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HILBERT C∗-MODULES : A USEFUL TOOL

Sze-Kai Tsui

Abstract. In this article, we show how the concept of Hilbert C∗-module
can be used to investigate completely positive linear maps. We show
when two unital pure completely positive linear maps of a C∗-algebra into
Mn are unitarily equivalent. We also develop and characterize a concept
of weak containment between two completely positive linear maps of a
C∗-algebra into a von Neumann algebra. In preparation, we exhibit some
basic known properties of Hilbert C∗-modules. In addition, we explore
the norm of the standard Hilbert column C∗-modules and show it is the
Haagerup tensor norm of two operator spaces.

1. Introduction

The subject of this article first appeared in the work of the induced rep-
resentations of C∗-algebras by Rieffel [16] and the doctoral dissertation of
Paschke [15]. Later on, it was used to study the Morita equivalence of C∗-
algebras by Rieffel et al. [6, 7, 17] and KK-theory of C∗-algebra by Kasparov
[12, 13]. More recently, Woronowicz and others use this notion in studying
C∗-algebra quantum group theory [23, 24, 25]. It is apparent that the subject
has been used in the study of other seemingly unrelated subjects in opera-
tor algebras. One of the original topics investigated in Paschke’s paper is
completely positive linear maps on operator algebras and it is there he used
the concept of Hilbert C∗-module to generalize the GNS construction of a
representation generated by a state to a “Hilbert C∗-module” representation
generated by a completely positive linear map. In this article, we start out
with this connection to derive some properties of completely positive linear
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maps and then expand to connections with tensor products. Earlier works
of studying extreme n-positive linear maps using Hilbert C∗-modules can be
found in [15, 20, 21, 22]. With regard to the references for the subject we have
no intension to provide a comprehensive list, and therefore some omissions are
inevitable.

In Section 3 we investigate the role of the Hilbert B-module Xφ generated
by a completely positive map φ of a C∗-algebra A into another B. Any state
ϕ on B can induce a representation π̂φ of A on Xφ ⊗B Hϕ where Hϕ is the
GNS representation generated by ϕ. In case B = B(H) and ϕ is a vector
state, then π̂φ is the Stinespring representation. In general such a pair φ, ϕ
can induce a representation π̂φ,ϕ of A ⊗max B on Xφ ⊗B Hϕ. We show that
for pure unital maps ψ, φ in CP (A,Mn), π̂φ, and π̂ϕ are unitarily equivalent
if and only if there is a unitary element u in A such that ψ(x) = φ(u∗xu)
for all x in A. For ψ, φ in CP (A,N) where N is a von Neumann algebra,
we provide a more concise proof of the necessary and sufficient condition for
π̂φ,ϕ being weakly contained in π̂ψ,ϕ, where ϕ is a semi-finite normal faithful
weight of N . In Section 4 we exhibit an “operator space” like property on the
standard column A-module in terms of the Haagerup tensor product. Some
similar discussions can also be found in the recent work of D. Blecher [3, 4].
In Section 2, we lay out some basic properties of Hilbert C∗-modules. Readers
may find more detailed expositions on Hilbert C∗-modules in [4, 14, 15].

2. Hilbert C∗-modules

Let A be a C∗-algebra (not necessarily unital), and C be the complex field.

Definition 2.1. A pre-Hilbert A-module is a right A-module X equipped
with a sesquilinear map 〈·, ·〉 : X ×X → A satisfying

( i ) 〈x, x〉 ≥ 0; 〈x, x〉 = 0 only if x = 0 for all x in X.

( ii ) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 for all x, y, z in X, α, β in C.

(iii) 〈x, y〉 = 〈y, x〉∗ for all x, y in X.

(iv) 〈x, y · a〉 = 〈x, y〉a for all x, y in X, a in A.

The map 〈·, ·〉 is called an A-valued inner product of X, and for x ∈ X, we
define ‖x‖ = ‖〈x, x〉‖ 1

2 . 2

Proposition 2.2. Let X be a pre-Hilbert A-module.

( i ) ‖ · ‖ is a norm on X;
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( ii ) ‖x · a‖ ≤ ‖x‖ ‖a‖ for all x ∈ X, a ∈ A;

(iii) 〈x, y〉〈y, x〉 ≤ ‖y‖2〈x, x〉 for all x, y ∈ X.

Proof. (i) It follows from (i) of 2.1.

( ii ) 〈xa, xa〉 = a∗〈x, x〉a ≤ ‖x‖2a∗a for all x ∈ X, a ∈ A. Thus ‖xa‖2 ≤
‖x‖2‖a‖2 and ‖xa‖ ≤ ‖x‖ ‖a‖ for all x ∈ X, a ∈ A.

(iii) For a ∈ A, x, y ∈ X, we have

0 ≤ 〈x + ya, x + ya〉 = 〈x, x〉+ 〈ya, x〉+ 〈x, ya〉+ 〈ya, ya〉
= 〈x, x〉+ a∗〈y, x〉+ 〈x, y〉a + a∗〈y, y〉a
≤ 〈x, x〉+ a∗〈y, x〉+ 〈x, y〉a + ‖y‖2a∗a.

Set a = −〈y,x〉
‖y‖2 in the above inequality and get

0 ≤ 〈x, x〉 − 2〈x, y〉〈y, x〉
‖y‖2

+
〈x, y〉〈y, x〉
‖y‖2

= 〈x, x〉 − 〈x, y〉〈y, x〉
‖y‖2

. 2

Definition 2.3. The completion of a pre-Hilbert A-module with respect to
the norm induced by the A-valued inner product is called a Hilbert A-module.

Examples of Hilbert C∗-modules are abound.

Example 2.4. Let A be a C∗-algebra. A is a Hilbert A-module if an
A-valued inner product is defined by 〈x, y〉 = x∗y for all x, y ∈ A. Any closed
right ideal of A is a Hilbert sub-A-module under the above inner product.

Example 2.5. Let {Xi} be a finite family of Hilbert A-modules. Then⊕
i

Xi is a Hilbert A-module with its inner product defined by 〈(ai), (bi)〉 =
∑
i
〈ai, bi〉. When {Xi} is an infinite family of Hilbert A-modules we define

⊕
i

Xi =
{

(xi)|
∑
i
〈xi, xi〉 converges in norm in A

}
. Thus

⊕
i

Xi is a Hilbert A-

module with the inner product defined by 〈(ai), (bi)〉 =
∑
i
〈ai, bi〉. In case A is a

von Neumann algebra we may also consider
⊕
i
Xi =

{
(xi)|

∑
i
〈xi, xi〉 converges

in σ−topology in A

}
. Then,

⊕
i

Xi ⊆
⊕
i
Xi.

Example 2.6. Standard Hilbert A-modules.
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We consider
⊕
i∈I

Xi, where Xi = A. However, if A ⊆ B(K) for some Hilbert

space K, then elements in
⊕
i∈I

Xi can be considered as operators on l2(I)
⊕

K

with “matrix” expressions of column matrices x with entries in A. The inner
product is simply 〈y, z〉 = y∗z. This Hilbert A-module, denoted by CI(A),
is called a standard Hilbert column A-module. Likewise, we may consider a
standard Hilbert row A-module RI(A) which consists of finite or infinite rows
with entries in A with an apparent inner product. Actually, the definition can
easily extend to operator spaces Xi = B ⊆ A. Another way to describe CI(A)
is as follows. Consider the algebraic tensor l2(I)

⊗
A of l2(I) and A. Thus

l2(I)
⊗

A has an A-valued inner product defined in terms of the simple tensor
product as 〈ξ ⊗

a, η
⊗

b〉 = 〈ξ, η〉a∗b for ξ, η, in l2(I) and a, b in A. Then the
completion of l2(I)

⊗
A is CI(A).

Suppose that X,Y are Hilbert A-modules. We define L(X,Y ) to be the
set of all maps T : X → Y for which there is a map T ∗ : Y → X such that
〈Tx, y〉 = 〈x, T ∗y〉 for all x in X and y in Y . It is easy to see that such T must
be A-linear (i.e., T is lineal and T (xa) = T (x)a for all x in X, a in A). For each
x in the unit ball X1 of X, define fx : Y → A by fx(y) = 〈Tx, y〉 for y in Y .
Then ‖fx(y)‖ ≤ ‖T ∗y‖ for all x in X1. It follows from the Banach-Steinhaus
theorem that the set {‖fx‖ : x ∈ X1} is bounded, and hence T is bounded.
T ∗ is called the adjoint of T . We note that not every A-linear bounded map
from X into Y has an adjoint. In particular L(X, X) ≡ L(X) is a *-algebra
and in fact a C∗-algebra, for it is closed under the operator norm and, for T
in L(X),

‖T ∗T‖ ≥ sup{‖〈T ∗Tx, x〉‖ : x ∈ X1}
= sup{‖〈Tx, Tx〉‖ : x ∈ X1} = ‖T‖2.

We define X
′
(or HomA(X, A)) to be the set of all bounded A-linear maps

of X into A. Any element x ∈ X induces a bounded A-linear map φx by
φx(y) = 〈x, y〉 for y in X.

Definition 2.7. A Hilbert A-module is said to be self-dual if X
′
comprises

exactly bounded A-linear maps induced by elements in X.

To have X
′
in the same category, one asks if X

′
can be made an A-module.

At least for a von Neumann algebra A, X
′

can be a Hilbert A-module. The
procedure is as follows. Let M be a von Neumann algebra with its predual
M∗ and X, a Hilbert M -module. For each f ∈ M+∗ , the positive cone of
M∗, we denote the GNS representation of M generated by f as {πf ,Hf}.
It is easy to check that f(〈·, ·〉) induces a pseudo inner product on X. We
denote Nf = {x ∈ X : f(〈x, x〉) = 0} which is a closed subspace of X. It
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follows that X/Nf is a pre-Hilbert space with an inner product defined by
〈[x], [y]〉 = f(〈x, y〉) which is a result of Proposition 2.2-(iii). We denote the
completion of X/Nf by Hf . The following is taken from [15].

Proposition 2.8. Let T be a bounded A-map from a Hilbert A-module X
into another Y . Then ‖T‖2 = inf{k : 〈Tx, Tx〉 ≤ k〈x, x〉 ∀ x ∈ X}.

Proof. We may assume ‖T‖ = 1 and A is unital. First, we show that
〈Tx, Tx〉 ≤ 〈x, x〉 for all x in X. For x ∈ X and n = 1, 2, · · · we set bn =
(〈x, x〉+n−1)−

1
2 and xn = x·bn. We have 〈xn, xn〉 = b∗n〈x, x〉bn = 〈x, x〉(〈x, x〉+

n−1)−1 and ‖xn‖ ≤ 1. It follows that ‖Txn‖ ≤ 1 and 〈TXn, Txn〉 ≤ 1 for
n = 1, 2, · · ·. Since 〈Txn, Txn〉 = 〈T (x · bn), T (x · bn)〉 = 〈(Tx)bn, (Tx)bn〉 =
b∗n〈Tx, Tx〉bn, it follows that 〈Tx, Tx〉 = b−1

n 〈Tx, Tx〉b−1
n ≤ b−2

n = 〈x, x〉+n−1

for n = 1, 2, · · ·, and hence 〈Tx, Tx〉 ≤ 〈x, x〉. Thus, inf{k : 〈Tx, Tx〉 ≤
k〈x, x〉 ∀ x ∈ X} ≤ 1. However, suppose that there exits a positve real
number k < 1 such that 〈Tx, Tx〉 ≤ k〈x, x〉 for all x in X. Thus it is obvious
that ‖T‖≤k, which contradicts the assumption of ‖T‖ = 1. Thus, inf{k :
〈Tx, Tx〉 ≤ k〈x, x〉 ∀ x ∈ X} = 1. 2

Consider ϕ ∈ X
′

and f ∈ M+∗ . It follows from Proposition 2.8 that
ϕ(x)∗ϕ(x) ≤ ‖ϕ‖2〈x, x〉 for all x in X, and |f(ϕ(x)∗ϕ(x))| ≤ ‖ϕ‖2f(〈x, x〉).
Thus f ◦ϕ(Nf ) = 0, and f ◦ϕ defines a bounded linear functional on Hf . By
the Riesz representation theorem, there is aϕ inHf with ‖aϕ‖ ≤ ‖f‖ 1

2 ‖ϕ‖ such
that (f ◦ϕ)(a) = 〈aϕ, a〉f for all a in H. For a pair of ϕ, η in X

′
and f ∈ M+∗ ,

we first define a sesqui-linear functional by 〈aϕ, aη〉f via f . It can be verified
that Fϕ,η : f 7−→ 〈aϕ, aη〉f can be extended to a linear functional on M∗. Next
we show that Fϕ,η is bounded. Indeed, for g ∈ M∗, g = f1−f2+i (f3−f4), fi ∈
M+∗ , and

4∑
i=1

‖fi‖ ≤ 2‖g‖. Then we have

|Fϕ,η (g)| ≤
4∑

i=1

〈ai
ϕ, ai

η〉fi
≤

4∑

i=1

‖ai
ϕ‖fi

‖ai
η‖fi

≤
4∑

i=1

‖ϕ‖ ‖η‖ ‖fi‖ ≤ 2‖ϕ‖ ‖η‖ ‖g‖.

Thus Fϕ,η ∈ M , and we define an M -inner product on X
′

by 〈ϕ, η〉 = Fϕ,η.
We leave it to the readers to check that this is indeed an inner product on X

′
.

Next, we show the inner product constructed above is an extension of that
on X viewed as a submodule of X

′
. For x, y in X and f ∈ M+∗ , f(〈ϕx, ϕy〉) =

Fϕx,ϕy(f) = 〈aϕx , aϕy〉f = f(〈aϕx , aϕy〉) = f(〈x, y〉), and thus 〈ϕx, ϕy〉 =
〈x, y〉.
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Finally, we show X
′
is self-dual. Let φ ∈ (X

′
)
′
, and embed X in X

′
. Thus,

φ|X ∈ X
′
. Namely, there is η ∈ X

′
such that φ(ϕx) = η(x) for all x in X. Let

φ0(ξ) = φ(ξ) − 〈η, ξ〉 for ξ in X. We show φ0 = 0. For ξ ∈ X
′
and f ∈ M+∗ ,

there is a sequence {[yn]} in X/Nf converging to aξ. From Proposition 2.8 we
have φ0(σ)∗φ0(σ) ≤ ‖φ0‖〈σ, σ〉 for all σ ∈ X

′
, and thus, for n = 1, 2, · · ·

f(φ0(ξ)∗φ0(ξ)) = f(φ0(ξ − ϕyn)∗φ0(ξ − ϕyn))

≤ ‖φ0‖f(〈ξ − ϕyn , ξ − ϕyn〉)
= ‖φ0‖{〈aξ, aξ〉f − 〈[yn], aξ〉f − 〈aξ, [yn]〉f − 〈[yn], [y]〉f}
= ‖φ0‖ ‖aξ − [yn]‖2

f .

It follows that f(φ0 (ξ)∗φ0(ξ)) = 0. Thus φ0 = 0.
We summarize the above in the following theorem.

Theorem 2.9. Let X be a pre-Hilbert M -module, where M is a von
Neumann algebra. Then the inner product on X extends to X

′
such that X

′

is self-dual.

In general for a Hilbert A-module X (A being a C∗-algebra), the Riesz
representation theorem for Hilbert spaces does not generalize to X

′
but to

a subspace of X
′
, which is to be discussed below. Let X,Y be two Hilbert

A-modules. For x in X, y in Y , we define Tyx : X → Y by

Ty,x(z) = y〈x, z〉 for all z in X.

It is easy to check that Tx,y in L(X, Y ) satisfies the following conditions:





(Ty,x)∗ = Tx,y

Tu,vTy,x = Tu〈v,y〉,x = Tu,x〈y,v〉
STy,x = TSy,x

Ty,xP = Ty,P ∗x for all v ∈ Y, u ∈ Z, S ∈ L(Y, Z), P ∈ L(Z, X).

(2.10)

We denote by K(X, Y ) the closed subspace of L(X,Y ) spanned by {Ty,x :
x ∈ X, y ∈ Y } and we write K(X) for K(X,X). It follows from (2.10) that
K(X) is an ideal of L(X). In case of X = A, we have K(A) ∼= A, the
isomorphism being given by identifying Ty,x with the left multiplication by
yx∗. If A is unital, then K(A) = L(A). In general L(X) can be proved to be
the multiplier algebra of K(X) (see [14]). To conclude this section we have
the following proposition.

Proposition 2.11. Suppose that X is a Hilbert A-module for a C∗-algebra
A. Then K(X, A) is the set of ϕx for x ∈ X.
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Proof. It is easy to see that for x ∈ X, ϕ∗x(a) = xa for all a ∈ A, and
hence ϕx ∈ L(X, A). For x ∈ X of the form x = ya∗ for some y in X and
a ∈ A, we have, for all z in X,

ϕx(z) = 〈x, z〉 = 〈ya∗, z〉 = a〈y, z〉
= Ta,y(z).

Thus, ϕx = Ta,y. It is clear that x 7−→ ϕx is an isometry. Next, we show that
‖x · eα − x‖ → 0 for x in X and an approximate unit {eα} of A. Then it will
follow that ϕx = lim

α
ϕxeα is in K(X,A). Indeed, for x ∈ X, 〈x−xeα, x−xeα〉 =

〈x, x〉 − eα〈x, x〉 − 〈x, x〉eα + eα〈x, x〉eα converges to 0.
Conversely, for a ∈ A, y ∈ X, Ta,y = ϕya∗ . It is easy to see that for

x, y ∈ X, α ∈ C, αϕx +ϕy = ϕαx+y. Through the linear span of Ta,y, isometry
of x 7→ ϕx, and the density of XA in X, we have that every element of K(X,A)
is of the form ϕx for some x ∈ X. 2

3. Hilbert C∗-modules Induced by Completely Positive Maps

Let Φ be a completely positive linear map from a C∗-algebra A into another
B, and A⊗B be the algebraic tensor product of A and B. A⊗B becomes an
A-B-module by left multiplication of elements in A and right multiplication

of elements in B, i.e., a

(
n∑

i=1
ai ⊗ bi

)
b =

∑
aai ⊗ bib, for ai, a ∈ A and

bi, b ∈ B, i = 1, · · · , n. We define a B-valued sesqui-linear map, 〈, 〉B, on

A ⊗ B by

〈
n∑

i=1
ai ⊗ bi,

m∑
j=1

a
′
j ⊗ b

′
j

〉

B

=
∑
i,j

b∗i Φ(a∗i a
′
j)b

′
j , where ai, a

′
j are in

A and bi, b
′
j , are in B for i = 1, · · · , n, j = 1, · · · ,m. For x ∈ A ⊗ B, x =

n∑
i=1

ai ⊗ bi, 〈x, x〉B =
n∑

i,j=1
b∗i Φ(a∗i aj)bj = b̂∗[In ⊗ Φ(â∗â)]b̂ is positive in B,

where â = [ai, · · · , an]∗ and b̂ = [b1, · · · , bn]. For x, y, z ∈ A ⊗ B one can
easily check 〈x, y〉 = 〈y, x〉∗, 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 for α, β ∈ C, and
〈x, y · b〉 = 〈x, y〉b for b ∈ B. Let NΦ = {x ∈ A ⊗ B : Φ(x∗x) = 0}. It is easy
to check that NΦ is an A-B-submodule, and then A⊗ B/NΦ is a pre-Hilbert
B-module, and its completion is a Hilbert B-module denoted by XΦ (or X if
without confusion).

Next, we may construct a (natural) *-homomorphism πΦ, from A into
L(X) by πΦ(a

′
)([a⊗ b]) = [a

′
a⊗ b] for a, a

′
in A and b in B. It is well-defined

for NΦ is an A-B-submodule, and πΦ(a
′
)∗ = πΦ(a

′∗) for a
′ ∈ A. This is a

generalization of the GNS representation.

Theorem 3.1. Let Φ be a completely positive linear map from a unital
C∗-algebra A into another B. Then there is a Hilbert B-module X, an element

117
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x in X and a *-representation πφ of A into L(X) such that Φ(a) = 〈πΦ(a)x, x〉
for all a in A.

Proof. It only remains to show [1 ⊗ 1] = x in X gives rise to Φ. Indeed
〈πφ(a)[1⊗ 1], [1⊗ 1]〉 = 〈[a⊗ 1], [1⊗ 1]〉 = Φ(a) for all a in A. 2

Let ϕ be a state on B and {Hϕ, πϕ} be the GNS representation pair induced
by ϕ. Then Hφ,ϕ = Xφ ⊗B Hϕ is the induced representation π̂φ of πϕ via Xφ

first introduced by Rieffel [16].

Proposition 3.2. Let B = B(H), the C∗-algebra of all bounded linear
operators on a Hilbert space H, and Φ be a completely positive linear map of
a C∗-algebra A into B. Then the Stinespring representation is the induced
representation π̂φ of πϕ via Xφ by a vector state ϕ on B(H).

(The proof is straightforward and left to the readers.)

In case B is a von Neumann algebra N , we consider the standard repre-
sentation (see [19]) L2

ϕ(N) generated by a semi-finite faithful normal weight
ϕ on N . We denote the induced representation of A by ϕ via Xφ by {π,H}
(without the subscripts φ, ϕ for simplicity). On this Hilbert space H, we can
construct a *-representation (normal) π0 of N0, the opposite algebra of N ,
by the right multiplication of elements in N0. We observe that π and π0 are
commuting. The triple {H, π, π0} is called a correspondence from A to N by
Connes. He and V. Jones used this concept in [8] to investigate property T
for von Neumann algebras.

We denote the set of all completely positive linear maps from a C∗-algebra
A into another B by CP (A, B). An element φ in CP (A,B) is called pure
if for all ψ ∈ CP (A,B) with φ − ψ ∈ CP (A,B) we have ψ = λφ for some
scalar λ. It is shown in [2] by Arveson that φ is pure in CP (A,B(H)) if
and only if the Stinespring representation induced by φ is irreducible. In this
section we investigate the question that for φ, ψ in CP (A,B) when π̂φ,ϕ, π̂ψϕ

are unitarily equivalent for some state ϕ of B. By unitary equivalence of two
representations π1, π2 of a C∗-algebra A we mean that there is an isometry U
of H1 onto H2, where Hi is the representation space for πi, i = 1, 2, such that
π1(x) = U∗π2(x)U for all x in A. We focus on the case where φ, ϕ are pure
elements in CP (A,B).

Theorem 3.3. Let B = Mn, the n × n matrix algebra, A be a unital
C∗-algebra, and φ, ψ are pure in CP (A,Mn) with φ(I) = ψ(I) = I. The
Stinespring representations πφ, πψ induced by φ and ψ are unitarily equivalent
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if and only if there exists a unitary operator u in A such that ψ(x) = φ(u∗xu)
for all x in A.

Proof. Suppose that ψ(x) = φ(u∗xu) for all x in A and a unitary u in
A. Let ϕ be a vector state of B(H) whose GNS representation induces the
Stinespring representations πφ, πψ generated by φ and ψ, respectively. The
representation spaces Hφ,Hψ of πφ, πψ are given by

Hφ = the completion of A⊗H/Nφ where Nφ = {x ∈ A⊗H|〈x, x〉φ = 0},
Hψ = the completion of A⊗H/Nψ where Nψ = {x ∈ A⊗H|〈x, x〉ψ = 0},

We define a map U of A ⊗ H/Nψ, onto A ⊗ H/Nφ by U([
∑

ai ⊗ ξi]ψ) =
[
∑

aiu⊗ ξi]φ and check that
∥∥∥∥
[∑

aiu⊗ ξi

]
φ

∥∥∥∥
2

=
∑

i,j

〈φ(u∗a∗i aju)ξi, ξj〉

=
∑

i,j

〈ψ(a∗i aj)ξi, ξj〉

=
∥∥∥[

∑
ai ⊗ ξi]ψ

∥∥∥
2
.

Thus, U has a unitary extension of Hψ onto Hφ. One can easily check that
πψ(x) = U∗πφ(x)U for all x ∈ A.

Suppose πψ(x) = U∗πφ(x)U for all x in A and a unitary operator U of H
onto Hφ. Let {e1, · · · , en} be an orthonormal basis for Cn. We map Cn in Hφ

and in Hψ respectively by Vφ(ξ) = [1 ⊗ ξ]φ and Vψ(ξ) = [1 ⊗ ξ]ψ. Since ψ, φ
are unital, it follows that Vφ, Vψ are isometries. Then, there exists a unitary
operator U0 on Hφ such that U0UVψ(ei) = Vφ(ei), 1 ≤ i ≤ n. Since πφ is
irreducible on Hφ, it follows from a theorem in [11] that there is a unitary
operator U1 in πφ(A) such that U1UVψ(ei) = Vφ(ei), 1 ≤ i ≤ n, and the
spectrum of U1 is not {z ∈ C| |z| = 1}. Then there exists a unitary element
u in A such that πφ(u) = U1 by a lemma in [11]. Thus,

φ(x) = V ∗
φ πφ(x)Vφ = V ∗

ψ U∗πφ(u∗)πφ(x)πφ(u)UVψ

= V ∗
ψ U∗πφ(u∗xu)UVψ

= V ∗
ψ πψ(u∗xu)Vψ

= ψ(u∗xu)

for all x in A. 2

In case of n = 1, Theorem 3.3 reduces to Corollary 8 in [11].
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Let {H, π, π0} be a correspondence from a unital C∗-algebra A to a von
Neumann algebra N . Then there is a representation π̂ of A⊗nor N into B(H)
such that π̂(a⊗1) = π(a) and π̂(1⊗n) = π0(n) (for definition of A⊗nor N , see
[10]). In case the correspondence H = Xφ⊗N L2(N), where Xφ is the Hilbert
N -module Xφ generated by a completely positive linear map φ of A into N in
Theorem 3.1, we denote the corresponding representation π̂ of A⊗norN by π̂φ.
In this case the correspondence H from A to N can be constructed as below.
Consider the algebraic tensor product A ⊗ L2(N). For u =

∑
mi ⊗ ηi, v =∑

m
′
j⊗η

′
j ,mi,m

′
j ∈ A, and ηi, η

′
j ∈ L2(N), i = 1, · · · , k, j = 1, · · · , 1, we define

〈u, v〉 =
∑

i,j

〈φ(m∗
i m

′
j)ηi, η

′
j〉.

Let I = {u ∈ A ⊗ L2(N) | 〈u, u〉 = 0}. It is clear that I is a closed A-
submodule of A⊗ L2(N). Thus H is the completion of A⊗ L2(N)/I.

Definition 3.4. Let φ, ψ be in CP (A,N). φ is said to be weakly contained
in ψ, if π̂φ is weakly contained in π̂ψ, and it is denoted by φ ⊂ ψ and π̂φ ⊂ π̂ψ.
For the definition of the weak containment of representations of C∗-algebra,
please see [9].

Definition 3.5. Let φ be a completely positive linear map of a C∗-algebra
A into another B, and a = {ai}n

i=1 ⊆ A, b = {bi}n
i=1 ⊆ B. The (completely

positive) linear map defined below is called a completely positive linear map as-
sociated with φ and it is denoted by aφb. For x in A, aφb(x) =

∑
i,j

b∗i φ(a∗i xaj)bj .

First we have to justify the complete positivity of aφb. As a matter of fact,
aφb is the composition of the following maps each of which is easily recognized
as completely positive:

A → A⊗Mn → A⊗Mn −→ B ⊗Mn −→ B ⊗M −→ B

x 7→ x⊗ In 7→ â∗(x⊗ In)â 7→ [φ(a∗i xaj)]ij 7→ b̂∗[ ]ij b̂ 7→ e11[ ]ije11,

where â =

[
a1 · · · an

0

]
, b̂ =




b1
... 0
bn


 with ai ∈ A, bi ∈ B, i = 1, · · · , n.

In case B = C in the above definition, one gets a weak∗ dense subset of pos-
itive linear functional associated with πφ, (the GNS representation generated
by φ).

The following theorem and its proof can be found in [8].

Theorem 3.6. Let π1, π2 be two representations of a C∗-algebra A. Then
the following conditions are equivalent:
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(1) π1 ⊂ π2.

(2) ker π1 ⊇ kerπ2, where ker π = {x ∈ A |π(x) = 0}.
(3) Every positive linear functional associated with π1 is in the weak∗-limit

of the convex set generated by the positive linear functionals associated
with π2.

Proposition 3.7. Let φ be a completely positive map of A into N . Then
aφb ⊂ φ.

Proof. We may assume A is unital. Then π̂ψ and π̂aψb have a cyclic vector
ξ, ξ

′
, respectively. By Theorem 3.6, it suffices to show that the linear functional

u 7→ 〈π̂aφb(u)(m⊗ η), (m⊗ η)〉, for u in A⊗Nor N, m⊗ η ∈ A⊗ L2(N), is in
the weak∗ convex hull of all positive linear functionals associated with π̂φ. For
u =

∑l
i=1 xi ⊗ yi, xi ∈ A, yi ∈ N0, i = 1, · · · , l, we have for m ∈ A, η ∈ L2(N),

〈π̂aφb(
∑

xi ⊗ yi)(m⊗ η), (m⊗ η)〉aφb

=
∑

i

〈xim⊗ ηyi, m⊗ η〉aφb

=
∑

i

〈aφb(m
∗xim)ηyi, η〉L2(N)

=
∑

i

∑

k,j

〈b∗jφ(a∗jm
∗ximak)bkηyi, η〉

=
∑

i

〈
π̂(xi ⊗ yi)

∑

j

maj ⊗ bjη,
∑

k

mak ⊗ bkη

〉

φ

=

〈
π̂φ

(∑

i

xi ⊗ yi

) ∑

j

maj ⊗ bjη,
∑

k

mak ⊗ bkη

〉

φ

.

Thus u 7→ 〈π̂aφb(u)(m⊗ η), (m⊗ η)〉 is associated with π̂φ. 2

Proposition 3.8. Let {φi} be a net of completely positive linear maps of
a C∗-algebra A into a von Neumann algebra N , and ξi be the canonical cyclic
vector for π̂φi(A), π̂(A) for short. {φi} converges to φ in the point-σ topology
if and only if {wξi ◦ π̂i} converge to wξ ◦ π̂ in the weak∗ topology of (A⊗norN)∗,
where ξ is the canonical cyclic vector for π̂φ(A), and wεi , wε are the vector
states defined by εi and ε.

Proof. Suppose ϕ is a normal semi-finite faithful weight on N that gives
rise to the standard representation L2(N). By Proposition 2.13 in [19] we
know {ϕ(·a) : a ∈ T 2

ϕ } is norm-dense of N∗, the predual of N , where Ty is
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the Tomita algebra with respect to ϕ. Tϕ is σ-dense in N , represented on
L2(N). It follows from this that φi → φ in point-σ topology is equivalent to
wξi

◦ π̂φi
→ wξ ◦ π̂φ in the weak∗ topology. 2

We have given a short proof for a theorem below first proved by Anatharaman-
Delaroche and Havet in 1990 (cf. [1]).

Theorem 3.9. Let ψ, φ be in CP (A,N). Then ψ ⊂ φ if and only if ψ
is in the point-σ closure of the convex set generated by all completely positive
linear maps associated with φ.

Proof. Theorem 3.9 follows readily from Theorem 3.6, Propositions 3.7
and 3.8. 2

4. Haagerup Tensor Products

An operator space X is a subspace of a C∗-algebra A. We denote the space
of all n×m matrices with entries in X by Mn,m(X), Mn,n(X) by Mn(X), and
Mn,m(C) by Mn,m. It is easy to see that Mn,m(X) is a left Mp,n-module and
right Mm,k module. An operator space X inherits the following properties from
the C∗-algebra A containing X. Let X ⊂ A and let A be faithfully represented

in B(H) for some Hilbert space H. Thus Mn,m(X) ⊂ B

(
m⊗

i=1
Hi,

n⊗
j=1

Hj

)
,

whereHi = Hj = H, and Mn,m(X) inherits a natural norm ‖ ‖n,m, satisfying
the following.

Proposition 4.1.

(1) For x in Mn,p, y in Mp,q(X), z in Mq,m, we have ‖xyz‖n,m ≤ ‖x‖ ‖y‖p,q

‖z‖.
(2) For x in Mn(X), 0 in Mm(X), ‖x⊗ 0‖n+m = ‖x‖n.

(3) For x in Mn(X), y in Mm(X), ‖x⊗ y‖n+m = max{‖x‖n, ‖y‖m}.

The proof is left to the readers.
One can use the above properties to define matrix normed space as follows.

Definition 4.2. A normed linear space X is called a matrix normed
space if, for each n,m positive integers, Mn,m(X) is endowed with a norm
‖ · ‖n,m such that for x in Mn,p, y in Mp,q(X), z in Mq,m, we have ‖xyz‖n,m ≤
‖x‖ ‖y‖p,q‖z‖.
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In 1988, Ruan [18] proved that any matrix normed space satisfing condi-
tion (3) in Proposition 4.1 can be (completely) isometrically represented as a
subspace of a C∗-algebra A. Let X,Y be two operator spaces. There are many
ways to define a cross norm on the algebraic tensor product X ⊗ Y so that
its completion remains an operator space. Amongst them, there is one with
the complete injective property (for definition see [5]) which is the Haagerup
tensor product given below.

Let x̂ = [x1, · · · , xn] ∈ M1,n(X) and ŷ = [y1, · · · , yn]t ∈ Mn,1(Y ). We

denote x̂¯ ŷ =
n∑

i=1
xi ⊗ yi.

Definition 4.3. For u ∈ x ⊗ Y , the Haagerup tensor norm on X ⊗ Y is
defined as

‖u‖h = inf{‖x̂‖ ‖ŷ‖ : u = x̂¯ ŷ},
where infimum is taken over all such expressions for u with x̂ in M1,n(X) and
ŷ in Mn,1(X).

It is crucial to be familiar with the calculation of the norm of x̂ in M1,n(X)
and the norm of ŷ in Mn,1(X) in order to understand the Haagerup tensor
norm.

It was shown that under this norm X ⊗ Y is an operator space denoted
by X ⊗h Y [5]. The standard column Hilbert A-module, CI(A), which is
discussed in Section 2, can be identified with l2(I, A). This is explained below.
In general, for a Hilbert space H and a C∗-algebra A, we consider the algebra
tensor productH⊗A equipped with a cross norm defined below. For simplicity
we assume that H is separable and {εi} is an orthonormal basis for H. For

u ∈ H ⊗ A, u =
n∑

i=1
ξi ⊗ ai, ξi ∈ H, ai ∈ A, we have ξi =

∑
k

λikεk and

u =
∑
k

εk ⊗
(∑

i
λikai

)
. u can be identified with an A-valued function, fu, on

N, such that fu(k) =
n∑

i=1
λikai. The A-valued inner product on H ⊗ A can

be defined as below. For u =
∑
k

εk ⊗ (
∑

λikai), v =
m∑

j=1
ηj ⊗ bj =

∑
k εk ⊗

(
m∑

j=1
γjkbj

)
, with ηj =

∑
k

γjkεk, with aibj in A, λik, γjk in C, we define

〈u, v〉 =
∑

k

(
n∑

i=1

λikai

)∗ 


m∑

j=1

γjkbj




=
∑

ij

(∑

k

λikγjk

)
a∗i bj =

∑

ij

〈ξi, ηj〉a∗i bj ,
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where |∑
k

λikγjk| ≤
(∑

k
|λik|2

) 1
2

(∑
k
|γjk|2

) 1
2

< ∞. This shows that H ⊗ A

can be identified as a dense subset of square summable A-valued functions
on N, where N is the set of positive integers. Next, we may identify l2 as
a subspace CN of B(l2) and thus l2 is an operator space. For u = (αi) ∈ l2

we consider an infinite matrix (tij) with its only nonzero entries in the first
column and ti1 = αi, i = 1, 2, · · ·. In this notation, we have the following
theorem.

Theorem 4.4. For a standard column Hilbert A-module CN(A), we have
CN(A) = CN ⊗h A.

Proof. It suffices to show that the two norms agree on a dense subspace

CN ⊗ A. Let u be an element in CN ⊗ A and u =
n∑

i=1
hi ⊗ yi, where hi =

(hk
i )
∞
k=1 and yi ∈ A, i = 1, · · · , n, or u = x̂ ¯ ŷ, where x̂ = [h1, · · · , hn] and

ŷ = [y1, · · · , yn]t. Let εk = (0, · · · , 0, 1, 0, · · ·), where the only nonzero entry
in εk is at the κ-th component, for κ = 1, 2, · · ·u can be considered as an

A-valued function fu on N, fu(k) =
n∑

i=1
hk

i yi. Then

‖u‖2 =

∥∥∥∥∥
∞∑

k−1

(
n∑

i=1

h
k
i y
∗
i

) 


n∑

j=1

hk
j yj




∥∥∥∥∥

=

∥∥∥∥∥
n∑

i,j=1

( ∞∑

k=1

h
k
i h

k
j

)
y∗i yj

∥∥∥∥∥

=

∥∥∥∥∥
n∑

i,j

〈hi, hj〉y∗i yj

∥∥∥∥∥.

The above calculation is independent of the choice of an orthonormal basis for
l2.

Actually,
n∑
ij
〈hi, hj〉y∗i yj = R1 ·Y ∗ ·T ·Y ·C1, where C1 is the n×n matrix

with first column consisting of 1’s and zero elsewhere, R1 = Ct
1, Y is an n×n

diagonal matrix with diagonal entries {y1, · · · , yn} and T is an n× n positive
matrix with (i, j)-th entry 〈hi, hj〉. Clearly R1Y

∗TY C1 ≤ ‖T‖R1Y
∗Y C1. T

can be viewed as an operator on Cn, and T is unitarily equivalent to x̂∗x̂.
Thus,

‖u‖2 ≤ ‖T‖ ‖R1Y
∗Y C1‖ = ‖x̂‖2

∥∥∥∥∥
n∑

i=1

y∗i yi

∥∥∥∥∥
= ‖x̂‖2 ‖ŷ‖2.
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On the other hand, let {h′i, · · · , h
′
m} be an orthonormal basis for the sub-

space of l2 spanned by {h1, · · · , hn}. Thus hi =
m∑

k=1
λikh

′
k and u =

n∑
i=1

(
m∑

k=1
λikh

′
k

)

⊗yi =
m∑

k=1
h
′
k⊗

n∑
i=1

λikyi = x̂
′¯ŷ

′
, where x̂

′
= [h

′
1, · · · , hm] and ŷ

′
= [b1, · · · , bm]t

and bj =
n∑

i=1
λijyi, j = 1, · · · ,m. Thus, repeating the above calculation we get

‖u‖2 =
∥∥∥∥

m∑
j=1

b∗jbj

∥∥∥∥ = ‖ŷ′‖2 = ‖ŷ′‖2 ‖x̂‖2, for ‖x̂′‖ = 1. Hence the two norms

agree. 2
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