ON A CLASS OF VERTEX OPERATOR ALGEBRAS HAVING A FAITHFUL S_{n+1}-ACTION

Ching-Hung Lam and Shinya Sakuma

Abstract

By using the lattice VOA $V_{\sqrt{2} A_{n}}$, we construct a class of vertex operator algebras $\left\{M^{(n)} \mid n=2,3,4, \ldots\right\}$ as coset subalgebras. We show that the VOA $M=M^{(n)}$ is generated by its weight 2 subspace and the symmetric group S_{n+1}, which is isomorphic to the Weyl group $W\left(A_{n}\right)$ of the root system of type A_{n}, acts faithfully on M. Moreover, some irreducible modules of M are constructed using the coset construction.

1. Introduction

Let A_{n} be a rank n root lattice of type A. It was shown in Dong et al. [4] that the Virasoro element ω of the lattice vertex operator algebra (VOA) $V_{\sqrt{2} A_{n}}$ can be decomposed into a sum of $n+1$ mutually orthogonal conformal vectors ω^{j}, $1 \leq i \leq n+1$ and the central charge c_{i} of the conformal vector ω^{i} is given by

$$
c_{i}=1-6 /(i+2)(i+3) \quad \text { for } 1 \leq i \leq n \quad \text { and } \quad c_{n+1}=2 n /(n+3) .
$$

In other words, the lattice vertex operator algebra $V_{\sqrt{2} A_{n}}$ contains a subalgebra $T=T_{n}$ which is isomorphic to the tensor product of $n+1$ simple Virasoro VOAs $\otimes_{i=1}^{n+1} L\left(c_{i}, 0\right)$. Moreover, $V_{\sqrt{2} A_{n}}$ is a direct sum of irreducible T-submodules.

Note that $c_{i}=1-6 /(i+2)(i+3)$ for $1 \leq i \leq n$ are members of the unitary series and c_{n+1} is the central charge of the parafermion algebra. In fact, it was shown in [20] (see also [1]) that the conformal vector ω^{n+1} actually corresponds to a coset subalgebra isomorphic to the parafermion algebra $W_{n+1}(2 n /(n+3))$ inside $V_{\sqrt{2} A_{n}}$. In addition, the complete decomposition of $V_{\sqrt{2} A_{n}}$ as a direct sum of irreducible modules of

$$
\mathcal{W}=L\left(c_{1}, 0\right) \otimes L\left(c_{2}, 0\right) \otimes \cdots \otimes L\left(c_{n}, 0\right) \otimes W_{n+1}(2 n /(n+3))
$$

[^0]is obtained.
For small n dividing 24 , namely, $n=1,2,3,4$, there are evidences to show that the parafermion algebra $W_{n+1}(2 n /(n+3))$ is actually contained in the Moonshine vertex operator algebra V^{\natural} and the \mathbb{Z}_{n+1}-symmetry of $W_{n+1}(2 n /(n+3))$ will induce an automorphism of order $n+1$ on V^{\natural}, which should correspond to the $2 A, 3 A, 4 A$ and $5 A$ elements of the Monster [13, 15, 16, 21, 24]. On the other hand, by using pure group theory, Glauberman and Norton [9] observed that there are some interesting relations between the centralizers of the $2 A, 3 A, 4 A$ and $5 A$ elements of the Monster simple group with the Weyl group of the type A_{1}, A_{2}, A_{3} and A_{4}, respectively.

In this article, we shall study the commutant (or coset) subalgebra

$$
M^{(n)}=\left\{v \in V_{\sqrt{2} A_{n}} \mid u_{k} v=0 \text { for all } k \geq 0 \text { and } u \in W_{n+1}\left(\frac{2 n}{n+3}\right)\right\}
$$

of $W_{n+1}(2 n /(n+3))$ in $V_{\sqrt{2} A_{n}}$. As our main result, we shall show that the VOA $M=M^{(n)}$ is generated by its weight 2 subspace and the Weyl group $W\left(A_{n}\right)$ $\left(\cong S_{n+1}\right)$ acts faithfully on M. Moreover, some irreducible modules of M will be constructed using the coset construction.

We shall note that for any n dividing 24, the tensor product VOA $M^{\otimes 24 / n}$ can be embedded into the orbifold VOA V_{Λ}^{+}, where V_{Λ}^{+}is the fixed point subspace of the Leech lattice VOA V_{Λ} associated with the automorphism θ induced by the isometry $\alpha \mapsto-\alpha$ for $\alpha \in \Lambda$ (cf. [4, 13]). Hence $M^{\otimes 24 / n}$ is also contained in the famous Moonshine VOA V^{\natural}. With respect to a suitable embedding, we believe that the S_{n+1}-action on M can actually be lifted to some automorphism subgroup of V^{\natural}, which is in fact the main motivation for the present work.

2. Conformal Vectors in the Lattice VOA $V_{\sqrt{2} A_{n}}$

In this section, we review the construction of certain conformal vectors in $V_{\sqrt{2} A_{n}}$ from [4]. First we shall consider a chain of root systems

$$
\Phi=\Phi_{n} \supset \Phi_{n-1} \supset \cdots \supset \Phi_{1}
$$

such that Φ_{i} is a root system of type A_{i}. Let Φ_{i}^{+}be a set of all positive roots in Φ_{i} and let $\Phi_{i}^{-}=-\Phi_{i}^{+}$be the set of all negative roots in Φ_{i}. Then we have

$$
\Phi_{i}=\Phi_{i}^{+} \cup \Phi_{i}^{-}=\Phi_{i}^{+} \cup\left(-\Phi_{i}^{+}\right) .
$$

For any $i=1,2, \ldots, n$, define

$$
s^{i}=\frac{1}{2(i+3)} \sum_{\alpha \in \Phi_{i}^{+}}\left(\alpha(-1)^{2} \cdot 1-2\left(e^{\sqrt{2} \alpha}+e^{-\sqrt{2} \alpha}\right)\right)
$$

and

$$
\omega=\frac{1}{2(n+1)} \sum_{\alpha \in \Phi_{n}^{+}} \alpha(-1)^{2} \cdot 1 .
$$

It was shown by Dong et al. [4] that ω is the Virasoro element of $V_{\sqrt{2} A_{n}}$ and the elements

$$
\begin{equation*}
\omega^{1}=s^{1}, \quad \omega^{i}=s^{i}-s^{i-1}, 2 \leq i \leq n, \quad \omega^{n+1}=\omega-s^{n} \tag{2.1}
\end{equation*}
$$

are mutually orthogonal conformal vectors in $V_{\sqrt{2} A_{n}}$. Moreover, the central charges $c\left(\omega^{i}\right)$ of ω^{i} are given by

$$
c\left(\omega^{i}\right)=1-\frac{6}{(i+2)(i+3)} \quad \text { for } 1 \leq i \leq n
$$

and

$$
c\left(\omega^{n+1}\right)=\frac{2 n}{n+3}
$$

Note that $c_{i}=c\left(\omega^{i}\right), 1 \leq i \leq n$, are members of the unitary series and c_{n+1} is the central charge of the parafermion algebra. In fact, it was shown in [20] that $V_{\sqrt{2} A_{n}}$ actually contains a subalgebra isomorphic to the parafermion algebra $W_{n+1}(2 n /(n+3))$. Moreover, we have the following decomposition.

Theorem 2.1. ([20]). As a module of $L\left(c_{1}, 0\right) \otimes \cdots \otimes L\left(c_{n}, 0\right) \otimes W_{n+1}(2 n /(n+$ $3)$),

$$
\begin{equation*}
\cong \bigoplus_{\substack{0 \leq k_{j} \leq j+1, j=0, \ldots, n \\ k_{j} \equiv 0 \bmod 2}}^{V_{\sqrt{2}} A_{n}} \tag{2.2}
\end{equation*}
$$

$$
L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1, k_{n}+1}^{n}\right) \otimes W_{n+1}\left(0, k_{n}\right)
$$

where $W_{n+1}(0, k)$ are irreducible $W_{n+1}(2 n /(n+3))$-submodules (see Section 3.2 for the definition) and

$$
h_{r, s}^{m}=\frac{[r(m+3)-s(m+2)]^{2}-1}{4(m+2)(m+3)}
$$

for any $1 \leq r \leq m+1,1 \leq s \leq m+2$.
In this article, we are interested in the commutant subalgebra of the parafermion algebra $W_{n+1}(2 n /(n+3))$ in $V_{\sqrt{2} A_{n}}$, that is the commutant subalgebra

$$
\begin{aligned}
M & =\left\{v \in V_{\sqrt{2} A_{n}} \mid u_{k} v=0 \text { for all } k \geq 0 \text { and } u \in W_{n+1}\left(\frac{2 n}{n+3}\right)\right\} \\
& \cong \bigoplus_{\substack{0 \leq k_{j} \leq j+1, j=0, \ldots, n-1 \\
k_{j} \equiv 0 \bmod 2}} L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1,1}^{n}\right)
\end{aligned}
$$

Remark 2.2. Note that the Weyl group $W\left(A_{n}\right)$ of the root system A_{n} induces a natural action on the lattice VOA $V_{\sqrt{2} A_{n}}$. By our construction (cf. [20]), the parafermion algebra $W_{n+1}(2 n /(n+3))$ is actually fixed under the action of $W\left(A_{n}\right)\left(\cong S_{n+1}\right)$ and the commutant algebra M is $W\left(A_{n}\right)$-invariant.

3. Construction of Irreducible Modules for M

In this section, we shall construct some irreducible modules for M using the lattice VOA $V_{\sqrt{2} A_{n}}$. First we shall recall certain arguments used in Lam and Yamada [20].

3.1. GKO construction of unitary Virasoro VOA

We shall first review the famous GKO construction for unitary Virasoro vertex operator algebras. We shall also study a certain decomposition of the lattice vertex operator algebra $V_{A_{1}{ }^{n+1}}$ and its relation with the lattice VOA $V_{\sqrt{2} A_{n}}$.

Let \mathfrak{g} be the Lie algebra $s l_{2}(\mathbb{C})$ with generators e, f, α such that $[e, f]=\alpha$, $[\alpha, e]=2 e,[\alpha, f]=-2 f$ and $\tilde{\mathfrak{g}}=s l_{2}(\mathbb{C}) \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} c \oplus \mathbb{C} d$ the corresponding affine Lie algebra of type $A_{1}^{(1)}$. We shall denote $\hat{\mathfrak{g}}=[\tilde{\mathfrak{g}}, \tilde{\mathfrak{g}}]=s l_{2}(\mathbb{C}) \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} c$. For any $\hat{\mathfrak{g}}$-module $M, x \in \mathfrak{g}$ and $m \in \mathbb{Z}$, we denote the action of $x \otimes t^{m}$ on M by $x(m)$ and identify $\mathfrak{g} \otimes t^{0}$ with \mathfrak{g}. Let $\Lambda_{0}=d$ and $\Lambda_{1}=d+\frac{1}{2} \alpha$ be the fundamental weights for $\tilde{\mathfrak{g}}$. Then the dominant integral weights of $\tilde{\mathfrak{g}}$ for which d vanishes are given by

$$
P_{+}=\left\{\left.(m-j) \Lambda_{0}+j \Lambda_{1}=m d+\frac{1}{2} j \alpha \right\rvert\, m \in \mathbb{Z}^{+}, j \in \mathbb{Z}^{+} \cup\{0\}, j \leq m\right\}
$$

Let $\mathcal{L}(m, j)=\mathcal{L}\left((m-j) \Lambda_{0}+j \Lambda_{1}\right)$ be the irreducible highest weight module of $\tilde{\mathfrak{g}}$ of weight $(m-j) \Lambda_{0}+j \Lambda_{1} \in P_{+}$. By the Sugawara construction, $\mathcal{L}(m, j)$ has a natural Virasoro action given by the operators

$$
\begin{aligned}
L_{k}^{\mathfrak{g}, m}= & \frac{1}{4(m+2)} \sum_{j \in \mathbb{Z}}: \alpha(-j) \alpha(k+j): \\
& +\frac{1}{2(m+2)} \sum_{j \in \mathbb{Z}}(: e(-j) f(k+j):+: f(-j) e(k+j):)
\end{aligned}
$$

with central charge $3 m /(m+2)$, where : : denotes the normal ordered product.
Let $\mathcal{L}(\Lambda)$ and $\mathcal{L}\left(\Lambda^{\prime}\right)$ be two integrable highest weight representations of $\tilde{\mathfrak{g}}$ with level 1 and m respectively. Then $\hat{\mathfrak{g}} \oplus \hat{\mathfrak{g}}$ acts on the tensor product $\mathcal{L}(\Lambda) \otimes \mathcal{L}\left(\Lambda^{\prime}\right)$ by

$$
(x(m) \oplus y(n))(v \otimes w)=(x(m) v) \otimes w+v \otimes(y(n) w)
$$

for any $x(n), y(m) \in \hat{\mathfrak{g}}$ and $v \otimes w \in \mathcal{L}(\Lambda) \otimes \mathcal{L}\left(\Lambda^{\prime}\right)$. Now let $L_{k}^{\mathfrak{p}}=L_{k}^{\mathfrak{g}, 1} \otimes 1+1 \otimes L_{k}^{\mathfrak{q}, m}$ be an operator on $\mathcal{L}(\Lambda) \otimes \mathcal{L}\left(\Lambda^{\prime}\right)$. Then $L_{k}^{\mathfrak{p}}, k \in \mathbb{Z}$, form a representation of the Virasoro algebra with central charge $1+3 m /(m+2)$ on $\mathcal{L}(\Lambda) \otimes \mathcal{L}\left(\Lambda^{\prime}\right)$. On the other hand, $\hat{\mathfrak{g}}$ acts on $\mathcal{L}(\Lambda) \otimes \mathcal{L}\left(\Lambda^{\prime}\right)$ by the diagonal action

$$
x(n)(v \otimes w)=(x(n) v) \otimes w+v \otimes(x(n) w)
$$

for any $x(n) \in \hat{\mathfrak{g}}$ and $v \otimes w \in \mathcal{L}(\Lambda) \otimes \mathcal{L}\left(\Lambda^{\prime}\right)$. This gives a level $m+1$ representation of $\hat{\mathfrak{g}}$ and the Sugawara operators $L_{k}^{\mathfrak{g}, m+1}$ form the Virasoro algebra on $\mathcal{L}(\Lambda) \otimes \mathcal{L}\left(\Lambda^{\prime}\right)$ with central charge $3(m+1) /(m+3)$. Let $L_{k}=L_{k}^{\mathfrak{p}}-L_{k}^{\mathfrak{g}, m+1}$. It is well known (cf. [8, 11]) that $L_{k}, k \in \mathbb{Z}$, commute with the diagonal Virasoro operators $L_{n}^{\mathfrak{q}, m+1}$ for all $n \in \mathbb{Z}$ and they give rise to a representation the Virasoro algebra Vir $=$ $\bigoplus_{n \in \mathbb{Z}} \mathbb{C} L_{n} \oplus \mathbb{C} c$ on $\mathcal{L}(\Lambda) \otimes \mathcal{L}\left(\Lambda^{\prime}\right)$ with central charge $c_{m}=1-6 /(m+2)(m+3)$. Moreover, $\mathcal{L}(\Lambda) \otimes \mathcal{L}\left(\Lambda^{\prime}\right)$ is completely reducible as a module of $\operatorname{Vir} \oplus \hat{\mathfrak{g}}$.

By using the theory of character, the explicit decomposition of $\mathcal{L}(\Lambda) \otimes \mathcal{L}\left(\Lambda^{\prime}\right)$ as a $\operatorname{Vir} \oplus \hat{\mathfrak{g}}$-module is known [8, 11, 25]. It is given by

$$
\mathcal{L}(m, n) \otimes \mathcal{L}(1, \epsilon)=\bigoplus_{\substack{0 \leq s \leq n \\ s \equiv n+\epsilon \bmod 2}} L\left(c_{m}, h_{n+1, s+1}^{m}\right) \otimes \mathcal{L}(m+1, s)
$$

$$
\begin{align*}
\oplus & \bigoplus_{\substack{n+1 \leq s \leq m+1 \\
s \equiv n+\epsilon \bmod 2}} L\left(c_{m}, h_{m-n+1, m+2-s}^{m}\right) \otimes \mathcal{L}(m+1, s) \tag{3.1}\\
= & \bigoplus_{\substack{0 \leq s \leq m+1 \\
s \equiv n+\epsilon \bmod 2}} L\left(c_{m}, h_{n+1, s+1}^{m}\right) \otimes \mathcal{L}(m+1, s),
\end{align*}
$$

for any $\epsilon=0,1$, and $0 \leq n \leq m$.
Let $A_{1}{ }^{n+1}=\mathbb{Z} \alpha^{0} \oplus \mathbb{Z} \alpha^{1} \oplus \cdots \oplus \mathbb{Z} \alpha^{n}$ be the orthogonal sum of $n+1$ copies of A_{1} and $V_{A_{1}{ }^{n+1}}$ the lattice vertex operator algebra associated with the lattice $A_{1}{ }^{n+1}$. Then we have

$$
V_{A_{1} n+1} \cong V_{A_{1}} \otimes \cdots \otimes V_{A_{1}} \cong \mathcal{L}(1,0) \otimes \cdots \otimes \mathcal{L}(1,0)
$$

as a vertex operator algebra and

$$
V_{\gamma_{a}+A_{1} n+1} \cong \mathcal{L}\left(1, a_{0}\right) \otimes \cdots \otimes \mathcal{L}\left(1, a_{n}\right)
$$

as a module of $\mathcal{L}(1,0) \otimes \cdots \otimes \mathcal{L}(1,0)$, where $a=\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n+1}$ and $\gamma_{a}=\frac{1}{2} \sum_{i=0}^{n} a_{i} \alpha^{i}$.

For each $0 \leq j \leq n+1$, let $H^{j}=\alpha^{0}(-1) 1+\cdots+\alpha^{j}(-1) 1$, $E^{j}=e^{\alpha^{0}}+$ $\cdots+e^{\alpha^{j}}$, and $F^{j}=e^{-\alpha^{0}}+\cdots+e^{-\alpha^{j}}$. Then $\operatorname{span}_{\mathbb{C}}\left\{H^{j}, E^{j}, F^{j}\right\}$ forms a simple Lie algebra $s l_{2}(\mathbb{C})$ inside the weight one space of $V_{A_{1}{ }^{m+1}}$ under the 0 -th product,
i.e., $[x, y]=x_{0} y$ for $x, y \in\left(V_{A_{1} m+1}\right)_{1}$. Moreover, $\left\{H^{j}, E^{j}, F^{j}\right\}$ generates a simple VOA $\mathcal{L}(j+1,0)$ of level $j+1$ and the Virasoro elements of $\mathcal{L}(j+1,0)$ is given by

$$
\begin{aligned}
\Omega^{j}= & \frac{1}{2(j+3)}\left(\frac{1}{2} H_{-1}^{j} H^{j}+E_{-1}^{j} F^{j}+F_{-1}^{j} E^{j}\right) \\
= & \frac{1}{2(j+3)}\left\{\frac{3}{2} \sum_{p=0}^{j} \alpha^{p}(-1)^{2} 1+\frac{1}{2} \sum_{\substack{0 \leq p, q \leq j \\
p \neq q}} \alpha^{p}(-1) \alpha^{q}(-1) 1\right. \\
& \left.+2 \sum_{\substack{0 \leq p, q \leq j \\
p \neq q}} e^{\alpha^{p}-\alpha^{q}}\right\}
\end{aligned}
$$

and the central charges of Ω^{j} is $3(j+1) /(j+3)[2,6]$. On the other hand, the Virasoro element of the lattice subVOA $V_{\mathbb{Z} \alpha^{j}}\left(\cong V_{A_{1}}\right)$ is given by $\frac{1}{4} \alpha^{j}(-1)^{2} 1$. By using the GKO construction, $\tilde{w}^{j}=\frac{1}{4} \alpha^{j}(-1)^{2} \cdot 1+\Omega^{j-1}-\Omega^{j}$ generates a Virasoro subVOA $L\left(c_{j}, 0\right)$ with central charge $c_{j}=1-6 /(j+2)(j+3)$. Thus by induction, we have the following theorem.

Lemma 3.1. [cf. [11, 18, 25]] The lattice VOA $V_{A_{1} n+1}$ contains a subVOA isomorphic to $U=L\left(c_{1}, 0\right) \otimes L\left(c_{2}, 0\right) \otimes \cdots \otimes L\left(c_{n}, 0\right) \otimes \mathcal{L}(n+1,0)$. Moreover,

$$
\cong \bigoplus_{\substack{0 \leq k_{j} \leq j+1, j=0, \ldots, n \\ k_{j}=b_{j} \bmod 2}}^{V_{\gamma_{a}+A_{1} n+1}} \quad L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1, k_{n}+1}^{n}\right) \otimes \mathcal{L}\left(n+1, k_{n}\right)
$$

as a U-module for any $a=\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n+1}$, where $b_{j}=\sum_{i=0}^{j} a_{i}$.

3.2. A construction of parafermion algebras and their modules

Now let us recall a construction of parafermion algebras from [2]. We shall then use this construction to obtain decompositions for irreducible $V_{\sqrt{2} A_{n}}$-modules with respect to the subalgebra

$$
\mathcal{W}=L\left(c_{1}, 0\right) \otimes L\left(c_{2}, 0\right) \otimes \cdots \otimes L\left(c_{n}, 0\right) \otimes W_{n+1}(2 n /(n+3)) .
$$

Recall that $H^{n}=\alpha^{0}(-1) 1+\cdots+\alpha^{n}(-1) 1, E^{n}=e^{\alpha^{0}}+\cdots+e^{\alpha^{n}}$, and $F^{n}=$ $e^{-\alpha^{0}}+\cdots+e^{-\alpha^{n}}$ generate a subVOA isomorphic to a level $n+1$ representation
$\mathcal{L}(n+1,0)$ (cf. [2]). Let $\gamma=\alpha^{0}+\cdots+\alpha^{n}$. Then $\gamma(-1) 1=H^{n}$ and it is easy to check that

$$
e^{\gamma}=\frac{1}{(n+1)!}\left(E_{-1}^{n}\right)^{n} E^{n} .
$$

Thus $\mathcal{L}(n+1,0)$ contains a subalgebra isomorphic to the lattice VOA $V_{\mathbb{Z} \gamma}$.
Let $W_{n+1}=\left\{v \in \mathcal{L}(n+1,0) \mid u_{n} v=0\right.$ for all $u \in V_{\mathbb{Z} \gamma}$ and $\left.n \geq 0\right\}$ be the commutant subalgebra of $V_{\mathbb{Z} \gamma}$ in $\mathcal{L}(n+1,0)$. Then, for any $1 \leq j \leq n+1$, $\mathcal{L}(n+1, j)$ is a $V_{\mathbb{Z} \gamma} \otimes W_{n+1}$-module.

Now let

$$
\mathcal{L}(n+1, j)=\bigoplus_{s=0}^{2 n+1} V_{\mathbb{Z} \gamma+\frac{s}{2(n+1)} \gamma} \otimes W_{n+1}(j, s)
$$

be the decomposition of $\mathcal{L}(n+1, j)$ as $V_{\mathbb{Z} \gamma} \otimes W_{n+1}$-modules. It is shown in [2] that

$$
W_{n+1}(j, s)=0 \quad \text { if } j+s \equiv 1 \quad \bmod 2
$$

and

$$
\mathcal{L}(n+1, j)= \begin{cases}\bigoplus_{s=0}^{n} V_{\mathbb{Z} \gamma+\frac{s}{n+1}} \gamma W_{n+1}(j, 2 s) & \text { if } j \text { is even }, \tag{3.2}\\ \bigoplus_{s=0}^{n} V_{\mathbb{Z} \gamma+\frac{2 s+1}{2(n+1)} \gamma} \otimes W_{n+1}(j, 2 s+1) & \text { if } j \text { is odd. }\end{cases}
$$

Proposition 3.2. [cf. Dong-Lepowsky [2]] All $W_{n+1}(j, s), 0 \leq j \leq n+1$, $0 \leq s \leq 2 n+1, j \equiv s \bmod 2$, are irreducible W_{n+1}-modules.

Let $N=\operatorname{span}_{\mathbb{Z}}\left\{-\alpha^{0}+\alpha^{1},-\alpha^{1}+\alpha^{2}, \ldots,-\alpha^{n-1}+\alpha^{n}\right\} \subset A_{1}{ }^{n+1}, \gamma=$ $\alpha^{0}+\cdots+\alpha^{n}$ and $\eta=\frac{1}{n+1}\left(-\alpha^{0}-\cdots-\alpha^{n-1}+n \alpha^{n}\right)$. Then N is isomorphic to $\sqrt{2} A_{n}$ and the dual lattice of N is

$$
\begin{aligned}
N^{*} & =\left\{x \in \mathbb{Q} \otimes_{\mathbb{Z}} N \mid\langle x, y\rangle \in \mathbb{Z} \text { for all } y \in N\right\} \\
& \cong \frac{1}{\sqrt{2}}\left(A_{n}^{*}\right) .
\end{aligned}
$$

Note that $\langle N, \gamma\rangle=0,\left|N^{*} / N\right|=2^{n} \cdot(n+1)$ and $\eta+N$ is a generator of the quotient group $2 N^{*} / N$. In addition, we have the following lemma.

Lemma 3.3. Let $a=\left(a_{0}, \ldots, a_{n}\right) \in\{0,1\}^{n+1}$ be a binary word. We shall denote

$$
\gamma_{a}=\frac{1}{2} \sum_{i=0}^{n} a_{i} \alpha^{i} \quad \text { and } \quad \beta_{a}=\frac{1}{2} \sum_{i=0}^{n} a_{i}\left(\alpha^{i}-\alpha^{n}\right) .
$$

Then we have

$$
\begin{aligned}
& \gamma_{a}+A_{1}^{n+1} \\
& = \begin{cases}\bigcup_{s=0}^{n}\left\{\left(\beta_{a}+s \eta+N\right)+\left(\frac{s}{n+1} \gamma+\mathbb{Z} \gamma\right)\right\} & \text { if }|a| \text { is even } \\
\bigcup_{s=0}^{n}\left\{\left(\beta_{a}+\frac{2 s+1}{2} \eta+N\right)+\left(\frac{2 s+1}{2(n+1)} \gamma+\mathbb{Z} \gamma\right)\right\} & \text { if }|a| \text { is odd }\end{cases}
\end{aligned}
$$

where $|a|=\sum_{i=0}^{n} a_{i}$ is the weight of the binary word a.
Proof. First we shall show that

$$
\mathcal{A}=\bigcup_{s=0}^{n}\left\{(s \eta+N)+\left(\frac{s}{n+1} \gamma+\mathbb{Z} \gamma\right)\right\}=A_{1}^{n+1}
$$

Clearly, \mathcal{A} is closed under addition and it forms a sublattice of $A_{1}{ }^{n+1}$. Note also that

$$
\eta^{s}=\frac{1}{n+1}\left(-s \sum_{i=0}^{n-s} \alpha^{i}+(n+1-s) \sum_{i=n+1-s}^{n} \alpha^{i}\right) \in s \eta+N
$$

and

$$
\eta^{s}+\frac{s}{n+1} \gamma=\sum_{i=n+1-s}^{n} \alpha^{i}
$$

Hence, \mathcal{A} contains all α^{i} for $i=0, \ldots, n$ and thus $\mathcal{A}=A_{1}{ }^{n+1}$.
Now let $a=\left(a_{0}, \ldots, a_{n}\right) \in\{0,1\}^{n+1}$. Then

$$
\gamma_{a}=\frac{1}{2} \sum_{i=0}^{n} a_{i} \alpha^{i}=\frac{1}{2} \sum_{i=0}^{n} a_{i}\left(\alpha^{i}-\alpha^{n}\right)+\frac{|a|}{2} \alpha^{n}=\beta_{a}+\frac{|a|}{2} \alpha^{n}
$$

If $|a|$ is even, then $\frac{|a|}{2} \alpha^{n}$ is in $A_{1}{ }^{n+1}$ and thus we have

$$
\gamma_{a}+A_{1}^{n+1}=\bigcup_{s=0}^{n}\left\{\left(\beta_{a}+s \eta+N\right)+\left(\frac{s}{n+1} \gamma+\mathbb{Z} \gamma\right)\right\}
$$

If $|a|$ is odd, then $\gamma_{a}+A_{1}{ }^{n+1}=\left(\beta_{a}+\frac{\alpha^{n}}{2}\right)+A_{1}{ }^{n+1}$. On the other hand,

$$
\frac{\alpha^{n}}{2}=\frac{1}{2} \eta+\frac{1}{2(n+1)} \gamma
$$

and thus

$$
\gamma_{a}+A_{1}^{n+1}=\bigcup_{s=0}^{n}\left\{\left(\beta_{a}+\frac{2 s+1}{2} \eta+N\right)+\left(\frac{2 s+1}{2(n+1)} \gamma+\mathbb{Z} \gamma\right)\right\}
$$

when $|a|$ is odd.
As a corollary of Lemma 3.3, we have the following proposition.
Proposition 3.4. Let $\delta=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}\right) \in \mathbb{Z}_{2}^{n}$ and denote

$$
\beta_{\delta}=\frac{1}{2} \sum_{i=0}^{n-1} \delta_{i}\left(\alpha^{i}-\alpha^{n}\right)
$$

Then, for any $s=0, \ldots, n$, we have the following decompositions:

$$
V_{\beta_{\delta}+s \eta+N}
$$

$$
\begin{align*}
\cong & \bigoplus_{\substack{0 \leq k_{j} \leq j+1, j=0, \ldots, n \\
k_{j}=b_{j}, n \bmod 2}} \tag{3.3}\\
& L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1, k_{n}+1}^{n}\right) \otimes W_{n+1}\left(k_{n}, 2 s\right),
\end{align*}
$$

where $b_{j}=\sum_{i=0}^{j} \delta_{j}$ for $j=0,1, \ldots, n-1$ and

$$
b_{n}= \begin{cases}|\delta| & \text { if }|\delta| \text { is even } \\ |\delta|+1 & \text { if }|\delta| \text { is odd }\end{cases}
$$

and

$$
\cong \bigoplus_{\substack{0 \leq k_{j} \leq j+1, j=0, \ldots, n \\ k_{j} \equiv d_{j} \bmod 2}} \quad V_{\beta_{\delta}+\frac{2 s+1}{2} \eta+N} \quad L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1, k_{n}+1}^{n}\right) \otimes W_{n+1}\left(k_{n}, 2 s+1\right),
$$

where $d_{j}=b_{j}=\sum_{i=0}^{j} \delta_{j}$ for $j=0,1,, \ldots, n-1$ and

$$
d_{n}= \begin{cases}|\delta|+1 & \text { if }|\delta| \text { is even } \\ |\delta| & \text { if }|\delta| \text { is odd }\end{cases}
$$

Proof. For $\delta=\left(\delta_{0}, \ldots, \delta_{n-1}\right) \in \mathbb{Z}_{2}^{n}$, denote

$$
\tilde{\delta}= \begin{cases}\left(\delta_{0}, \ldots, \delta_{n-1}, 0\right) & \text { if }|\delta| \text { is even } \\ \left(\delta_{0}, \ldots, \delta_{n-1}, 1\right) & \text { if }|\delta| \text { is odd }\end{cases}
$$

Then $\tilde{\delta}$ is always even and $\hat{\delta}=\tilde{\delta}+(0, \ldots, 0,1)$ is always odd. Thus, by Lemma 3.3, we have

$$
\gamma_{\tilde{\delta}}+A_{1}^{n+1}=\bigcup_{s=0}^{n}\left\{\left(\beta_{\tilde{\delta}}+s \eta+N\right)+\left(\frac{s}{n+1} \gamma+\mathbb{Z} \gamma\right)\right\}
$$

and

$$
\gamma_{\hat{\delta}}+A_{1}^{n+1}=\bigcup_{s=0}^{n}\left\{\left(\beta_{\hat{\delta}}+\frac{2 s+1}{2} \eta+N\right)+\left(\frac{2 s+1}{2(n+1)} \gamma+\mathbb{Z} \gamma\right)\right\}
$$

Note that $\beta_{\delta}=\beta_{\tilde{\delta}}=\beta_{\hat{\delta}}$ and we have

$$
V_{\gamma_{\tilde{\delta}}+A_{1} n+1}=\bigoplus_{s=0}^{n}\left(V_{\beta_{\delta}+s \eta+N} \otimes V_{\frac{s}{n+1} \gamma+\mathbb{Z} \gamma}\right)
$$

and

$$
V_{\gamma_{\hat{\delta}}+A_{1} n+1}=\bigoplus_{s=0}^{n}\left(V_{\beta_{\delta}+\frac{2 s+1}{2} \eta+N} \otimes V_{\frac{2 s+1}{2(n+1)} \gamma+\mathbb{Z} \gamma}\right)
$$

Now by Lemma 3.1 and (3.2), we immediately have the desired results.
Let $\mathbf{1}=(1,1, \ldots, 1) \in \mathbb{Z}_{2}^{n+1}$. Then

$$
\beta_{1}=\frac{1}{2} \sum_{i=0}^{n-1}\left(\alpha^{i}-\alpha^{n}\right)=-\frac{n+1}{2} \eta
$$

and we have

$$
\beta_{1+a}+N=\beta_{a}+\beta_{1}+N=\beta_{a}-\frac{n+1}{2} \eta+N
$$

for any $a=\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{Z}_{2}^{n+1}$. Hence we have

$$
\begin{align*}
& \gamma_{a+1}+A_{1}{ }^{n+1} \\
& =\left\{\begin{array}{l}
\bigcup_{s=0}^{n}\left\{\left(\beta_{a}+\frac{2 s-n-1}{2} \eta+N\right)+\left(\frac{s}{n+1} \gamma+\mathbb{Z} \gamma\right)\right\} \text { if }|a+\mathbf{1}| \text { is even, } \\
\bigcup_{s=0}^{n}\left\{\left(\beta_{a}+\frac{2 s-n}{2} \eta+N\right)+\left(\frac{2 s+1}{2(n+1)} \gamma+\mathbb{Z} \gamma\right)\right\} \text { if }|a+\mathbf{1}| \text { is odd. }
\end{array}\right. \tag{3.5}
\end{align*}
$$

Proposition 3.5. Let $0 \leq j \leq n+1$ and $0 \leq s \leq 2 n+1$. Then we have

$$
W_{n+1}(j, s) \cong W_{n+1}\left(n+1-j, s^{\prime}\right)
$$

as a W_{n+1}-module, where $s^{\prime} \equiv s+n+1 \bmod 2(n+1)$.
Proof. For $0 \leq j \leq n+1$, define $a=\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{Z}_{2}^{n+1}$ by

$$
a_{i}= \begin{cases}1 & \text { if } i<j \\ 0 & \text { otherwise }\end{cases}
$$

Then by Lemma 3.3 and (3.5), we have

$$
\cong \bigoplus_{\substack{0 \leq k_{\ell} \leq \ell+1, \ell=0, \ldots, n \\ k_{\ell} \equiv b_{\ell} \bmod 2}} L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1, k_{n}+1}^{n}\right) \otimes W_{n+1}\left(k_{n}, s\right)
$$

and

$$
\begin{aligned}
& V_{\beta_{a}+\frac{s^{\prime}-n-1}{2} \eta+N} \\
\cong & \bigoplus_{\substack{0 \leq k_{\ell}^{\prime} \leq \ell+1, \ell=0, \ldots, k_{\ell}^{\prime} \equiv b_{\ell}^{\prime} \bmod 2}} L\left(c_{1}, h_{k_{0}^{\prime}+1, k_{1}^{\prime}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}^{\prime}+1, k_{n}^{\prime}+1}^{n}\right) \otimes W_{n+1}\left(k_{n}^{\prime}, s^{\prime}\right)
\end{aligned}
$$

for any $0 \leq s, s^{\prime} \leq 2 n+1$, where $b_{\ell}=\sum_{i=0}^{\ell} a_{i}$ for $\ell=0,1, \ldots, n$ and $b_{\ell}^{\prime}=$ $\ell+1-b_{\ell}$.

Now suppose $s=s^{\prime}-n-1 \bmod 2(n+1)$. Then we have

$$
\begin{aligned}
& V_{\beta_{a}+\frac{s}{2} \eta+N} \\
\cong & \bigoplus_{\substack{0 \leq k_{\ell} \leq \ell+1, \ell=0, \ldots, n \\
k_{\ell} \equiv b b_{\ell} \bmod 2}} L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1, k_{n}+1}^{n}\right) \otimes W_{n+1}\left(k_{n}, s\right) \\
\cong & \bigoplus_{\substack{0 \leq k_{\ell}^{\prime} \leq \ell+1, \ell=0, \ldots, n \\
k_{\ell}^{\prime}=b_{\ell}^{\prime} \bmod 2}} L\left(c_{1}, h_{k_{0}^{\prime}+1, k_{1}^{\prime}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}^{\prime}+1, k_{n}^{\prime}+1}^{n}\right) \otimes W_{n+1}\left(k_{n}^{\prime}, s^{\prime}\right) .
\end{aligned}
$$

Note that $h_{r, s}^{m}=h_{m+2-r, m+3-s}^{m}$ for any m, r and s and we have

$$
h_{k_{\ell-1}^{\prime}+1, k_{\ell}^{\prime}+1}^{\ell}=h_{\left(\ell-k_{\ell-1}^{\prime}\right)+1,\left(\ell+1-k_{\ell}^{\prime}\right)+1}^{\ell}
$$

Recall that

$$
k_{\ell}^{\prime} \equiv b_{\ell}^{\prime}=\ell+1-b_{\ell} \quad \bmod 2
$$

Hence, we have

$$
\ell+1-k_{\ell}^{\prime} \equiv(\ell+1)-(\ell+1)+b_{\ell} \equiv b_{\ell} \quad \bmod 2
$$

and

$$
\begin{aligned}
& V_{\beta_{a}+\frac{s}{2} \eta+N} \\
& \cong \bigoplus_{\substack{0 \leq k_{k} \leq \ell+1, \\
\text { bon } \\
k_{\ell}=b_{\ell}, \ldots, n+2}} L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1, k_{n}+1}^{n}\right) \otimes W_{n+1}\left(k_{n}, s\right),
\end{aligned}
$$

Therefore, $W_{n+1}(j, s) \cong W_{n+1}\left(n+1-j, s^{\prime}\right)$ as desired.
Next we shall construct some irreducible modules for the coset algebra

$$
M=M^{(n)}=\left\{v \in V_{\sqrt{2} A_{n}} \mid u_{n} v=0 \text { for all } n \geq 0 \text { and } u \in W_{n+1}\left(\frac{2 n}{n+3}\right)\right\} .
$$

Note that M is also contained in the lattice VOA $V_{A_{1}{ }^{n+1}}$ and we have

$$
\begin{aligned}
M & \cong\left\{v \in V_{A_{1} n+1} \mid \Omega_{1}^{n+1} v=0\right\} \\
& \cong \bigoplus_{\substack{0 \leq k_{j} \leq j+1, j=0 \\
k_{j} \ldots, n-1 \\
k_{j}=0 \bmod 2}} L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1,1}^{n}\right),
\end{aligned}
$$

where Ω^{n+1} is the Virasoro element of the VOA $\mathcal{L}(n+1,0)$.
Definition 3.6. For any $\delta=\left(\delta_{0}, \ldots, \delta_{n-1}\right) \in \mathbb{Z}_{2}^{n}$ and $0 \leq k \leq n+1$, denote

$$
\delta^{\prime}= \begin{cases}\left(\delta_{0}, \ldots, \delta_{n-1}, 0\right) & \text { if }|\delta| \equiv k \quad \bmod 2 \\ \left(\delta_{0}, \ldots, \delta_{n-1}, 1\right) & \text { if }|\delta| \equiv k+1 \quad \bmod 2\end{cases}
$$

We define

$$
M^{\delta}(k)=\left\{\begin{array}{l|l}
u \in V_{\gamma_{\delta^{\prime}}+A_{1}}{ }^{n+1} & \begin{array}{c}
\left(\Omega^{n+1}\right)_{i} u=0 \text { for all } i \geq 2,\left(E^{n}\right)_{0} u=0 \\
\text { and }\left(\Omega^{n+1}\right)_{1} u=\frac{k(k+2)}{4(n+3)} u
\end{array}
\end{array}\right\} .
$$

In other words, $M^{\delta}(k)$ corresponds to the multiplicity of $\mathcal{L}(n+1, k)$ in $V_{\gamma_{\delta^{\prime}}+A_{1} n+1}$ and hence we have

$$
M^{\delta}(k) \cong \bigoplus_{\substack{0 \leq k_{j} \leq j+1, j=0, \ldots-1, k_{j}=b_{j} \bmod 2}} L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1, k+1}^{n}\right)
$$

where $b_{j}=\sum_{i=0}^{j} \delta_{j}, j=0, \ldots, n-1$.
By using the similar argument as Proposition 3.5, we also have the following theorem.

Theorem 3.7. Let $\mathbf{1}=(1, \ldots, 1) \in \mathbb{Z}_{2}^{n}$. For any $\delta=\left(\delta_{0}, \ldots, \delta_{n-1}\right) \in \mathbb{Z}_{2}^{n}$ and $0 \leq k \leq n+1$, we have $M^{\delta}(k) \cong M^{\delta+1}(n+1-k)$.

Proof. By using Lemma 3.1, (3.2) and Lemma 3.3, it is clear that

$$
V_{\beta_{\delta}+\frac{s}{2} \eta+N} \cong \bigoplus_{\substack{0 \leq k \leq n+1 \\ k \equiv \bmod 2}} M^{\delta}(k) \otimes W_{n+1}(k, s),
$$

for any $0 \leq s \leq 2 n+1$, where $\beta_{\delta}=\frac{1}{2} \sum_{i=0}^{n-1} \delta_{i}\left(\alpha_{i}-\alpha_{n}\right)$. On the other hand,

$$
\begin{aligned}
V_{\beta_{\delta+1}+\frac{s}{2} \eta+N} & =V_{\beta_{\delta}+\frac{s-n-1}{2} \eta+N} \\
& \cong \bigoplus_{\substack{0 \leq k \leq n+1 \\
k \equiv s^{\prime \prime} \bmod 2}} M^{\delta}(k) \otimes W_{n+1}\left(k, s^{\prime \prime}\right)
\end{aligned}
$$

where $0 \leq s^{\prime \prime} \leq 2 n+1$ and $s^{\prime \prime} \equiv s-n-1 \bmod 2(n+1)$. Thus

$$
\begin{aligned}
V_{\beta_{\delta+1}+\frac{s}{2} \eta+N} & \cong \bigoplus_{\substack{0 \leq k^{\prime} \leq n+1 \\
k^{\prime}=s \bmod 2}} M^{\delta+1}\left(k^{\prime}\right) \otimes W_{n+1}\left(k^{\prime}, s\right), \\
& \cong \bigoplus_{\substack{0 \leq k \leq n+1 \\
k \equiv s^{\prime} \bmod 2}} M^{\delta}(k) \otimes W_{n+1}\left(k, s^{\prime \prime}\right) .
\end{aligned}
$$

Since $W_{n+1}\left(k^{\prime}, s\right) \cong W_{n+1}\left(n+1-k^{\prime}, s^{\prime \prime}\right)$, we have $M^{\delta+\mathbf{1}}\left(k^{\prime}\right) \cong M^{\delta}(k)$ if $k=$ $n+1-k^{\prime}$ and thus $M^{\delta}(k) \cong M^{\delta+1}(n+1-k)$ as desired.

3.3. Inequivalence of Irreducible modules

In this section, we shall show that $M^{\delta}(k)$ and $M^{\sigma}(\ell)$ are inequivalent except for the cases:
(1) $\delta=\sigma$ and $k=\ell$
and
(2) $\delta=\sigma+1$ and $k=n+1-\ell$.

First we shall recall that for any $\delta \in \mathbb{Z}_{2}^{n}$ and $1 \leq k \leq n+1$,

$$
M^{\delta}(k)=\left\{\begin{array}{l|l}
u \in V_{\gamma_{\delta^{\prime}}+A_{1}}{ }^{n+1} & \begin{array}{c}
\left(\Omega^{n+1}\right)_{i} u=0 \text { for all } i \geq 2,\left(E^{n}\right)_{0} u=0 \\
\text { and }\left(\Omega^{n+1}\right)_{1} u=\frac{k(k+2)}{4(n+3)} u
\end{array}
\end{array}\right\}
$$

where δ^{\prime} is defined by

$$
\delta^{\prime}= \begin{cases}\left(\delta_{0}, \ldots, \delta_{n-1}, 0\right) & \text { if }|\delta| \equiv k \quad \bmod 2 \\ \left(\delta_{0}, \ldots, \delta_{n-1}, 1\right) & \text { if }|\delta| \equiv k+1 \quad \bmod 2\end{cases}
$$

and $\gamma_{a}=\frac{1}{2} \sum_{i=0}^{n} a_{i} \alpha^{i}$ for any $a=\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{Z}_{2}^{n+1}$.
Lemma 3.8. For any $\delta=\left(\delta_{0}, \ldots, \delta_{n-1}\right) \in \mathbb{Z}_{2}^{n}$ and $0 \leq k \leq n+1$, we have

$$
\begin{equation*}
M^{\delta}(k)=\bigoplus_{\substack{0, k^{\prime} \leq n \\ k^{\prime} \equiv b \bmod 2}} M^{\bar{\delta}}\left(k^{\prime}\right) \otimes L\left(c_{n}, h_{k^{\prime}+1, k+1}^{n}\right), \tag{3.2}
\end{equation*}
$$

where $b=\sum_{i=0}^{n-1} \delta_{i}$ and $\bar{\delta}=\left(\delta_{0}, \ldots, \delta_{n-2}\right)$.
Proof. First we shall note that

$$
V_{\gamma_{\delta^{\prime}}+A_{1} n+1} \cong V_{\gamma_{\delta}+A_{1} n} \otimes V_{\frac{1}{2} \delta_{n}^{\prime} \alpha^{n}+A_{1}} .
$$

By the definition of $M^{\delta}(k)$, we also have

$$
V_{\gamma_{\delta}+A_{1} n} \cong \bigoplus_{\substack{0 \leq k^{\prime} \leq n \\ k^{\prime} \equiv b \\ \bmod 2}} M^{\bar{\delta}}\left(k^{\prime}\right) \otimes \mathcal{L}\left(n, k^{\prime}\right) .
$$

Moreover, we have

$$
\mathcal{L}\left(n, k^{\prime}\right) \otimes \mathcal{L}\left(1, \delta^{\prime}\right) \cong \bigoplus_{\substack{0 \leq s, n+1 \\ s \equiv k^{\prime}+\delta^{\prime} \bmod 2}} L\left(c_{n}, h_{k^{\prime}+1, s+1}^{n}\right) \otimes \mathcal{L}(n+1, s) .
$$

Hence,

$$
\begin{aligned}
& V_{\gamma_{\delta^{\prime}}+A_{1} n+1} \\
& \left.\cong \bigoplus_{\substack{0 \leq s \leq n+1 \\
s \equiv k^{\prime}+\bar{\delta}^{\prime} \bmod 2}}\left(\bigoplus_{\substack{0 \leq k^{\prime} \leq n \\
k^{\prime} \equiv b \bmod 2}} M^{\bar{\delta}}\left(k^{\prime}\right) \otimes L\left(c_{n}, h_{k^{\prime}+1, s+1}^{n}\right)\right) \otimes \mathcal{L}(n+1, s), ~\right) ~
\end{aligned}
$$

and we have

$$
M^{\delta}(k)=\bigoplus_{\substack{0 \leq k^{\prime} \leq n \\ k^{\prime} \cong b \bmod 2}} M^{\bar{\delta}}\left(k^{\prime}\right) \otimes L\left(c_{n}, h_{k^{\prime}+1, k+1}^{n}\right)
$$

as required.

Theorem 3.9. Let $\delta, \sigma \in \mathbb{Z}_{2}^{n}$ and $0 \leq k, \ell \leq n+1$. Suppose that $M^{\delta}(k) \cong$ $M^{\sigma}(\ell)$. Then we have either (1) $k=\ell$ and $\delta=\sigma$ or $(2) k=n+1-\ell$ and $\delta=\sigma+1$.

Proof. We shall prove the theorem by induction on n. For $n=1, M^{(1)} \cong$ $L(1 / 2,0)$. The theorem clearly holds. The case for $n=2$ has also been proved in [19].

Now let $n>2$ and denote $b=\sum_{i=0}^{n-1} \delta_{i}$ and $c=\sum_{i=0}^{n-1} \sigma_{i}$. Since $M^{\delta}(k) \cong$ $M^{\sigma}(\ell)$, by the previous lemma, for any $0 \leq k^{\prime} \leq n$ with $k^{\prime} \equiv b \bmod 2$, there is $0 \leq \ell^{\prime} \leq n$ with $\ell^{\prime} \equiv c \bmod 2$ such that

$$
M^{\bar{\delta}}\left(k^{\prime}\right) \cong M^{\bar{\sigma}}\left(\ell^{\prime}\right) \quad \text { and } \quad h_{k^{\prime}+1, k+1}^{n}=h_{\ell^{\prime}+1, \ell+1}^{n}
$$

Since $n \geq 3$, there is k^{\prime} such that $k^{\prime} \neq n-k^{\prime}$. For such a k^{\prime}, we have either (1) $\bar{\delta}=\bar{\sigma}$ and $\ell^{\prime}=k^{\prime} \neq n-k^{\prime}$ or (2) $\bar{\delta}=\bar{\sigma}+1$ and $\ell=n-k^{\prime} \neq k^{\prime}$ by the induction hypothesis.

Case 1. $\bar{\delta}=\bar{\sigma}$ and $\ell^{\prime}=k^{\prime} \neq n-k^{\prime}$.
In this case, $b \equiv k^{\prime}=\ell^{\prime} \equiv c \bmod 2$ and thus $\delta=\sigma$. Moreover, $h_{k^{\prime}+1, k+1}^{n}=$ $h_{\ell^{\prime}+1, \ell+1}^{n}$ and $k^{\prime}=\ell^{\prime}$ implies $k=\ell$.

Case 2. $\bar{\delta}=\bar{\sigma}+1$ and $\ell^{\prime}=n-k^{\prime} \neq k^{\prime}$.
In this case, we have $h_{k^{\prime}+1, k+1}^{n}=h_{n-k^{\prime}+1, \ell+1}^{n}$ and thus $\ell=n+1-k$. Moreover, $k^{\prime}=n-\ell \equiv n+c \bmod 2$. Thus,

$$
b=\sum_{i=0}^{n-1} \delta_{i} \equiv n+\sum_{i=0}^{n-1} \sigma_{i} \quad \bmod 2
$$

and we have $\delta_{n-1} \equiv \sigma_{n-1}+1 \bmod 2$ and $\delta=\sigma+1$. Note that $\sum_{i=0}^{n-2} \delta_{i} \equiv$ $\sum_{i=0}^{n-2} \sigma_{i}+n-1 \bmod 2$ as $\bar{\delta}=\bar{\sigma}+1$.

We believe that $M^{\delta}(k)$'s are all the irreducible modules for M and end this section with the following conjecture.

Conjecture 3.10. When n is an even integer,

$$
\left\{M^{\delta}(2 k) \mid \delta \in \mathbb{Z}_{2}^{n}, 0 \leq 2 k \leq n+1\right\}
$$

is a complete set of all inequivalent irreducible modules for M. On the other hand, if n is odd, then

$$
\left\{M^{\delta}(k) \mid 0 \leq k \leq n+1, \delta \in \mathbb{Z}_{2}^{n} \text { with }|\delta| \equiv k \bmod 2\right\}
$$

is a complete set of all inequivalent irreducible modules for M.

4. The Symmetric Group S_{n+1} and Automorphisms of M

In this section, we shall discuss the automorphisms of M. We shall show that the Weyl group $W\left(A_{n}\right)\left(\cong S_{n+1}\right)$ acts faithfully on M and the VOA M is generated by its weight 2 subspace.

4.1. The action of $W\left(A_{n}\right)$ on M

Let $A_{1}{ }^{n+1}=\mathbb{Z} \alpha^{0} \oplus \mathbb{Z} \alpha^{1} \oplus \cdots \oplus \mathbb{Z} \alpha^{n}$ be the orthogonal sum of $n+1$ copies of A_{1}. Denote

$$
N=\operatorname{span}_{\mathbb{Z}}\left\{-\alpha^{0}+\alpha^{1},-\alpha^{1}+\alpha^{2}, \ldots,-\alpha^{n-1}+\alpha^{n}\right\}
$$

and

$$
\Phi=\left\{\left.\frac{ \pm\left(\alpha^{i}-\alpha^{j}\right)}{\sqrt{2}} \right\rvert\, 0 \leq i<j \leq n\right\}
$$

Then N is isomorphic to the lattice $\sqrt{2} A_{n}$ and Φ is a root system of type A_{n}.
Let S_{n+1} be the symmetry group on the set $\left\{\alpha^{0}, \alpha^{1}, \ldots, \alpha^{n}\right\}$. Then S_{n+1} acts naturally on Φ and N. Actually, S_{n+1} is exactly the Weyl group of Φ and $S_{n+1} \cong W(\Phi)=W\left(A_{n}\right)$. Note that the action of S_{n+1} on N also induces an action on the lattice VOA V_{N} by defining

$$
\begin{aligned}
& \sigma\left(\beta_{1}\left(-i_{1}\right) \beta_{2}\left(-i_{2}\right) \cdots \beta_{k}\left(-i_{k}\right) \otimes e^{\beta}\right) \\
= & \left(\sigma \beta_{1}\right)\left(-i_{1}\right)\left(\sigma \beta_{2}\right)\left(-i_{2}\right) \cdots\left(\sigma \beta_{k}\right)\left(-i_{k}\right) \otimes e^{\sigma \beta}
\end{aligned}
$$

for any $\sigma \in S_{n+1}$ and $\beta_{1}\left(-i_{1}\right) \beta_{2}\left(-i_{2}\right) \cdots \beta_{k}\left(-i_{k}\right) \otimes e^{\beta} \in V_{N}$.
Lemma 4.1. For any $\sigma \in S_{n+1}$ and $u \in M$, we have $\sigma u \in M$. Hence M is S_{n+1}-invariant and S_{n+1} acts on M.

Proof. Recall that

$$
\begin{aligned}
M & =\left\{v \in V_{\sqrt{2} A_{n}} \mid u_{k} v=0 \text { for all } k \geq 0 \text { and } u \in W_{n+1}\left(\frac{2 n}{n+3}\right)\right\} \\
& =\left\{v \in V_{\sqrt{2} A_{n}} \mid \omega_{1}^{n+1} u=0\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
\omega^{n+1} & =\omega-\frac{1}{2(n+3)} \sum_{\alpha \in \Phi^{+}}\left(\alpha(-1)^{2} \cdot 1-2\left(e^{\sqrt{2} \alpha}+e^{-\sqrt{2} \alpha}\right)\right) \\
& =\frac{1}{n+3}\left(2 \omega+\sum_{\alpha \in \Phi^{+}}\left(e^{\sqrt{2} \alpha}+e^{-\sqrt{2} \alpha}\right)\right) .
\end{aligned}
$$

Note that ω^{n+1} is fixed by S_{n+1} and thus for any $\sigma \in S_{n+1}$ and $u \in M$, we have

$$
\omega_{1}^{n+1}(\sigma u)=\left(\sigma \omega^{n+1}\right)_{1}(\sigma u)=\sigma\left(\omega_{1}^{n+1} u\right)=0 .
$$

Hence, $\sigma u \in M$.
Next we shall consider certain conformal vectors of central charge $1 / 2$ in M.
Lemma 4.2. For any $\alpha \in \Phi$, define

$$
\omega(\alpha)=\frac{1}{8} \alpha(-1)^{2} \cdot 1-\frac{1}{4}\left(e^{\sqrt{2} \alpha}+e^{\sqrt{2} \alpha}\right)
$$

Then $\omega(\alpha)$ is a conformal vector of central charge $1 / 2$ in M.
Proof. Since $\langle\sqrt{2} \alpha, \sqrt{2} \alpha\rangle=4$, it is well known (cf. [5, 23]) that

$$
\omega(\alpha)=\frac{1}{8} \alpha(-1)^{2} \cdot 1-\frac{1}{4}\left(e^{\sqrt{2} \alpha}+e^{\sqrt{2} \alpha}\right)
$$

is a conformal vector of central charge $1 / 2$. In addition,

$$
\begin{aligned}
& \omega_{3}^{n+1} \omega(\alpha)=\left\langle\omega^{n+1}, \omega(\alpha)\right\rangle \\
= & \frac{1}{4(n+3)}\left\langle 2 \omega+\sum_{\beta \in \Phi^{+}}\left(e^{\sqrt{2} \beta}+e^{-\sqrt{2} \beta}\right), \frac{1}{2} \alpha(-1)^{2} \cdot 1-\left(e^{\sqrt{2} \alpha}+e^{\sqrt{2} \alpha}\right)\right\rangle \\
= & \frac{1}{4(n+3)}\left(\frac{1}{2}\langle\alpha, \alpha\rangle^{2}-2\right)=0 .
\end{aligned}
$$

Hence ω^{n+1} and $\omega(\alpha)$ are mutually orthogonal. Thus $\omega_{1}^{n+1} \omega(\alpha)=0$ and $\omega(\alpha) \in$ M.

Proposition 4.3. For $n \geq 2$, the action of S_{n+1} on M is faithful and hence Aut M contains a subgroup isomorphic to S_{n+1}.

Proof. By the previous lemma, the set $\left\{\omega(\alpha) \mid \alpha \in \Phi^{+}\right\}$is contained in M. Moreover, it is clear that $\sigma(\omega(\alpha))=\omega(\sigma \alpha)$ for any $\alpha \in \Phi^{+}$and $\sigma \in S_{n+1}$. Note
that $\omega(\alpha)=\omega(-\alpha)$ and we shall identify $\sigma \alpha$ with $-\sigma \alpha$ if $\sigma \alpha \in \Phi^{-}$. Since S_{n+1} acts faithfully on Φ, using the above identification, the action of S_{n+1} on Φ^{+}is still faithful for $n \geq 2$. Hence the action of S_{n+1} on M is also faithful.

Next we shall show that M is generated by $\left\{\omega(\alpha) \mid \alpha \in \Phi^{+}\right\}$.
Lemma 4.4. For any $n \geq 1, \operatorname{dim} M_{2}=n(n+1) / 2$.
Proof. First we shall recall that

$$
M=M^{(n)} \cong \bigoplus_{\substack{0 \leq k_{j} \leq j+1, j=0, \ldots, n-1 \\ k_{j}=0 \bmod 2}} L\left(c_{1}, h_{k_{0}+1, k_{1}+1}^{1}\right) \otimes \cdots \otimes L\left(c_{n}, h_{k_{n-1}+1,1}^{n}\right)
$$

Note that

$$
h_{r, s}^{m}=\frac{[r(m+3)-s(m+2)]^{2}-1}{4(m+2)(m+3)}
$$

and thus we have

$$
h_{2 k+1,1}^{m}=\frac{k(k(m+3)+1)}{m+2}=k^{2}+\frac{k(k+1)}{m+2}
$$

and

$$
h_{2 k+1,3}^{m}=(k-1)^{2}+\frac{k(k+1)}{m+2}-\frac{2}{m+3} .
$$

First, we shall show that

$$
h_{2 k_{0}+1,2 k_{1}+1}^{1}+\cdots+h_{2 k_{n-1}+1,1}^{n} \supsetneqq 2
$$

if there exists any $k_{i}>1$.
Suppose $k_{i}>1$ for some $1 \leq i \leq n-1$. Let ℓ be the largest integer such that $k=k_{\ell}>1$ and let $j>\ell$ be the smallest integer such that $k_{j}=0$. Then $k_{i}=1$ for all $\ell<i<j$. In this case,

$$
\begin{aligned}
& h_{2 k_{\ell}+1,2 k_{\ell+1}+1}^{\ell+1}+\cdots+h_{2 k_{j-1}+1,2 k_{j}+1}^{j} \\
= & h_{2 k+1,3}^{\ell+1}+\cdots+h_{3,1}^{j} \\
= & \left((k-1)^{2}+\frac{k(k+1)}{\ell+3}-\frac{2}{\ell+4}\right)+\left(\frac{2}{\ell+2+2}-\frac{2}{\ell+2+3}\right)+\cdots+\left(1+\frac{2}{j+3}\right) \\
= & (k-1)^{2}+\frac{k(k+1)}{\ell+3}+1 \nsupseteq 2
\end{aligned}
$$

and hence $h_{2 k_{0}+1,2 k_{1}+1}^{1}+\cdots+h_{2 k_{n-1}+1,1}^{n} \not \geqq 2$

Similarly, if there exists $0 \leq i<j \leq n-1$ such that $k_{i-1}=0, k_{i}=\cdots=$ $k_{j-1}=1$, and $k_{j}=0$, then

$$
\begin{aligned}
& h_{1,3}^{i}+h_{3,3}^{i+1}+\cdots h_{3,3}^{j-1}+h_{3,1}^{j} \\
= & \left(1-\frac{2}{i+3}\right)+\left(\frac{2}{i+1+2}-\frac{2}{i+1+3}\right)+\cdots \\
& +\left(\frac{2}{j-1+2}-\frac{2}{j-1+3}\right)+\left(1+\frac{2}{j+2}\right)=2
\end{aligned}
$$

Therefore,

$$
h_{2 k_{0}+1,2 k_{1}+1}^{1}+\cdots+h_{2 k_{n-1}+1,1}^{n}=2
$$

if and only if there exists $0 \leq i<j \leq n-1$ such that

$$
k_{0}=\cdots=k_{i-1}=0, k_{i}=\cdots=k_{j-1}=1, \quad \text { and } \quad k_{j}=\cdots=k_{n-1}=0
$$

Hence, there are exactly $n(n-1) / 2$ highest weight vectors of weight 2 in M and we have

$$
\operatorname{dim} M_{2}=\frac{n(n-1)}{2}+n=\frac{n(n+1)}{2}
$$

as desired.
Proposition 4.5. The Griess algebra M_{2} is spanned by $\left\{\omega(\alpha) \mid \alpha \in \Phi^{+}\right\}$.
Proof. By definition, it is clear that $\left\{\omega(\alpha) \mid \alpha \in \Phi^{+}\right\}$is linearly independent over \mathbb{C}. Note that $\left|\Phi^{+}\right|=(n+1) n / 2=\operatorname{dim} M_{2}$ and hence we have $M_{2}=$ $\operatorname{span}_{\mathbb{C}}\left\{\omega(\alpha) \mid \alpha \in \Phi^{+}\right\}$.

Proposition 4.6. The VOA M is generated by its weight 2 subspace M_{2} and hence the VOA M is generated by $\left\{\omega(\alpha) \mid \alpha \in \Phi^{+}\right\}$.

We shall divide the proof into several steps. First we shall review the notion of Neveu-Schwarz vertex operator superalgebras (SVOAs).

Let $\mathbf{N S}=\operatorname{Vir} \oplus\left(\oplus_{m \in \frac{1}{2}+\mathbb{Z}} \mathbb{C} G_{m}\right)$ be the Neveu-Schwarz $N=1$ conformal algebra which has commutation relations:

$$
\begin{aligned}
{\left[G_{m}, L_{n}\right] } & =\left(m-\frac{n}{2}\right) G_{m+n} \\
{\left[G_{m}, G_{m^{\prime}}\right]_{+} } & =2 L_{m+m^{\prime}}+\frac{1}{3}\left(m+\frac{1}{2}\right)\left(m-\frac{1}{2}\right) \delta_{m+m^{\prime}, 0} c \\
{[c, \mathbf{N S}] } & =0
\end{aligned}
$$

for $n \in \mathbb{Z}$ and $m, m^{\prime} \in \frac{1}{2}+\mathbb{Z}$. For complex numbers c and h, let $N(c, h)$ be the irreducible highest weight NS-module with the central charge c and the highest
weight h. Then, $N(c, 0)$ has a SVOA structure and is generated by the Virasoro element and $G_{-3 / 2} \mathbf{1} \in N(c, 0)_{3 / 2}$ (cf. [22]).

We consider the tensor product of $\mathcal{L}(m, k)$ and $\mathcal{L}(2,0) \oplus \mathcal{L}(2,2)$. It is known [12] that $\mathcal{L}(m, k) \otimes(\mathcal{L}(2,0) \oplus \mathcal{L}(2,2))$ is a NS-module with the central charge

$$
c_{m}^{\prime}=\frac{3}{2}\left(1-\frac{8}{(m+2)(m+4)}\right)
$$

such that the action of NS commutes with the diagonal action of $s \hat{l}_{2}$. The decomposition of $\mathcal{L}(m, k) \otimes(\mathcal{L}(2,0) \oplus \mathcal{L}(2,2))$ as a $s \hat{l}_{2} \oplus \mathbf{N S}$-module is determined in [12]. It is given by

$$
\begin{equation*}
\mathcal{L}(m, k) \otimes(\mathcal{L}(2,0) \oplus \mathcal{L}(2,2)) \cong \bigoplus_{\substack{0 \leq k^{\prime} \leq m+2 \\ k^{\prime} \equiv k \bmod 2}} \mathcal{L}\left(m+2, k^{\prime}\right) \otimes N\left(c_{m}^{\prime}, h_{k+1, k^{\prime}+1}^{\prime m}\right), \tag{4.1}
\end{equation*}
$$

where

$$
h_{r, s}^{\prime m}=\frac{\{r(m+4)-s(m+2)\}^{2}-4}{8(m+2)(m+4)} .
$$

The SVOA $N\left(c_{m}^{\prime}, 0\right)$ is the commutant subalgebra of $\mathcal{L}(m+2,0)$ in the SVOA $\mathcal{L}(m, 0) \otimes(\mathcal{L}(2,0) \oplus \mathcal{L}(2,2))$. We shall denote the even (resp. odd) part of $N\left(c_{m}^{\prime}, 0\right)$ by $N_{c_{m}^{\prime}}^{0}$ (resp. $N_{c_{m}^{\prime}}^{1}$. Note that

$$
N_{c_{m}^{\prime}}^{i}=N\left(c_{m}^{\prime}, 0\right) \cap(\mathcal{L}(m, 0) \otimes \mathcal{L}(2,2 i))
$$

for $i=0,1$.
Now, let

$$
X=\left\{u \in M \mid w_{k} u=0 \text { for all } w \in M^{\left(0^{n-2}\right)}(0), k \geq 0\right\}
$$

be the commutant subalgebra of $M^{\left(0^{n-2}\right)}(0)$ in $M=M^{\left(0^{n}\right)}(0)$, where $\left(0^{m}\right)$ denotes the codeword $(0, \ldots, 0) \in \mathbb{Z}_{2}^{m}$. By the definition of M and $V_{A_{1}^{n+1}}=V_{A_{1}^{n-1}} \otimes V_{A_{1}} \otimes$ $V_{A_{1}}, X$ is also the commutant subalgebra of $\mathcal{L}(n+1,0)$ in $\mathcal{L}(n-1,0) \otimes \mathcal{L}(1,0) \otimes$ $\mathcal{L}(1,0)$. By using the GKO construction, we have

$$
\begin{aligned}
& \mathcal{L}(n-1,0) \otimes \mathcal{L}(1,0) \otimes \mathcal{L}(1,0) \\
= & \bigoplus_{\substack{0 \leq k \leq n \\
k \equiv 0 \bmod 2}} L\left(c_{n-1}, h_{1, k+1}^{n-1}\right) \otimes \mathcal{L}(n, k) \otimes \mathcal{L}(1,0) \\
= & \bigoplus_{\substack{0 \leq k^{\prime} \leq n+1 \\
k \equiv 0 \bmod 2}}\left(\bigoplus_{\substack{0 \leq k \leq n \\
k=0 \bmod 2}} L\left(c_{n-1}, h_{1, k+1}^{n-1}\right) \otimes L\left(c_{n}, h_{k+1, k^{\prime}+1}^{n}\right)\right) \otimes \mathcal{L}\left(n+1, k^{\prime}\right)
\end{aligned}
$$

and hence

$$
X=\bigoplus_{\substack{0 \leq k \leq n \\ k \equiv 0 \bmod 2}} L\left(c_{n-1}, h_{1, k+1}^{n-1}\right) \otimes L\left(c_{n}, h_{k+1,1}^{n}\right) .
$$

Note that $h_{1, k+1}^{n-1}+h_{k+1,1}^{n}=k^{2} / 2$ and so $\operatorname{dim} X_{2}=3$.

Lemma 4.7.

(1) The VOA X contains a subalgebra isomorphic to the tensor product $N_{c_{n-1}^{\prime}}^{0} \otimes$ $L(1 / 2,0)$ and

$$
\begin{equation*}
X=N_{c_{n-1}^{\prime}}^{0} \otimes L(1 / 2,0) \oplus N_{c_{n-1}^{\prime}}^{1} \otimes L(1 / 2,1 / 2) . \tag{4.2}
\end{equation*}
$$

(2) X is generated by the weight 2 subspace X_{2}.

Proof. (1) By using the GKO construction,

$$
\mathcal{L}(1,0) \otimes \mathcal{L}(1,0)=\mathcal{L}(2,0) \otimes L(1 / 2,0) \oplus \mathcal{L}(2,2) \otimes L(1 / 2,1 / 2)
$$

and so

$$
\begin{aligned}
& \mathcal{L}(n-1,0) \otimes \mathcal{L}(1,0) \otimes \mathcal{L}(1,0) \\
= & \mathcal{L}(n-1,0) \otimes \mathcal{L}(2,0) \otimes L(1 / 2,0) \oplus \mathcal{L}(n-1,0) \otimes \mathcal{L}(2,2) \otimes L(1 / 2,1 / 2)
\end{aligned}
$$

For $i=0,1$, by (4.1), $\mathcal{L}(n-1,0) \otimes \mathcal{L}(2,2 i)$ is a direct sum of $\mathcal{L}(n+1,0) \otimes N_{c_{n-1}^{\prime}}^{0}-$ modules:

$$
\mathcal{L}(n-1,0) \otimes \mathcal{L}(2,2 i)=\bigoplus_{\substack{0 \leq \leq \leq n+1 \\ k \equiv 0 \text { mod } 2}} \mathcal{L}(n+1, k) \otimes N_{c_{n-1}^{\prime}}^{\prime}(k)
$$

where $N_{c_{n-1}^{\prime}}^{0}(k) \oplus N_{c_{n-1}^{\prime}}^{1}(k)=N\left(c_{n-1}^{\prime}, h_{1, k+1}^{2 n-1}\right)$ and $N_{c_{n-1}^{\prime}}^{i}(k)$ is an $N_{c_{n-1}^{\prime}}^{0}$-module. Then,

$$
\begin{aligned}
& \mathcal{L}(n-1,0) \otimes \mathcal{L}(1,0) \otimes \mathcal{L}(1,0) \\
& =\bigoplus_{\substack{0 \leq k \leq n+1 \\
k \equiv 0 \bmod 2}} \mathcal{L}(n+1, k) \otimes\left(N_{c_{n-1}^{\prime}}^{0}(k) \otimes L(1 / 2,0) \oplus N_{c_{n-1}^{\prime}}^{1}(k) \otimes L(1 / 2,1 / 2)\right) .
\end{aligned}
$$

Hence,

$$
X=N_{c_{n-1}^{\prime}}^{0} \otimes L(1 / 2,0) \oplus N_{c_{n-1}^{\prime}}^{1} \otimes L(1 / 2,1 / 2) .
$$

(2) First, we shall note that $N\left(c_{n-1}^{\prime}, 0\right)=N_{c_{n-1}^{\prime}}^{0} \oplus N_{c_{n-1}^{\prime}}^{1}$ is generated by its Virasoro element and the element $G_{-3 / 2} \mathbf{1}$ as a SVOA. By (1), we have

$$
X=N_{c_{n-1}^{\prime}}^{0} \otimes L(1 / 2,0) \oplus N_{c_{n-1}^{\prime}}^{1} \otimes L(1 / 2,1 / 2) .
$$

and hence X is generated by the Virasoro element of $N_{c_{n-1}^{\prime}}^{0}, q \otimes G_{-3 / 2} \mathbf{1}$ and the Virasoro of $L(1 / 2,0)$, where q is a highest weight vector of weight $1 / 2$ in $L\left(\frac{1}{2}, \frac{1}{2}\right)$. As they are all of weight $2, X$ is generated by X_{2}.

Proof of Proposition 4.6. Finally, we shall show that $M=M^{\left(0^{n}\right)}$ is generated by the weight 2 subspace M_{2} by induction on n.

Since

$$
\begin{aligned}
& M^{(0)}(0)=L\left(\frac{1}{2}, 0\right), \\
& M^{(0,0)}(0)=L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{7}{10}, 0\right) \oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{7}{10}, \frac{3}{2}\right),
\end{aligned}
$$

M is generated by M_{2} for $n=1,2$. Assume that $n \geq 3$, by (3.2), we have

$$
M^{\left(0^{n}\right)}(0)=\bigoplus_{\substack{0 \leq k \leq n \\ k \equiv 0 \bmod 2}} M^{\left(0^{n-1}\right)}(k) \otimes L\left(c_{n}, h_{k+1,1}^{n}\right) .
$$

Since $M^{\left(0^{n-1}\right)}(k)$ contains $M^{\left(0^{n-2}\right)}(0) \otimes L\left(c_{n-1}, h_{1, k+1}^{n-1}\right)$ for each k, we have $M^{\left(0^{n-1}\right)}(k) \otimes L\left(c_{n}, h_{k+1,1}^{n}\right)$ is generated by $L\left(c_{n-1}, h_{1, k+1}^{n-1}\right) \otimes L\left(c_{n}, h_{k+1,1}^{n}\right) \subset X$ as an $M^{\left(0^{n-1}\right)}(0) \otimes L\left(c_{n}, 0\right)$-module. Hence, $M^{\left(0^{n}\right)}(0)$ is generated by $M^{\left(0^{n-1}\right)}(0)$ and X.

Now, by induction on n, we know that $M^{\left(0^{n-1}\right)}(0)$ is generated by its weight 2 subspace $\left[M^{\left(0^{n-1}\right)}(0)\right]_{2}$. On the other hand, X is generated by X_{2} by Lemma 4.7. Therefore, $M=M^{\left(0^{n}\right)}(0)$ is generated by the weight 2 subspace M_{2}.

References

1. C. Dong, C. Lam and H. Yamada, Decomposition of the vertex operator algebra $V_{\sqrt{2} A_{3}}$, J. Algebra, 222 (1999), 500-510.
2. C. Dong and J. Lepowsky, Generalized vertex algebras and relative vertex operators, Progress in Math. Vol. 112, Birkhäuser, Boston 1993.
3. C. Dong, H. Li and G. Mason, Modular-Invariance of Trace Functions in Orbifold Theory and Generalized Moonshine, Comm. Math. Phys., 214, (2000), 1-56.
4. C. Dong, H. Li, G. Mason and S. P. Norton, Associative subalgebras of Griess algebra and related topics, Proc. of the Conference on the Monster and Lie algebra at the Ohio State University, May 1996, ed. by J. Ferrar and K. Harada, Walter de Gruyter, Berlin-New York, 1998.
5. C. Dong, G. Mason and Y. Zhu, Discrete series of the Virasoro algebra and the moonshine module, Pro. Symp. Pure. Math., American Math. Soc., 56(II) (1994), 295-316.
6. I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Applied Math., Vol. 134, Academic Press, 1988.
7. I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J., 66 (1992), 123-168.
8. P. Goddard, A. Kent and D. Olive, Virasoro algebras and coset space models. Phys. Lett. B, 152(1-2) (1985), 88-92.
9. G. Glauberman and S. P. Norton, On McKay's connection between the affine E_{8} diagram and the Monster, CRM Proceedings and Lecture Notes, Vol., 30, Amer. Math. Soc., Providence, RI, 2001, pp. 37-42.
10. V. Kac, Infinite dimensional Lie algebra, Cambridge University Press, Cambridge, 1990.
11. V. Kac and Raina, ombary Lectures on Highest weight representations of infinite dimensional Lie algebra, BAdv. Ser. Math. Phys., Vol. 2, World Scientific, 1987.
12. V. Kac and M. Wakimoto, Modular invariant representations of infinite dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. U.S.A., 85 (1988), 4956-4960.
13. M. Kitazume, C. Lam and H. Yamada, Decomposition of the Moonshine vertex operator algebra as Virasoro modules, J. Algebra, 226 (2000), 893-919.
14. M. Kitazume, C. Lam, and H. Yamada, A class of vertex operator algebras constructed from \mathbb{Z}_{8} codes, J. Algebra, 242 (2001), 338-359.
15. M. Kitazume, C. Lam, and H. Yamada, Moonshine Vertex Operator Algebra as $L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{7}{10}, 0\right) \otimes L\left(\frac{4}{5}, 0\right) \otimes L(1,0)$-modules, J. Pure and Applied Algebra, 173 (2002), 15-48.
16. M. Kitazume, C. Lam, and H. Yamada, 3 -state Potts model, Moonshine vertex operator algebra and 3A-elements of the Monster group, Intern. Math. Res. Notice, 23 (2003), 1269-1303.
17. M. Kitazume, M. Miyamoto and H. Yamada, Ternary codes and vertex operator algebras, J. Algebra, 223 (2000), 379-395.
18. C. Lam, N. Lam and H. Yamauchi, Extension of unitary Virasoro vertex operator algebra by a simple module, Intern. Math. Res. Notice, 11 (2003), 577-611.
19. C. Lam and H. Yamada, $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ codes and vertex operator algebras, J. Algebra, 224 (2000), 268-291.
20. C. Lam and H. Yamada, Decomposition of the lattice vertex operator algebra $V_{\sqrt{2}} A_{l}$, J. Algebra, 272 (2004), 614-624.
21. C. Lam, H. Yamada and H. Yamauchi, Vertex operator algerba, extended E_{8} diagram and McKay's observation on the Monster simple group, Trans. Amer. Math. Soc., 359 (2007), 4107-4123.
22. H. Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra, 109 (1996), 143-195.
23. M. Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, J. Algebra, 179 (1996), 523-548.
24. M. Miyamoto, 3 -state Potts model and automorphism of vertex operator algebra of order 3, J. Algebra, 239 (2001), 56-76.
25. M. Wakimoto, Infinite-Dimensional Lie Algebras, Translations of Mathematical Monographs, Vol. 195, American Mathematical Society, Providence, Rhode Island, 2001.
26. W. Wang, Rationality of Virasoro vertex operator algebras, Duke Math. J. IMRN, 71(1) (1993), 197-211.

Ching-Hung Lam and Shinya Sakuma
Department of Mathematics,
National Cheng Kung University,
Tainan 701, Taiwan
E-mail: chlam@math.ncku.edu.tw

[^0]: Received February 26, 2007, accepted June 18, 2007.
 Communicated by Wen-Fong Ke.
 2000 Mathematics Subject Classification: 16B68, 17B69.
 Key words and phrases: Vertex operator algebras, Weyl group, Root system.

