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STRONGLY CONTINUOUS GROUPS, SIMILARITY AND
NUMERICAL RANGE ON A HILBERT SPACE

Ralph deLaubenfels

Abstract. It is shown that iB generates a strongly continuous group of
exponential type ω on a Hilbert space if and only if for all α > ω, B is
similar to an operator with spectrum and numerical range contained in
the horizontal strip {z ∈ C | |Im(z)| < α}.

1. Introduction

It is a well-known result due to Sz-Nagy (see, for example, [5, Theorem
4.8.1]) that, if iB generates a bounded strongly continuous group on a Hilbert
space, then B is similar to a self-adjoint operator. This is equivalent to saying
that B is similar to an operator whose spectrum and numerical range are
contained in the real line. In this paper, a similar result for generators of
arbitrary strongly continuous groups on a Hilbert space is proven. It is shown
that iB generates a strongly continuous group of exponential type ω if and
only if for all α > ω, B is similar to an operator whose spectrum and numerical
range are contained in the horizontal strip {z ∈ C | |Im(z)| < α} (Theorem
2.4).

These results are closely related to Halmos’s conjecture about operators
that are similar to a contraction; see Remark 2.5. The paper concludes with
some open questions.

Throughout, all operators are linear, on a Hilbert space H, with inner
product < >. Denote by D(G) the domain of the operator G, by ρ(G) its
resolvent set, and by σ(G) its spectrum. The space of bounded operators
from H to itself will be written as B(H).
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An operator B is similar to an operator G if there exists S ∈ B(H), with
0 ∈ ρ(S), such that B = SGS−1.

Definition 1.1. The numerical range of an operator G is

{< Gx, x > |x ∈ D(G), ‖x‖ = 1}.

Definition 1.2. If Ω is an open subset of the complex plane, whose closure
is not the entire plane, all eigenvalues of the operator A are contained in Ω and
σ(A) ⊆ Ω, then an H∞(Ω) functional calculus for A is a continuous algebra
homomorphism, f 7→ f(A), from H∞(Ω) into B(H), such that f0(A) = I
(f0(z) ≡ 1) and (z 7→ (λ− z)−1)(A) = (λ−A)−1, for all λ /∈ Ω.

Of particular interest in this paper will be horizontal strips

Hα ≡ {z ∈ C | |Im(z)| < α}

and sectors
Sα ≡ {reiφ | |φ| < α, r > 0},

for α > 0.

Definition 1.3. If A generates a strongly continuous group (semigroup),
it will be denoted by {etA}t∈R({etA}t≥0). See [7], [10] or [11] for basic material
on strongly continuous semigroups.

A strongly continuous group {etA}t∈R is of exponential type ω if, for all
α > ω, there exists a constant Mα such that

‖etA‖ ≤ Mαe|t|α, ∀t ∈ R.

Definition 1.4. Suppose iB generates a strongly continuous group of
exponential type ω < π

2 . As in [2] and [3, Chapter XXII] (see also [4, Example
4.1]), define −eB to be the generator of the regularized semigroup

W (t) ≡
∫

∂Hγ

e−tew
(w −B)−1 dw

2πi(iπ
2 − w)2

(t ≥ 0),

where ω < γ < π
2 . Note that the integral converges because ‖(w − B)−1‖

is bounded in |Im(w)| ≥ γ. See [2] or [3] for basic material on regularized
semigroups.

By [4, Example 4.1(7)], eB is injective.
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2. Main Results.

The proof of Theorem 2.4 is short, relying on two results. First, Le Merdy
recently showed ([8]) that a strongly continuous holomorphic semigroup is sim-
ilar to a semigroup of contractions if and only if the generator has an H∞(−Sθ)
functional calculus, for some θ < π

2 . Second, it is shown in [2] that the gener-
ator of a strongly continuous group of exponential type ω automatically has
an H∞(iHα) functional calculus, for any α > ω. Finally, the exponential
function, as in Definition 1.4, allows us to switch from strips Hα to sectors Sα.

The following result is actually stated in terms of bounded imaginary pow-
ers; see [9] for the equivalence with H∞ functional calculi.

Lemma 2.1([8, Theorem 1.1]) Suppose −A is injective and generates
a bounded strongly continuous analytic semigroup {e−tA}t≥0. Then {e−tA}t≥0

is similar to a semigroup of contractions if and only if A has an H∞(Sπ
2
)

functional calculus.

Lemma 2.2 The following are equivalent, if ω ≥ 0.

(a) iB generates a strongly continuous group of exponential type ω.

(b) B has an H∞(Hα) functional calculus, for all α > ω.

If ω < π
2 , then these are equivalent to

(c) eB has an H∞(Sα) functional calculus, for all α > ω.

Then
f(eB) ≡ (f ◦ g)(B) (f ∈ H∞(Sα)),

where g(z) ≡ ez.

Proof: The equivalence of (a) and (b) is in [2, Theorem 3.5]. The equiva-
lence of (b) and (c) is in [2, Corollary 2.9], and its proof.

The following is well known (in fact, the growth condition at infinity may
be removed); a simple proof is included for completeness, and to introduce
Remark 2.5.

Lemma 2.3. Suppose −A generates a strongly continuous semigroup of
contractions. Then A has an A(Sπ

2
) functional calculus, with

‖f(A)‖ ≤ ‖f‖H∞(S π
2

) ∀f ∈ A(S π
∈
),
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where

A(Sπ
2
) ≡ {f ∈ H∞(Sπ

2
) ∩ C(Sπ

2
) | lim

|z|→∞,z∈S π
2

f(z) exists }.

Proof: Let T ≡ (A − 1)(A + 1)−1. Then T is a contraction, thus by
Von Neumann’s inequality (see, for example, [1, Proposition X.1.7]) has an
A(D) ≡ H∞(D) ∩ C(D) functional calculus, where D is the unit disc, with

‖h(T )‖ ≤ ‖h‖A(D) ∀h ∈ A(D).

Let k(z) ≡ (1 + z)(1 − z)−1, mapping D onto Sπ
2
. Then A = k(T ) ≡ (1 +

T )(1− T )−1, so
f(A) ≡ (f ◦ k)(T ) (f ∈ A(Sπ

2
))

defines an A(Sπ
2
) functional calculus for A, with

‖f(A)‖ = ‖(f ◦ k)(T )‖ ≤ ‖(f ◦ k)‖A(D) = ‖f‖A(S π
2

),

for all f ∈ A(Sπ
2
), as desired.

Theorem 2.4. The following are equivalent, if ω ≥ 0.

(a) iB generates a strongly continuous group of exponential type ω.

(b) For any α > ω, B is similar to an operator Bα such that iBα generates
a strongly continuous group with ‖eitBα‖ ≤ eα|t|, ∀t ∈ R.

(c) For any α > ω, B is similar to an operator whose spectrum and numer-
ical range are contained in Hα.

(d) B has an H∞(Hα) functional calculus, for all α > ω.

Proof: It is well known (see [7], [10] or [11]) that (b) and (c) are equivalent,
and it is clear that (b) → (a). The equivalence of (d) and (a) is in Lemma 2.2.
All that remains is (a) → (c).

Since spectrum is preserved under similarity, it is sufficient to show that,
for any α > ω, B is similar to an operator Bα with numerical range contained
in Hα.

Fix α > ω, and let r ≡ π
2α . Then i(rB) generates a strongly continuous

group of exponential type rω. Since rω < π
2 , by Lemma 2.2 there exists φ < π

2
such that erB has an H∞(Sφ) functional calculus. By Lemma 2.1, there exists
Sα ∈ B(H) such that 0 ∈ ρ(Sα) and

‖Sαe−terB
S−1

α ‖ ≤ 1, ∀t ≥ 0.
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Lemma 2.3 implies that erB has an A(S π
2
) functional calculus, with

‖Sαf(erB)S−1
α ‖ ≤ ‖f‖H∞(S π

2
), ∀f ∈ A(Sπ

2
).

Define iBα as the generator of the strongly continuous group

eitBα ≡ SαeitBS−1
α (t ∈ R).

For λ ∈ R, with |λ| > α, define

gλ(z) ≡ r(irλ− ln z)−1 (z ∈ Sπ
2
).

Then
‖(iλ−Bα)−1‖ = ‖Sαr(irλ− rB)−1S−1

α ‖
= ‖Sα

(
(z 7→ r(irλ− z)−1)(rB)

)
S−1

α ‖
= ‖Sαgλ(erB)S−1

α ‖
≤ ‖gλ‖H∞(S π

2
)

= r(r|λ| − π
2 )−1 = (|λ| − α)−1.

This implies that the numerical range of Bα is contained in Hα, as desired.

Remark 2.5. Halmos’s sixth problem ([6]) asks if every polynomially
bounded operator is similar to a contraction. An operator T is polynomially
bounded if there exists a constant M such that

‖p(T )‖ ≤ M sup
z∈D

|p(z)|,

for all polynomials p, where D is the unit disc.
By Von Neumann’s inequality, the converse is true. Note that T is poly-

nomially bounded if and only if T has an A(D) ≡ H∞(D) ∩ C(D) functional
calculus.

As mentioned in the proof of Lemma 2.3 (see also the assertion before
Lemma 2.3), by applying the Cayley transform k(z) ≡ (1 + z)(1− z)−1, Hal-
mos’s problem is equivalent to asking if, whenever A is densely defined and
has an H∞(Sπ

2
) ∩ C(Sπ

2
) functional calculus, is −A similar to an operator

that generates a strongly continuous semigroup of contractions? See [8] for a
strong result in this direction.

By Lemma 2.2, and some additional argument, Halmos’s problem may
be reformulated in a third way, as follows. If B has an H∞(Hα) ∩ C(Hα)
functional calculus, is B similar to an operator G such that

‖f(G)‖ ≤ ‖f‖A(Hα), ∀f ∈ H∞(Hα) ∩ C(Hα)?
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This, and Theorem 2.4, suggest many open questions.

Open Questions 2.6. Consider the following, for ω > 0, D(B) dense.

1. The operator iB generates a strongly continuous group such that ‖eitB‖ =
O(eω|t|).

2. The operator iB generates a strongly continuous group, and there exists
S ∈ B(H) such that 0 ∈ ρ(S) and

‖SeitBS−1‖ ≤ eω|t|, ∀t ∈ R.

3. The operator B has an H∞(Hω) ∩ C(Hω) functional calculus.

4. The operator B has an H∞(Hω)∩C(Hω) functional calculus, and there
exists S ∈ B(H) such that 0 ∈ ρ(S), and

‖Sf(B)S−1‖ ≤ ‖f‖H∞(Hω) ∀f ∈ H∞(Hω) ∩ C(Hω).

What are the relationships between (1)–(4)? It is straightforward to show
that (3) → (1) and (4) → (2).

Does (1) imply (2)? By Theorem 2.4, (1) implies that, for any α greater
than ω, there exists Sα such that

‖SαeitBS−1
α ‖ ≤ eα|t| ∀t ∈ R.

But now we are asking for sharp boundary behaviour.
As I commented before, (3) → (4) is equivalent to Halmos’s conjecture

about polynomially bounded operators being similar to a contraction.
For ω ≤ π

2 , assertion (4) is equivalent to eB being sectorial; thus (2) →
(4) would be a numerical range mapping theorem; that is, it would be stating
that, if the numerical range of B is contained in Hω, then the numerical range
of eB is contained in eHω = Sω. Note in particular that (4), with ω = π

2 ,
is equivalent to eB having numerical range and spectrum contained in Sπ

2
,

which is equivalent to −eB generating a strongly continuous semigroup of
contractions.

Does (2) imply (3), or, better yet, (4)? Note that, for ω ≤ π
2 , the sectorial

analogue of (2) does imply the sectorial analogue of (4); by “sectorial analogue”
I mean, in (4), replace Hω with Sω, and replace (2) with

(2
′
) −A generates a strongly continuous analytic semigroup {e−zA}z∈S( π

2−ω)

such that
‖Se−zAS−1‖ ≤ 1 ∀z ∈ S(π

2
−ω),

(for ω < π
2 ); or
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(2
′
) −A generates a strongly continuous semigroup of contractions (for ω =

π
2 ).
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