TAIWANESE JOURNAL OF MATHEMATICS Vol. 1, No. 2, pp. 135-142, June 1997

GLOBAL EXISTENCE OF SOLUTIONS OF CERTAIN HIGHER ORDER DIFFERENTIAL EQUATIONS

B. G. Pachpatte

Abstract. In this paper global existence results for certain higher order differential equations are established. Our analysis is based on a simple and classical application of the Leray-Schauder alternative.

1. INTRODUCTION

This paper is concerned with the global existence of solutions for initial value problems for higher order differential equations of the forms

(1)
$$L_m x(t) = f(t, x(t)),$$

(2)
$$x(0) = x_0, \quad L_{i-1} x(0) = 0, \quad i = 2, 3, \dots, m,$$

and

$$L_r x(t) = f(t, x(t)),$$

(4)
$$\begin{aligned} x(0) &= x_0, \quad x^{(i-1)}(0) = 0, \quad i = 2, 3, \cdots, r, \\ (p(0)x^{(r)}(0))^{(i-1)} &= 0, \quad i = 1, 2, \cdots, r, \end{aligned}$$

where $m \ge 1, r \ge 1$ are integers. As usual, \mathbb{R}^n denotes Euclidean n-space and $| \cdot |$ denotes the Euclidean norm. In (1)-(2) and (3)-(4), $f : [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$

Received January 13, 1994

Communicated by S.-Y. Shaw.

¹⁹⁹¹ Mathematics Subject Classification: Primary 34A12.

Key words and phrases: global existence, higher order differential equations, Leray-Schauder alternative, initial value problems, topological arguments.

B. G. Pachpatte

is a continuous function and x_0 is a given constant, the differential operators L_m, L_r are defined respectively by

$$L_m x(t) = \frac{1}{p_m(t)} \frac{d}{dt} \frac{1}{p_{m-1}(t)} \cdots \frac{1}{p_1(t)} \frac{d}{dt} x(t),$$
$$L_r x(t) = (p(t)x^{(r)}(t))^{(r)},$$

for $x \in \mathbb{R}^n$, in which $p_i(t)$, $i = 1, 2, \dots, m$; $p_i(t)$ are positive continuous and sufficiently smooth functions defined on [0, T]. In [4] Kusano and Trench have considered the question of global existence of solutions of special version of equation (1) with prescribed asymptotic behavior, by using Schauder-Tychonoff fixed point theorem (see, also [8]). The problems of existence and growth rates of positive monotonic bounded solutions of the slight variant of equation (3) have been studied by Edelson and Schuur [3] by using Schauder's fixed point theorem.

The main purpose of this paper is to study the global existence of solutions of equations (1)-(2) and (3)-(4) by using a simple and classical application of the topological transversality theorem of Granas [2, p. 61], known as Leary-Schauder alternative. An interesting feature of this method, is that this yields simultaneously the existence of a solution and the maximal interval of existence. In fact, our results in this paper are motivated by the earlier work of Wintner [10] and its extensions recently given by Bobisud and O'Regan [1], Lee and O'Regan [5, 6], Ntouyas, Sficas and Tsamatos [7] and others by using topological arguments based on the Leray-Schauder alternative.

2. Statement of Results

Our existence theorems are based on the following theorem, which is a version of the topological transversality theorem given by A. Granas in [2, p. 61].

Theorem G. Let B be a convex subset of a normed linear space E and assume $0 \in B$. Let $F : B \to B$ be a completely continuous operator and let

$$U(F) = \{ x \in B : x = \lambda Fx \text{ for some } 0 < \lambda < 1 \}.$$

Then either U(F) is unbounded or F has a fixed point.

Now we present our main result which deals with the global existence of solutions of the equations (1)-(2).

Theorem 1. Let $f : [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function. Assume that:

136

(A) There exists a continuous function $q: [0,T] \to R_+ = [0,\infty)$ such that

$$|f(t,x)| \le q(t)H(|x|), \quad 0 \le t \le T, \quad x \in \mathbb{R}^n,$$

where $H: [0, \infty) \to (0, \infty)$ is a continuous nondecreasing function.

Then the initial value problem (1)-(2) has a solution x defined on [0,T] provided T satisfies

(5)
$$\int_{0}^{T} M(t_{1}) dt_{1} < \int_{c}^{\infty} \frac{dt_{1}}{H(t_{1})},$$

where $c = |x_0|$ and

(6)
$$M(t) = p_1(t) \int_0^t p_2(t_2) \int_0^{t_2} p_3(t_3) \cdots \int_0^{t_{m-2}} p_{m-1}(t_{m-1}) \times \int_0^{t_{m-1}} p_m(t_m) q(t_m) dt_m dt_{m-1} \cdots dt_3 dt_2,$$

for $t \in [0, T]$.

Remark 1. We note that our result given in Theorem 1 extends the well known theorem of Wintner [10] on the existence of global solutions of initial value problems for first order differential equations, to higher order differential equations of the form (1)-(2). For further extensions of Wintner's theorem for first order differential equations, see [1, 5].

We next establish the following theorem on the global existence of solutions of the equations (3)-(4).

Theorem 2. Let $f : [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function which satisfies the hypothesis (A) in Theorem 1. Then the initial value problem (3)-(4) has a solution x defined on [0,T] provided T satisfies

(7)
$$\int_0^T N(t_{2r-1}) dt_{2r-1} < \int_c^\infty \frac{dt_{2r-1}}{H(t_{2r-1})}$$

where $c = |x_0|$ and

(8)
$$N(t) = \int_0^t \int_0^{t_{2r-2}} \cdots \int_0^{t_{r+1}} \frac{1}{p(t_r)} \int_0^{t_r} \cdots \int_0^{t_1} q(s) ds$$

$$\times dt_1 \cdots dt_r dt_{r+1} \cdots dt_{2r-2},$$

for $t \in [0, T]$.

Remark 2. We note that, our result given in Theorem 2 is a further extension of the Wintner's theorem given in [10], to higher order differential

equations of the form (3)-(4) which in turn yields the global existence of the solution of slight variant of the equations studied by Edelson and Schuur in [3]. For further properties of the solutions of the equations of the form (3)-(4), see [9].

3. Proofs of Theorems 1 and 2

To prove the existence of a solution of initial value problem (1)-(2) we apply Theorem G. First we establish the priori bounds for the initial value problem $(1)_{\lambda}$ -(2), $\lambda \in (0, 1)$, where

(1)_{$$\lambda$$}) $L_m x(t) = \lambda f(t, x(t)).$

Let x(t) be a solution of $(1)_{\lambda}$ -(2). Then it satisfies the equivalent integral equation

(9)
$$x(t) = x_0 + \lambda \int_0^t p_1(t_1) \int_0^{t_1} p_2(t_2) \cdots \int_0^{t_{m-2}} p_{m-1}(t_{m-1}) \\ \times \int_0^{t_{m-1}} p_m(t_m) f(t_m, x(t_m)) dt_m dt_{m-1} \cdots dt_2 dt_1.$$

From (9) and using the hypothesis (A) we have

(10)
$$|x(t)| \le |x_0| + \int_0^t p_1(t_1) \int_0^{t_1} p_2(t_2) \cdots \int_0^{t_{m-2}} p_{m-1}(t_{m-1}) \\ \times \int_0^{t_{m-1}} p_m(t_m) q(t_m) H(|x(t_m)|) dt_m dt_{m-1} \cdots dt_2 dt_1.$$

Define a function z(t) by the right side of (10), then $|x(t)| \leq z(t)$ and

(11)
$$z(t) \leq |x_0| + \int_0^t p_1(t_1) \int_0^{t_1} p_2(t_2) \cdots \int_0^{t_{m-2}} p_{m-1}(t_{m-1}) \\ \times \int_0^{t_{m-1}} p_m(t_m) q(t_m) H(z(t_m)) dt_m dt_{m-1} \cdots dt_2 dt_1.$$

Since z(t) is nondecreasing in t, from (11) we observe that

(12)
$$z(t) \leq |x_0| + \int_0^t p_1(t_1) H(z(t_1)) \int_0^{t_1} p_2(t_2) \cdots \int_0^{t_{m-2}} p_{m-1}(t_{m-1}) \times \int_0^{t_{m-1}} p_m(t_m) q(t_m) dt_m dt_{m-1} \cdots dt_2 dt_1.$$

Define a function u(t) by the right hand side of (12), then we have

$$z(t) \le u(t), t \in [0,T], u(0) = c,$$

and

$$u'(t) \le M(t)H(u(t)),$$

i.e.,

(13)
$$\frac{u'(t)}{H(u(t))} \le M(t).$$

Integrating (13) from 0 to t and using (5) we have

(14)
$$\int_{c}^{u(t)} \frac{dt_{1}}{H(t_{1})} \leq \int_{0}^{t} M(t_{1}) dt_{1} \leq \int_{0}^{T} M(t_{1}) dt_{1} < \int_{c}^{\infty} \frac{dt_{1}}{H(t_{1})} dt_{1}$$

From (14) we conclude that there is a constant Q independent of $\lambda \in (0, 1)$ such that $u(t) \leq Q$ and hence $z(t) \leq Q$ for $t \in [0, T]$. Thus we have $|x(t)| \leq Q$ for $t \in [0, T]$, and consequently

$$||x|| = \sup\{|x(t)| : 0 \le t \le T\} \le Q.$$

We define $B = C([0,T], R^n)$ to be the Banach space of all continuous functions from [0,T] into R^n endowed with the sup-norm

$$||x|| = \sup\{|x(t)| : 0 \le t \le T\}.$$

In the second step we rewrite the initial value problem (1)-(2) as follows. If $y \in B$ and $x(t) = y(t) + x_0$, $t \in [0, T]$, it is easy to see that y satisfies

$$y(0) = y_0 = 0,$$

$$y(t) = \int_0^t p_1(t_1) \int_0^{t_1} p_2(t_2) \cdots \int_0^{t_{m-2}} p_{m-1}(t_{m-1})$$

$$\times \int_0^{t_{m-1}} p_m(t_m) f(t_m, y(t_m) + x_0) dt_m dt_{m-1} \cdots dt_2 dt_1,$$

if and only if x satisfies (1)-(2).

Define $F: B_0 \to B_0, B_0 = \{y \in B : y_0 = 0\}$ by

(15)
$$Fy(t) = \int_0^t p_1(t_1) \int_0^{t_1} p_2(t_2) \cdots \int_0^{t_{m-2}} p_{m-1}(t_{m-1}) \\ \times \int_0^{t_{m-1}} p_m(t_m) f(t_m, y(t_m) + x_0) dt_m dt_{m-1} \cdots dt_2 dt_1$$

for $t \in [0,T]$. Then F is clearly continuous. Now we shall prove that F is completely continuous.

Let $\{w_k\}$ be a bounded sequence in B_0 , i.e.,

$$||w_k|| \leq b$$
 for all k ,

where b is a positive constant. From (15) and using the hypothesis (A) and letting $M^* = \sup\{M(t) : t \in [0, T]\}$, we have

$$|Fw_{k}(t)| \leq \int_{0}^{t} p_{1}(t_{1}) \int_{0}^{t_{1}} p_{2}(t_{2}) \cdots \int_{0}^{t_{m-2}} p_{m-1}(t_{m-1}) \\ \times \int_{0}^{t_{m-1}} p_{m}(t_{m})q(t_{m})H(|w_{k}(t_{m})| + |x_{0}|)dt_{m}dt_{m-1} \cdots dt_{2}dt_{1} \\ \leq T M^{*} H(b + |x_{0}|).$$

Hence we obtain

$$|Fw_k|| \le T M^* H(b + |x_0|).$$

This means that $\{Fw_k\}$ is uniformly bounded.

Now we shall show that the sequence $\{Fw_k\}$ is equicontinuous. Let $0 \le s_1 \le s_2 \le T$. Then

$$|Fw_{k}(s_{2}) - Fw_{k}(s_{1})|$$

$$\leq \int_{s_{1}}^{s_{2}} p_{1}(t_{1}) \int_{0}^{t_{1}} p_{2}(t_{2}) \cdots \int_{0}^{t_{m-2}} p_{m-1}(t_{m-1})$$

$$\times \int_{0}^{t_{m-1}} p_{m}(t_{m}) |f(t_{m}, w_{k}(t_{m}) + x_{0})| dt_{m} dt_{m-1} \cdots dt_{2} dt_{1}$$

$$\leq \int_{s_{1}}^{s_{2}} p_{1}(t_{1}) \int_{0}^{t_{1}} p_{2}(t_{2}) \cdots \int_{0}^{t_{m-2}} p_{m-1}(t_{m-1})$$

$$\times \int_{0}^{t_{m-1}} p_{m}(t_{m})q(t_{m})H(|w_{k}(t_{m})| + |x_{0}|) dt_{m} dt_{m-1} \cdots dt_{2} dt_{1}$$

$$\leq \int_{s_{1}}^{s_{2}} M^{*} H(b + |x_{0}|) dt_{1}.$$

From (16) we conclude that $\{Fw_k\}$ is equicontinuous and hence by the Arzela-Ascoli theorem the operator F is completely continuous.

Moreover, the set $U(F) = \{y \in B_0 : y = \lambda Fy, \lambda \in (0, 1)\}$ is bounded, since for every y in U(F) the function $x = y + x_0$ is a solution of $(1)_{\lambda}$ -(2), for which we have proved $||x|| \leq Q$ and hence $||y|| \leq Q + |x_0|$. Now an application of Theorem G shows that the operator F has a fixed point in B_0 . This means

140

that the initial value problem (1)-(2) has a solution. This completes the proof of Theorem 1.

The details of the proof of Theorem 2 follows by closely looking at the proof of Theorem 1 given above with suitable modifications. Here we omit the details.

Remark 3. We note that the results obtained in Theorems 1 and 2 can be extended very easily to the following higher order integrodifferential equations of the forms:

(17)
$$L_m x(t) = \int_0^t K(t,s) f(s,x(s)) ds,$$

with the initial conditions given in (2), and

(18)
$$L_r x(t) = \int_0^t K(t,s) f(s,x(s)) ds$$

with the initial conditions given in (4), under some suitable hypotheses on the functions involved in (17)-(2) and (18)-(4). We also note that one can easily extend the ideas of this paper to the equations of the forms (1), (3), (17) and (18) when the function f depends on the delay arguments, under appropriate initial conditions. For similar results for first order differential delay equations, see [6, 7].

References

- L. E. Bobisud and D. O'regan, Existence of solutions to some singular initial value problems, J. Math. Anal. Appl. 133 (1988), 214-230.
- J. Dugundji and A. Granas, Fixed Point Theory, Vol. I, Monografie Mathematyczne, PWN, Warsaw, 1982.
- 3. A. L. Edelson and J. D. Schuur, Nonoscillatory solutions of $(rx^{(n)})^{(n)} \pm f(t, x)x = 0$, *Pacific J. Math.* **109** (1983), 313-325.
- T. Kusano and W. F. Trench, Global existence theorems for solutions of nonlinear differential equations with prescribed asymptotic behavior, J. London Math. Soc. 31 (1985), 478-486.
- J. W. Lee and D. O'regan, Topological transversality: Application to initialvalue problems. Ann. Polon. Math. 48 (1988), 247-252.
- J. W. Lee and D. O'regan, Existence results for differential delay equations, I, J. Differential Equations 102 (1993), 342-359.
- S. K. Ntouyas, Y. G. Sficas and P. CH. Tsamatos, Existence results for initial value problems for neutral functional differential equations, *J. Differential Equations* 114 (1994), 527-537.

B. G. Pachpatte

- 8. B. G. Pachpatte, On a class of nonlinear higher order differential equations, Indian J. Pure Appl. Math. 20 (1989), 121-128.
- 9. M. Venckova, On the boundedness of solutions of higher order differential equations, Arch. Math. Scripta Fac. Sci. Nat. Ujep Brunensis 13 (1977), 235-242.
- A. Wintner, The nonlocal existence problem for ordinary differential equations, Amer. J. Math. 67 (1945), 277-284.

Department of Mathematics, Marathwada University Aurangabad 431004, (Maharashtra) India