \times [-R_0, R_0]).$$

By (2), $\not\equiv 0$. But since $\widetilde{u_n}(x) \in H_s(B_n)$, we have

$$\lim_{n \to \infty} \widetilde{u_n}(z) = 0 \quad \text{for } z \in \mathbf{R}^N,$$

a contradiction. Therefore

$$\lim_{r\to\infty}\alpha_s(B_r)=\infty.$$

3. Solvability of A_l

Note that by Lemma 10 and the Maximum Principle, $\alpha(A_l)$ does not admit any minimizer. However, in the following we will prove that $\alpha_s(A_l)$ admits a minimizer.

Main Theorem. A_l is solvable and $\alpha_s(A_l)$ admits a minimizer.

Proof. Take $r_1 > 0$ such that $I_{r_1} = \{(x,y) \in \Omega \mid |x| < r_1\} \neq \emptyset$. For $r \geq r_1$, decompose

$$\Omega = I_{r+1} \cup II_r$$

where

$$I_s = \{(x, y) \in \Omega \mid |x| < s\},\$$

$$II_r = \{(x, y) \in \Omega \mid |x| > r\}.$$

Then $\alpha_s(I_r)$ is decreasing in r and $\alpha_s(II_r)$ is increasing in r. Let

$$B_r = \{(x, y) \in \mathbb{R}^N \mid |x| > r\}.$$

By Theorem 11

$$\lim_{r \to \infty} \alpha_s(B_r) = \infty.$$

Take $r_2 \geq r_1$ such that

$$\alpha_s(B_{r_2}) \ge \alpha_s(I_{r_1}).$$

Therefore

$$\alpha_s(\mathbf{I}_{r_2+1}) \le \alpha_s(\mathbf{I}_{r_1}) \le \alpha_s(B_{r_2}) \le \alpha_s(\mathbf{II}_{r_2}).$$

Since

$$\lim_{r \to \infty} \inf\{|x| | (x, y) \in \Omega, |y| \ge r\} = \infty,$$

 I_{r_2+1} is bounded and axial symmetric. Therefore $\alpha_s(I_{r_2+1})$ admits a minimizer. By Theorem 4, $\alpha_s(A_l)$ admits a minimizer.

Remark 1. By the Main Theorem and the Maximum Principle, let A_l be as in the Main Theorem, we have

$$\alpha_s(A_l) > \alpha(A_l).$$

Similar proof as in the Main Theorem can be applied to obtain the following:

Corollary 12. For r > 0, let either

1.
$$\Omega = \{(x, y) \in \mathbf{R}^{N-1} \times \mathbf{R} \mid |x|^2 - r < y < |x|^2 + r\}, \text{ or }$$

2.
$$\Omega = \{(x,y) \mid 0 < y < |x|^2 + 2r\}.$$

Then $\alpha_s(\Omega)$ admits a minimizer.

REFERENCES

- 1. J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sc. Paris 299, Ser. I (1984), 209–212.
- 2. M. J. Esteban, Nonlinear elliptic problems in strip-like domains, symmetric of positive vortex rings, *Nonlinear Analysis TMA*, 7 (1983), 365–379.
- 3. M. J. Esteban, P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, *Proc. Royal Soc. Edinburgh* **93A** (1982), 1–12.
- 4. W. C. Lien, S. Y. Tzeng, and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains, *Diff. and Int. Eq.* **6** (1993), 1281–1298.

Shyuh-yaur Tzeng Department of Mathematics, Changhua University of Education Changhua, Taiwan

Hwai-chiuan Wang Department of Mathematics, Tsing Hua University Hsinchu, Taiwan