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CONVERGENCE ANALYSIS OF A HYBRID
RELAXED-EXTRAGRADIENT METHOD FOR MONOTONE

VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS

Lu-Chuan Ceng1, B. T. Kien2 and N. C. Wong3,*

Abstract. In this paper we introduce a hybrid relaxed-extragradient method for
finding a common element of the set of common fixed points of N nonexpan-
sive mappings and the set of solutions of the variational inequality problem for
a monotone, Lipschitz-continuous mapping. The hybrid relaxed-extragradient
method is based on two well-known methods: hybrid and extragradient. We
derive a strong convergence theorem for three sequences generated by this
method. Based on this theorem, we also construct an iterative process for
finding a common fixed point of N + 1 mappings, such that one of these
mappings is taken from the more general class of Lipschitz pseudocontractive
mappings and the rest N mappings are nonexpansive.

1. INTRODUCTION

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively.
Let C be a nonempty closed convex subset of H and let PC be the metric projection
from H onto C. When {xn} is a sequence in H , then xn → x (resp. xn ⇀ x)
will denote strong (resp. weak) convergence of the sequence {xn} to x. Let A be
a mapping of C into H . Then A is called monotone if for all u, v ∈ C

〈Au − Av, u− v〉 ≥ 0.
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A is called α-inverse-strongly-monotone (see [6,17]) if there exists a positive con-
stant α such that for all u, v ∈ C

〈Au − Av, u− v〉 ≥ α‖Au − Av‖2.

A is called β-strongly-monotone if there exists a positive constant β such that for
all u, v ∈ C

〈Au − Av, u− v〉 ≥ β‖u − v‖2.

A is called k-Lipschitz-continuous if there exists a positive constant k such that for
all u, v ∈ C

‖Au − Av‖ ≤ k‖u − v‖.
Obviously, it is easy to see that every α-inverse-strongly-monotone mapping A

is monotone and Lipschitz-continuous. Let S be a mapping of C into itself. Then
S is called nonexpansive if for all u, v ∈ C

‖Su− Sv‖ ≤ ‖u − v‖.

We denote by F (S) the set of fixed points of S, i.e., F (S) = {u ∈ C : Su = u}.

Let A be a mapping of C into H . The variational inequality problem is to find
a u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C.

The set of solutions of the variational inequality problem is denoted by V I(C, A).
The variational inequality problem was first discussed by Lions [16]. Since then,
this problem has been being studied widely. It is well known that, if A is a strongly
monotone and Lipschitz-continuous mapping on C, then the variational inequality
problem has a unique solution. How to actually find a solution of the variational
inequality problem is one of the best important topics in the study of the variational
inequality problem. Indeed, there are a lot of different approaches towards solving
this problem in finite-dimensional and infinite-dimensional spaces, and the research
is intensively continued. A great deal of effort has gone into this problem; see
[1,2,5,7-15,17,19-28].

Recently, Antipin considered a finite-dimensional variant of the variational in-
equality problem, where the solution should satisfy some related constraint in in-
equality form [1] or some systems of constraints in inequality and equality form [2].
Yamada [8] considered an infinite-dimensional variant of the solution of the vari-
ational inequality problem on the set of fixed points of some mapping. Takahashi
and Toyoda [9] also formulated an infinite-dimensional variant of the problem of
finding a common point of the set of the variational inequality solutions and the set
of fixed points of some mapping.
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For finding an element of F (S) ∩ V I(C, A) under the assumption that a set
C ⊂ H is closed and convex, a mapping S of C into itself is nonexpansive, and
a mapping A of C into H is α-inverse-strongly-monotone, Takahashi and Toyoda
[9] introduced the following iterative scheme:

(1.1)

{
x0 = x ∈ C,

xn+1 = αnxn + (1 − αn)SPC(xn − λnAxn)

for all n ≥ 0, where {αn} is a sequence in (0, 1) and {λn} is a sequence in (0, 2α).
They proved that if F (S) ∩ V I(C, A) �= ∅, then the sequence {xn} generated by
(1.1) converges weakly to some z ∈ F (S) ∩ V I(C, A).

For finding an element of F (S) ∩ V I(C, A), Iiduka and Takahashi [12] intro-
duced the following iterative scheme by a hybrid method:

(1.2)




x0 = x ∈ C,

yn = αnxn + (1 − αn)SPC(xn − λnAxn),

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for all n ≥ 0, where 0 ≤ αn ≤ c < 1 and 0 < a ≤ λn ≤ b < 2α. They showed
that if F (S) ∩ V I(C, A) �= ∅, then the sequence {xn}, generated by this iterative
process, converges strongly to PF (S)∩V I(C,A)x.

Generally speaking, the algorithm suggested by Takahashi and Toyoda [9] is
based on two well-known types of methods, namely, on the projection-type meth-
ods for solving variational inequality problems and the so-called hybrid or outer-
approximation methods for solving fixed point problem. The idea of “hybrid” or
“outer-approximation” types of methods was originally introduced by Haugazeau in
1968; see [5] for more details.

In 1976, for finding a solution of the nonconstrained variational inequality prob-
lem in the finite-dimensional Euclidean space Rn under the assumption that a set
C ⊂ Rn is closed and convex and a mapping A of C into Rn is monotone and
k-Lipschitz-continuous, Korpelevich [15] introduced the following so-called extra-
gradient method:

(1.3)




x0 = x ∈ C,

x̄n = PC(xn − λAxn),

xn+1 = PC(xn − λAx̄n)

for all n ≥ 0, where λ ∈ (0, 1/k). He proved that if V I(C, A) is nonempty,
then the sequences {xn} and {x̄n}, generated by (1.3), converge to the same point
z ∈ V I(C, A).
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Recently, motivated by the idea of Korpelevich’s extragradient method [15],
Nadezhkina and Takahashi [28] introduced the following iterative scheme for finding
an element of F (S)∩V I(C, A) and proved the following weak convergence result.

Theorem 1.1 ([28, Theorem 3.1]). Let C be a closed convex subset of a
real Hilbert space H . Let A be a monotone and k-Lipschitz-continuous mapping
of C into H and S be a nonexpansive mapping of C into itself such that F (S) ∩
V I(C, A) �= ∅. Let {xn}, {yn} be the sequences generated by

(1.4)




x0 = x ∈ C,

yn = PC(xn − λnAxn),

xn+1 = αnxn + (1 − αn)SPC(xn − λAyn)

for all n ≥ 0, where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for
some c, d ∈ (0, 1). Then the sequences {xn}, {yn} converge weakly to the same
point z ∈ F (S) ∩ V I(C, A) where z = limn→∞ PF (S)∩V I(C,A)xn.

At the same time, the idea of the extragradient method introduced by Korpelevich
was successively generalized and extended not only in Euclidean but also in Hilbert
and Banach spaces; see e.g., the recent papers of He, Yang and Yuan [11], Solodov
and Svaiter [26], Solodov [24], and Ceng and Yao [22,23,27].

Very recently, utilizing the combination of hybrid-type method and extragradient-
type method Nadezhkina and Takahashi [21] introduced the following iterative
method for finding an element of F (S) ∩ V I(C, A) and established the follow-
ing strong convergence theorem.

Theorem 1.2 ([21, Theorem 3.1]). Let C be a closed convex subset of a
real Hilbert space H . Let A be a monotone and k-Lipschitz-continuous mapping
of C into H and let S be a nonexpansive mapping of C into itself such that
F (S) ∩ V I(C, A) �= ∅. Let {xn}, {yn} and {zn} be sequences generated by

(1.5)




x0 = x ∈ C,

yn = PC(xn − λnAxn),

zn = αnxn + (1 − αn)SPC(xn − λnAyn),

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx,

for every n ≥ 0, where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [0, c]
for some c ∈ [0, 1). Then the sequences {xn}, {yn} and {zn} converge strongly
to the same element of PF (S)∩V I(C,A)x.
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Let {Si}N
i=1 beN nonexpansive mappings of C into itself, and A be a monotone,

Lipschitz-continuous mapping of C into H . In the present paper, for finding an
element of

⋂N
i=1 F (Si)∩V I(C, A), by the combination of extragradient and hybrid

methods we introduce a hybrid relaxed-extragradient method

(1.6)




x0 = x ∈ C,

yn = PC(xn − λnµnAxn − λn(1− µn)Ayn),

tn = PC(xn − λnAyn − λn(1− µn)Atn),

zn = αnxn + (1− αn)Sntn,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where Sn = SnmodN , and the following hold:

(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Moreover, it is shown that the sequences {xn}, {yn} and {zn} generated by the
hybrid relaxed-extragradient method converge strongly to q = P⋂N

i=1 F (Si)∩V I(C,A)x.
Utilizing this theorem, we derive some strong convergence results in a real Hilbert
space. Based on our main result, we construct an iterative process for finding a
common fixed point of N + 1 mappings, one of which is taken from the more
general class of Lipschitz pseudocontractive mappings and the rest N mappings are
nonexpansive. We remark that, in the case when N = 1 and µn = 1 ∀n ≥ 0, the
iterative scheme (1.6) reduces to the one (1.5). Thus, our results are the improve-
ments and extension of many known results in the earlier and recent literature; see
e.g., [9, 12, 13, 18, 21, 28].

2. PRELIMINARIES

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively.
Let C be a nonempty closed convex subset of H . For every point x ∈ H there
exists a unique nearest point in C, denoted by PCx, such that ‖x−PCx‖ ≤ ‖x−y‖
for all y ∈ C. PC is called the metric projection of H onto C. It is known that PC

is a nonexpansive mapping from H onto C. It is also known that PCx ∈ C and

(2.1) 〈x − PCx, PCx − y〉 ≥ 0
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for all x ∈ H, y ∈ C; see [7] for more details. It is easy to see that (2.1) is
equivalent to

(2.2) ‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2

for all x ∈ H, y ∈ C.
Let A be a monotone mapping of C into H . In the context of the variational

inequality problem the characterization of projection (2.1) implies

u ∈ V I(C, A) ⇔ u = PC(u − λAu), ∀λ > 0.

It is also known that H satisfies Opial’s condition [7], i.e., for any sequence {xn}
with xn ⇀ x the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖

holds for every y ∈ H with y �= x.

The following result will be used in the rest of this paper.

Lemma 2.1 ([29, Proposition 2.4]) Let {xn} be a bounded sequence in H

and ωw(xn) be the set defined by

ωw(xn) = {u ∈ H : ∃xnj ⇀ u for some subsequence {xnj} of {xn}}.
Assume that ωw(xn) = {ū}. Then xn ⇀ ū.

Lemma 2.2 Demiclosedness Principle [7]. Assume that S is a nonexpansive
self-mapping of a closed convex subset C of a Hilbert space H . If S has a
fixed point, then I − S is demiclosed; that is, whenever {xn} is a sequence in C
converging weakly to some x ∈ C and the sequence {(I−S)xn} converges strongly
to some y ∈ H , it follows that (I −S)x = y. Here I is the identity operator of H .

A mapping T : C → C is called pseudocontractive if for all x, y ∈ C

‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖(I − T )x − (I − T )y‖2.

We remark that, if a mapping T : C → C is pseudocontractive and k-Lipschitz-
continuous, then the mapping A = I − T is monotone and (k + 1)-Lipschitz-
continuous; moreover, F (T ) = V I(C, A) (see e.g., [21, proof of Theorem 4.5]).

Recall that a set-valued mapping T : H → 2H is said to be monotone if for
all x, y ∈ H, f ∈ Tx and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. The mapping T
is called maximal monotone if it is monotone and its graph G(T ) is not properly
contained in the graph of any other monotone mapping. It is known that a monotone
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mapping T is maximal if and only if for (x, f) ∈ H × H , 〈x − y, f − g〉 ≥ 0 for
all (y, g) ∈ G(T ) implies f ∈ Tx.

Throughout the rest of the paper, we shall use the following notation: for a
given sequence {xn} ⊂ H, ωw(xn) denotes the weak ω-limit set of {xn}; that is,

ωw(xn) := {x ∈ H : {xnj} converges weakly to x for some subsequence

{nj} of {n}}.

3. STRONG CONVERGENCE THEOREM

We are now in a position to prove our main result in this paper. Given N
nonexpansive mappings {Si}N

i=1 of C into itself, for each integer n ≥ 1 we write

Sn = SnmodN

with the mod function taking values in the set {1, 2, ..., N}; i.e., if n = jN + q
for some integers j ≥ 0 and 0 ≤ q < N , then Sn = SN if q = 0 and Sn = Sq if
1 < q < N .

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H . Let
A be a monotone and k-Lipschitz-continuous mapping of C into H and let {S i}N

i=1

be N nonexpansive mappings of C into itself such that
⋂N

i=1 F (Si)∩V I(C, A) �= ∅.
Let {xn}, {yn} and {zn} be sequences generated by

(3.1)




x0 = x ∈ C,

yn = PC(xn − λnµnAxn − λn(1− µn)Ayn),

tn = PC(xn − λnAyn − λn(1− µn)Atn),

zn = αnxn + (1− αn)Sntn,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where Sn = SnmodN , and the following hold:

(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;

(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);

(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences{xn}, {yn} and{zn} converge strongly to q=P⋂N
i=1 F (Si)∩V I(C,A)x.
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Remark 3.1. First, observe that for all x, y ∈ C and all n ≥ 0

‖PC(xn − λnµAxn − λn(1− µn)Ax) − PC(xn − λnµAxn − λn(1 − µn)Ay)‖
≤ ‖(xn − λnµnAxn − λn(1− µn)Ax)− (xn − λnµnAxn − λn(1 − µn)Ay)‖
= λn(1 − µn)‖Ax − Ay‖
≤ λnk‖x − y‖.

Thus, by Banach Contraction Principle, we know that for each n ≥ 0 there exists a
unique yn ∈ C such that

(3.2) yn = PC(xn − λnµnAxn − λn(1 − µn)Ayn).

Also, observe that for all x, y ∈ C and all n ≥ 0

‖PC(xn − λnAyn − λn(1 − µn)Ax) − PC(xn − λnAyn − λn(1 − µn)Ay)‖
≤ ‖(xn − λnAyn − λn(1 − µn)Ax) − (xn − λnAyn − λn(1 − µn)Ay)‖
= λn(1 − µn)‖Ax − Ay‖
≤ λnk‖x − y‖.

Utilizing Banach Contraction Principle, we know that for each n ≥ 0 there exists a
unique tn ∈ C such that

(3.3) tn = PC(xn − λnAyn − λn(1 − µn)Atn).

Proof of Theorem 3.1. We divide the proof into several steps.

Step 1. We claim that every Cn is closed and convex, and that
⋂N

i=1 F (Si) ∩
V I(C, A) ⊂ Cn ∀n ≥ 0.

Indeed, it is obvious that Cn is closed for all n ≥ 0. Since

Cn = {z ∈ C : ‖zn − xn‖2 + 2〈zn − xn, xn − z〉 ≤ 0},

we deduce that Cn is convex for all n ≥ 0. Note that tn = PC(xn − λnAyn −
λn(1 − µn)Atn) for all n ≥ 0. Let u ∈ ⋂N

i=1 F (Si) ∩ V I(C, A) be an arbitrary
element. From (2.2), monotonicity of A, and u ∈ V I(C, A), we have
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‖tn − u‖2 ≤ ‖(xn − λnAyn − λn(1 − µn)Atn) − u‖2

−‖(xn − λnAyn − λn(1 − µn)Atn)− tn‖2

= ‖xn − λn(1 − µn)Atn − u‖2

−‖xn − λn(1 − µn)Atn − tn‖2 + 2λn〈Ayn, u − tn〉
= ‖xn − λn(1 − µn)Atn − u‖2 − ‖xn − λn(1 − µn)Atn − tn‖2

+2λn(〈Ayn, u − yn〉 + 〈Ayn, yn − tn〉)
= ‖xn − λn(1 − µn)Atn − u‖2 − ‖xn − λn(1 − µn)Atn − tn‖2

+2λn(〈Ayn − Au, u− yn〉 + 〈Au, u− yn〉 + 〈Ayn, yn − tn〉)
≤ ‖xn − λn(1 − µn)Atn − u‖2 − ‖xn − λn(1 − µn)Atn − tn‖2

+2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − tn‖2 − 2λn(1− µn)〈Atn, tn − u〉

+2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − tn〉 − ‖yn − tn‖2

+2λn〈Ayn, yn−tn〉−2λn(1−µn)(〈Atn−Au, tn−u〉+〈Au, tn−u〉)
≤ ‖xn−u‖2−‖xn−yn‖2−‖yn−tn‖2+2〈xn−λnAyn−yn, tn−yn〉.

Further, since yn = PC(xn − λnµnAxn − λn(1 − µn)Ayn) and A is k-Lipschitz-
continuous, we have

〈xn − λnAyn − yn, tn − yn〉
= 〈xn−λnµnAxn−λn(1−µn)Ayn−yn, tn−yn〉+λnµn〈Axn−Ayn, tn−yn〉
≤ λnµn〈Axn − Ayn, tn − yn〉
≤ λnk‖xn − yn‖‖tn − yn‖.

So, we have

(3.4)

‖tn−u‖2

≤ ‖xn−u‖2−‖xn−yn‖2−‖yn−tn‖2 + 2λnk‖xn−yn‖‖tn−yn‖
≤ ‖xn−u‖2−‖xn−yn‖2−‖yn−tn‖2 + λ2

nk2‖xn−yn‖2 + ‖yn−tn‖2

= ‖xn−u‖2 + (λ2
nk2−1)‖xn−yn‖2

≤ ‖xn−u‖2.

For zn = αnxn + (1−αn)Sntn, u = Snu and using (3.4), we have
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(3.5)

‖zn−u‖2 = ‖αnxn + (1−αn)Sntn−u‖2

= ‖αn(xn−u) + (1−αn)(Sntn−u)‖2

≤ αn‖xn−u‖2 + (1−αn)‖Sntn−u‖2

≤ αn‖xn−u‖2 + (1−αn)‖tn−u‖2

≤ αn‖xn−u‖2 + (1−αn)[‖xn−u‖2 + (λ2
nk2−1)‖xn−yn‖2]

= ‖xn−u‖2 + (1−αn)(λ2
nk2−1)‖xn−yn‖2

≤ ‖xn−u‖2

for all n ≥ 0 and hence u ∈ Cn. So,
⋂N

i=1 F (Si) ∩ V I(C, A) ⊂ Cn for all n ≥ 0.

Step 2. We claim that {xn} is well defined and
⋂N

i=1 F (Si) ∩ V I(C, A) ⊂
Cn ∩ Qn for all n ≥ 0.

Indeed, let us show by mathematical induction that {xn} is well defined and⋂N
i=1 F (Si) ∩ V I(C, A) ⊂ Cn ∩ Qn for all n ≥ 0. First, it is obvious that Qn is

closed and convex for all n ≥ 0. As Qn = {z ∈ C : 〈xn−z, x−xn〉 ≥ 0}, we have
〈xn−z, x−xn〉 ≥ 0 for all z ∈ Qn and, by (2.1), xn = PQnx. Second, according to
Remark 3.1 we know that for each n ≥ 0 there exist a unique yn ∈ C and a unique
tn ∈ C such that (3.2) and (3.3) hold, respectively. For n = 0 we have Q0 = C.
Hence we obtain

⋂N
i=1 F (Si)∩V I(C, A) ⊂ C0 ∩Q0. Suppose that xk is given and⋂N

i=1 F (Si)∩V I(C, A) ⊂ Ck ∩Qk for some k ≥ 0. Since
⋂N

i=1 F (Si)∩V I(C, A)
is nonempty, Ck ∩ Qk is a nonempty closed convex subset of C. So, there exists
a unique element xk+1 ∈ Ck ∩ Qk such that xk+1 = PCk∩Qk

x. It is also obvious
that there holds 〈xk+1 − z, x− xk+1〉 ≥ 0 for all z ∈ Ck ∩ Qk . In particular,

〈xk+1 − z, x− xk+1〉 ≥ 0

for z ∈ ⋂N
i=1 F (Si) ∩ V I(C, A). Hence

⋂N
i=1 F (Si) ∩ V I(C, A) ⊂ Qk+1. Com-

bining this with step 1, we obtain
⋂N

i=1 F (Si) ∩ V I(C, A) ⊂ Ck+1 ∩ Qk+1.

Step 3. We claim that the following statements hold:
(1) {xn} is bounded, and limn→∞ ‖xn+i − xn‖ = 0 for each i = 1, 2, ..., N ;
(2) limn→∞ ‖zn − xn‖ = 0.

Indeed, let q = P⋂N
i=1 F (Si)∩V I(C,A)x. From xn+1 = PCn∩Qnx and q ∈⋂N

i=1 F (Si) ∩ V I(C, A) ⊂ Cn ∩ Qn, we have

(3.6) ‖xn+1 − x‖ ≤ ‖q − x‖, ∀n ≥ 0.

Therefore, {xn} is bounded and so are {zn} and {tn} due to (3.4) and (3.5). Since
xn+1 ∈ Cn ∩ Qn ⊂ Qn and xn = PQnx, we have

‖xn − x‖ ≤ ‖xn+1 − x‖, ∀n ≥ 0.
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Therefore, there exists limn→∞ ‖xn−x‖. Since xn = PQnx and xn+1 ∈ Qn, using
(2.2) we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2, ∀n ≥ 0.

This implies that
lim

n→∞ ‖xn+1 − xn‖ = 0,

and hence limn→∞ ‖xn+i − xn‖ = 0 for each i = 1, 2, ..., N . Since xn+1 ∈ Cn,
we have ‖zn − xn+1‖ ≤ ‖xn − xn+1‖ and hence

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − xn‖ ≤ 2‖xn − xn+1‖, ∀n ≥ 0.

Consequently, we have limn→∞ ‖zn − xn‖ = 0.

Step 4. We claim that the following statements hold:
(1) limn→∞ ‖xn − yn‖ = 0;
(2) limn→∞ ‖Slxn − xn‖ = 0 for each l = 1, 2, ..., N .

Indeed, for u ∈ ⋂N
i=1 F (Si) ∩ V I(C, A), from (3.5) we derive

‖zn − u‖2 ≤ ‖xn − u‖2 + (1 − αn)(λ2
nk2 − 1)‖xn − yn‖2.

Therefore, we have

(3.7)

‖xn − yn‖2

≤ 1
(1 − αn)(1− λ2

nk2)
(‖xn − u‖2 − ‖zn − u‖2)

=
1

(1 − αn)(1− λ2
nk2)

(‖xn − u‖ − ‖zn − u‖)(‖xn − u‖ + ‖zn − u‖)

≤ 1
(1 − αn)(1− λ2

nk2)
‖xn − zn‖(‖xn − u‖+ ‖zn − u‖).

Since ‖zn − xn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain
‖xn − yn‖ → 0.

Rewrite (3.5) we have

‖zn − u‖2 = ‖αnxn + (1− αn)Sntn − u‖2

= ‖αn(xn − u) + (1− αn)(Sntn − u)‖2

≤ αn‖xn − u‖2 + (1− αn)‖Sntn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)(‖xn − u‖2 + (λ2
nk2 − 1)‖yn − tn‖2)

= ‖xn − u‖2 + (1 − αn)(λ2
nk2 − 1)‖yn − tn‖2

≤ ‖xn − u‖2.
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This implies that

‖tn − yn‖2 ≤ 1
(1 − αn)(1− λ2

nk2)
(‖xn − u‖2 − ‖zn − u‖2)

=
1

(1−αn)(1−λ2
nk

2)
(‖xn−u‖−‖zn−u‖)(‖xn−u‖+‖zn−u‖)

≤ 1
(1 − αn)(1− λ2

nk2)
‖xn − zn‖(‖xn − u‖ + ‖zn − u‖).

Since ‖zn − xn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain
‖tn − yn‖ → 0.

As A is k-Lipschitz-continuous, we have ‖Ayn−Atn‖ → 0. From ‖xn−tn‖ ≤
‖xn−yn‖+‖yn−tn‖ we also have ‖xn−tn‖ → 0. Since zn = αnxn+(1−αn)Sntn,
we have (1 − αn)(Sntn − tn) = αn(tn − xn) + (zn − tn). Then

(1− c)‖Sntn − tn‖ ≤ (1− αn)‖Sntn − tn‖
≤ αn‖tn − xn‖ + ‖zn − tn‖
≤ (1 + αn)‖tn − xn‖ + ‖zn − xn‖

and hence ‖Sntn − tn‖ → 0. Also, observe that

‖Snxn − xn‖ ≤ ‖Snxn − Sntn‖ + ‖Sntn − tn‖ + ‖tn − xn‖
≤ 2‖xn − tn‖ + ‖Sntn − tn‖.

Since ‖xn − tn‖ → 0 and ‖Sntn − tn‖ → 0, we have ‖Snxn − xn‖ → 0. Conse-
quently, we have for each i = 1, 2, ..., N

‖xn − Sn+ixn‖ ≤ ‖xn − xn+i‖ + ‖xn+i − Sn+ixn+i‖ + ‖Sn+ixn+i − Sn+ixn‖
≤ 2‖xn − xn+i‖ + ‖xn+i − Sn+ixn+i‖

and so limn→∞ ‖xn − Sn+ixn‖ = 0 for each i = 1, 2, ..., N . This implies that for
each l = 1, 2, ..., N

lim
n→∞ ‖xn − Slxn‖ = 0.

Step 5. We claim that ωw(xn) ⊂ ⋂N
i=1 F (Si) ∩ V I(C, A), where ωw(xn)

denotes the weak ω-limit set of {xn}, i.e.,

ωw(xn)={u∈H :{xnj} converges weakly tou for some subsequence {nj} of{n}}.
Indeed, since {xn} is bounded, it has a subsequence which converges weakly

to some point in C and hence ωw(xn) �= ∅. Let u ∈ ωw(xn) be an arbitrary point.
Then there exists a subsequence {xnj} ⊂ {xn} which converges weakly to u and
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hence we have limj→∞ ‖xnj − Slxnj‖ = 0 for each l = 1, 2, ..., N . Note that from
Lemma 2.2 it follows that I − S is demiclosed at zero. Thus u ∈ F (Sl) for each
l = 1, 2, ..., N , i.e., u ∈ ⋂N

i=1 F (Si). Now, we show u ∈ V I(C, A). Fix any
v ∈ C. Since tn = PC(xn − λnAyn − λn(1− µn)Atn), we have

〈xn − λnAyn − λn(1− µn)Atn − tn, tn − v〉 ≥ 0.

This is equivalent to

〈v − tn,
tn − xn

λn
+ Ayn + (1 − µn)Atn〉 ≥ 0.

Combining this with the monotonicity of A we have

〈v − tnj , Au〉
≥ 〈v − tnj , Au〉 − 〈v − tnj ,

tnj − xnj

λnj

+ Aynj + (1 − µnj )Atnj 〉
= 〈v − tnj , Au− Atnj 〉 + 〈v − tnj , Atnj − Aynj 〉

−〈v − tnj ,
tnj − xnj

λnj

〉 − (1 − µnj )〈v − tnj , Atnj〉

≥ 〈v − tnj , Atnj − Aynj 〉 − 〈v − tnj ,
tnj − xnj

λnj

〉 − (1− µnj )〈v − tnj , Atnj〉.

By letting j → ∞, we obtain 〈v − u, Au〉 ≥ 0. Since v is arbitrary, we have
u ∈ V I(C, A). Therefore, u ∈ ⋂N

i=1 F (Si) ∩ V I(C, A).

Step 6. We claim that {xn}, {yn} and {zn} converge strongly to q =
P⋂N

i=1 F (Si)∩V I(C,A)x.

Indeed, let u ∈ ωw(xn) be an arbitrary point. Then there exists a subsequence
{xnj} ⊂ {xn} which converges weakly to u. By Step 5, we know that u ∈⋂N

i=1 F (Si)∩V I(C, A). Hence from q = P⋂N
i=1 F (Si)∩V I(C,A)x and (3.6) we derive

‖q − x‖ ≤ ‖u − x‖ ≤ lim inf
j→∞

‖xnj − x‖ ≤ lim sup
j→∞

‖xnj − x‖ ≤ ‖q − x‖.

So, we obtain
lim
j→∞

‖xnj − x‖ = ‖q − x‖.

On the other hand xnj −x ⇀ u−x, the Kadec property yields xnj −x → u−x and
so xnj → u. Since xn = PQnx and q ∈ ⋂N

i=1 F (Si)∩V I(C, A) ⊂ Cn ∩Qn ⊂ Qn,
we have

−‖q − xnj‖2 = 〈q − xnj , xnj − x〉 + 〈q − xnj , x− q〉 ≥ 〈q − xnj , x− q〉.
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As j → ∞, we get −‖q−u‖2 ≥ 〈q−u, x−q〉 ≥ 0 due to q = P⋂N
i=1 F (Si)∩V I(C,A)x

and u ∈ ⋂N
i=1 F (Si) ∩ V I(C, A). Thus we have u = q. By using the same

argument we can show that ωw(xn) = {q}. Using lemma 2.1, we have xn ⇀ q.
Using the procedure above again, it follows that xn → q. Since ‖xn − yn‖ → 0
and ‖xn − zn‖ → 0 we infer that both {yn} and {zn} converge strongly to q =
P⋂N

i=1 F (Si)∩V I(C,A)x. This completes the proof.

4. APPLICATIONS

Utilizing Theorem 3.1 in the above section, we prove some strong convergence
theorems in a real Hilbert space.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H .
Let A be a monotone and k-Lipschitz-continuous mapping of C into H such that
V I(C, A) �= ∅. Let {xn}, {yn} and {zn} be sequences generated by



x0 = x ∈ C,

yn = PC(xn − λnµnAxn − λn(1− µn)Ayn),

tn = PC(xn − λnAyn − λn(1 − µn)Atn),

zn = αnxn + (1− αn)tn,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where the following hold:
(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences {xn}, {yn} and {zn} converge strongly to q=PV I(C,A)x.

Proof. Putting Si = I (1 ≤ i ≤ N ), αn = 0 for all n ≥ 0, by Theorem 3.1
we obtain the desired result.

Remark 4.1. See Iiduka, Takahashi and Toyoda [13] for the case when the
mapping A is α-inverse-strongly-monotone; see Nadezhkina and Takahashi [21,
Theorem 4.1] for the case when the mapping A is monotone, Lipschitz-continuous.

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H . Let
{Si}N

i=1 be N nonexpansive mappings of C into itself such that
⋂N

i=1 F (Si) �= ∅.
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Let {xn} and {yn} be sequences generated by


x0 = x ∈ C,

yn = αnxn + (1− αn)SnPCxn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where Sn = SnmodN , and {αn} ⊂ [0, c] for some c ∈ [0, 1).
Then the sequences {xn} and {yn} converge strongly to q = P⋂N

i=1 F (Si)
x.

Proof. Putting A = 0, by Theorem 3.1 we obtain the desired result.

Remark 4.2. See Nadezhkina and Takahashi [21, Theorem 4.2] for the case
when N = 1, and see also Nakajo and Takahashi [18].

Theorem 4.3. Let H be a real Hilbert space. Let A be a monotone and k-
Lipschitz-continuous mapping of H into itself and let {S i}N

i=1 be N nonexpansive
mappings of H into itself such that

⋂N
i=1 F (Si) ∩ A−10 �= ∅. Let {xn}, {yn} and

{zn} be sequences generated by


x0 = x ∈ H,

yn = xn − λnµnAxn − λn(1− µn)Ayn,

tn = xn − λnAyn − λn(1 − µn)Atn,

zn = αnxn + (1 − αn)Sntn,

Cn = {z ∈ H : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where Sn = SnmodN , and the following hold:

(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences{xn}, {yn} and{zn} converge strongly to q=P⋂N
i=1 F (Si)∩A−10x.

Proof. We have A−10 = V I(H, A) and PH = I . By Theorem 3.1 we obtain
the desired result.
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Let B : H → 2H be a maximal monotone mapping. Then, for any x ∈ H and
r > 0, consider JB

r x = {z ∈ H : z + rBz � x}. Such JB
r x is called the resolvent

of B and is denoted by JB
r = (I + rB)−1.

Theorem 4.4. Let H be a real Hilbert space. Let A be a monotone and k-
Lipschitz-continuous mapping ofH into itself and let B i : H → 2H , i = 1, 2, ..., N

be N maximal monotone mappings such that
⋂N

i=1 B−1
i 0 ∩ A−10 �= ∅. Let JBi

r

be the resolvent of Bi for each r > 0. Let {xn}, {yn} and {zn} be sequences
generated by 



x0 = x ∈ H,

yn = xn − λnµnAxn − λn(1 − µn)Ayn,

tn = xn − λnAyn − λn(1− µn)Atn,

zn = αnxn + (1− αn)JBn
r tn,

Cn = {z ∈ H : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where JBn
r = JBnmodN

r , and the following hold:

(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences{xn}, {yn} and{zn} converge strongly to q=P⋂N
i=1 B−1

i 0∩A−10x.

Proof. We know that JBi
r is nonexpansive for every i = 1, 2, ..., N . We also

have A−10 = V I(H, A) and F (JBi
r ) = B−1

i 0 for every i = 1, 2, ..., N . Putting
PH = I , by Theorem 3.1 we obtain the desired result.

We also know one more definition of a pseudocontractive mapping, which is
equivalent to the definition given in the introduction. A mapping T of C into itself
is called pseudocontractive if

〈Tx − Ty, x− y〉 ≤ ‖x − y‖2

for all x, y ∈ C; see [6]. Obviously, the class of pseudocontractive mappings is more
general than the class of nonexpansive mappings. For the class of pseudocontractive
mappings there are some nontrivial examples; see [21, p.1239] for more details. In
the following theorem we introduce an iterative process that converges strongly to a
common fixed point of N + 1 mappings, one of which is Lipschitz-continuous and
pseudocontractive, and the rest N mappings are nonexpansive.
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Theorem 4.5. Let C be a closed convex subset of a real Hilbert space H . Let
T be a pseudocontractive andm-Lipschitz-continuous mapping of C into itself , and
let {Si}N

i=1 be N nonexpansive mappings of C into itself such that
⋂N

i=1 F (Si) ∩
F (T ) �= ∅. Let {xn}, {yn} and {zn} be sequences generated by

(3.1)




x0 = x ∈ C,

yn = PC(xn − λnµnAxn − λn(1− µn)Ayn),

tn = PC(xn − λnAyn − λn(1− µn)Atn),

zn = αnxn + (1− αn)Sntn,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where A = I − T , Sn = SnmodN , and the following hold:
(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences{xn}, {yn} and{zn} converge strongly to q=P⋂N
i=1 F (Si)∩F (T )x.

Proof. Let A = I −T . Let us show the mapping A is monotone and (m + 1)-
Lipschitz-continuous. Indeed, observe that

〈Ax − Ay, x− y〉 = ‖x− y‖2 − 〈Tx− Ty, x− y〉 ≥ 0,

and

‖Ax− Ay‖ = ‖x− y − (Tx− Ty)‖ ≤ ‖x− y‖+ ‖Tx− Ty‖ ≤ (m + 1)‖x− y‖.
Now let us show F (T ) = V I(C, A). Indeed, we have, for fixed λ0 ∈ (0, 1),

Tu = u ⇔ u = u − λ0Au = PC(u − λ0Au) ⇔ 〈Au, y − u〉 ≥ 0, ∀y ∈ C.

By Theorem 3.1 we obtain the desired result.
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