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VECTOR-VALUED FUNCTIONS INTEGRABLE
WITH RESPECT TO BILINEAR MAPS

O. Blasco and J. M. Calabuig

Abstract. Let (Ω, Σ, µ) be a σ−finite measure space, 1 ≤ p < ∞, X be
a Banach space X and B : X × Y → Z be a bounded bilinear map. We
say that an X-valued function f is p−integrable with respect to B whenever
sup{∫Ω ‖B(f(w), y)‖pdµ : ‖y‖ = 1} is finite. We identify the spaces of
functions integrable with respect to the bilinear maps arising from Hölder’s
and Young’s inequalities. We apply the theory to give conditions on X-valued
kernels for the boundedness of integral operators TB(f)(w) =

∫
Ω′ B(k(w, w′),

f(w′))dµ′(w′) from Lp(Y ) into Lp(Z), extending the results known in the
operator-valued case, corresponding to B : L(X, Y ) × X → Y given by
B(T, x) = Tx.

1. INTRODUCTION

In this paper we shall consider spaces ofX-valued functions which are integrable
with respect to bilinear maps, that is to say functions f satisfying the condition
B(f, y) ∈ L1(Z) for all y ∈ Y for some bounded bilinear map B : X × Y → Z.
The motivation for our study comes from two different sources: On the one hand, the
recent paper by M. Girardi and L. Weiss [8], where conditions on operator-valued
kernels K : Ω × Ω′ → L(X, Y ) for the integral operator

TK(f)(w) =
∫

Ω′
K(w, w′)(f(w′))dµ′(w′)

to be bounded from Lp(X) to Lp(Y ) were given, and, on the other hand, the papers
[2, 4, 5] where the notion of convolution by means of bilinear maps was introduced
and applied in different contexts.
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Operator-valued multipliers and operator-valued singular integrals has been con-
sidered by different authors. An introduction to the general theory and its applica-
tions can be found in [1, 7]. We shall deal here with more general bilinear maps in
our study and present a basic introduction to the spaces which can be defined with
this notion of integrability. These will allow, among other things, to get that the
conditions appearing on the kernels for the boundedness of integral operators can
be understood as certain integrability conditions with respect to the corresponding
bilinear maps. This approach also shows that between the class of Pettis integrable
functions and the Bochner integrable ones, there are many others, corresponding to
integrable with respect to other bilinear maps. These classes are the natural ones
where the results on convolution by means of bilinear maps obtained in [2, 4, 5]
still hold true.

The paper is organized as follows: First we introduce the spaces, consider the
basic properties on the triples (Y, Z,B) formed by two Banach spaces Y and Z

and a bounded bilinear map B : X×Y →Z which play some important role in the
development of the theory and present the examples of natural triples that naturally
appear for any Banach space X . Next we identify the spaces of p−integrable
functions with respect to concrete examples of bilinear map arising from on Hölder’s
and Young’s inequalities. The last section concludes with the analogues of the results
in [8] in our more general situation.

Throughout the paper 1 ≤ p < ∞, (Ω, Σ, µ) stands for a σ−finite complete
measure space and X denotes a Banach space over K (R or C). Recall that an
X-valued function f : Ω → X is said to be strongly measurable if there exists a
sequence of simple functions, (sn)n ⊆ S(X), which converges to f a.e. and to be
weakly measurable if 〈f, x∗〉 is measurable for any x∗ ∈ X∗. In the case of dual
spaces X∗ a function is called weak∗-measurable if 〈x, f〉 is measurable for any
x ∈ X . We denote by L0(X), L0

weak(X) and L0
weak∗(X∗) the spaces of strongly,

weakly measurable and weak∗-measurable functions. We write Lp(X), Lp
weak(X)

and Lp
weak∗(X∗) for the space of functions in L0(X), L0

weak(X) and L0
weak∗(X∗)

such that ‖f‖ ∈ Lp(µ), 〈f, x∗〉 ∈ Lp(µ) for x∗ ∈ X∗ and 〈x, f〉 ∈ Lp(µ) for x ∈ X
respectively. Finally we use the notation Pp(X) for the space of Pettis p−integrable
functions P p(X) = Lp

weak(X) ∩ L0(X).

2. INTEGRABILITY WITH RESPECT TO BILINEAR MAPS

Definition 1. Let Y and Z be Banach spaces and let B : X × Y → Z
be a bounded bilinear map. We say that f : Ω → X is (Y, Z,B)-measurable if
B(f, y) ∈ L0(Z) for any y ∈ Y . We shall denote the class of such functions by
L0
B(X).
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Given a Banach space X there are many standard ways to find triples Y, Z and
B where B : X × Y → Z becomes a bounded bilinear map.

The basic ones are:

(1) BX = B : X × K → X, B(x, λ) = λx.

(2) DX = D : X × X∗ → K, D(x, x∗) = 〈x, x∗〉.
Note that L0

B(X) = L0(X) and L0
D(X) = L0

weak(X).
Natural generalizations of (1) and (2) are the following: For any other Banach space
Y one has

(3) πY : X × Y → X⊗̂Y, πY (x, y) = x ⊗ y.

(4) ÕY : X × L(X, Y ) → Y, ÕY (x, T ) = T (x).

In the case of dual spaces X∗ we have also

(5) D1,X = D1 : X∗ × X → K, D1(x∗, x) = 〈x, x∗〉.
Note that L0

D1
(X∗) = L0

weak∗(X).
A generalization of (5) correspond to the case X = L(Y, Z) which plays an impor-
tant role in what follows. In this case we denote by

(6) OY,Z : L(Y, Z)× Y → Z, OY,Z(T, y) = T (y).

In the particular case Y = Z one can also consider,

(7) CE : L(E, E)× L(E, E)→ L(E, E), CE(T, S) = TS.

Actually (7) is just the product on a Banach algebra A:

(8) Pr : A × A → A, Pr(a, b) = ab.

Given a bounded bilinear map B : X × Y → Z, we can define the “adjoint”
B∗ : X × Z∗ → Y ∗ by the formula

〈y,B∗(x, z∗)〉 = 〈B(x, y), z∗〉, for every x ∈ X, y ∈ Y and z∗ ∈ X∗.

Note that

B∗ = D, (πY )∗ = ÕY ∗ and (OY,Z)∗(T, z∗) = OZ∗ ,Y ∗(T ∗, z∗).

Definition 2. We write Lp
B(X) for the space of functions f in L0

B(X) such
that

‖f‖Lp
B(X) = sup{‖B(f, y)‖Lp(Z) : ‖y‖ = 1} < ∞.

Clearly for f, g ∈ Lp
B(X) and λ ∈ K we have that
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(1) ‖f + g‖Lp
B(X) ≤ ‖f‖Lp

B(X) + ‖g‖Lp
B(X),

(2) ‖λf‖Lp
B(X) = |λ|‖f‖Lp

B(X),
(3) If f ≡ 0 then ‖f‖Lp

B(X) = 0,

but in general the ‖f‖Lp
B(X) = 0 does not imply f = 0 a.e. (It suffices to take

B such that there exists x �= 0 for which B(x, y) = 0 for all y ∈ Y , and select
f = x1Ω).

Observe that Lp(X) ⊂ Lp
B(X) for any bounded bilinear map B. Also one has

Lp
B(X) = Lp(X), Lp

D(X) = Lp
weak(X), Lp

D1
(X∗) = Lp

weak∗(X
∗).

Remark 1. Observe that simple functions, say s =
∑n

k=1 xk1Ak
, xk ∈ X ,and

pairwise disjoint sets Ak, belong to Lp
B(X). Actually

‖s‖Lp
B(X) = sup{(

n∑
k=1

‖B(xk, y)‖pµ(Ak))
1
p : ‖y‖ = 1}

A simple duality argument gives

‖s‖Lp
B(X) = sup{‖

n∑
k=1

B∗(xk, z
∗
k)µ(Ak)

1
p ‖ : (

n∑
k=1

‖z∗k‖p′)
1
p′ = 1}.

Definition 3. A function f ∈ Lp
B(X) is said to belong to Lp

B(X) if there exists
a sequence of simple functions (sn)n ∈ S(X) such that

(1) (sn)n converges to f a.e.,
(2) (sn)n converges to f in the norm ‖ · ‖Lp

B(X).

For f ∈ Lp
B(X) we write ‖f‖Lp

B(X) instead of ‖f‖Lp
B(X). Clearly one has that

‖f‖Lp
B(X) = lim

n→∞ ‖sn‖Lp
B(X).

Remark 2. Let Ω = [0, 1] with the Lebesgue measure. Let f =
∑∞

k=1 2kxk1Ik

where xk ∈ X and Ik = (2−k, 2−k+1] for k ∈ N. It is elementary to see that

f ∈ Lp
B(X) if and only if sup

‖y‖=1

∞∑
k=1

‖B(xk, y)‖p < ∞.

From this it follows that if limN→∞ sup‖y‖=1

∑∞
k=N ‖B(xk, y)‖p = 0 then f ∈

Lp
B(X).

Remark 3. Observe that Lp(X) ⊆ Lp
B(X) for any B and Lp

B(X) = Lp
B(X) =

Lp(X).
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Also Lp
D(X) = P p(X) (see [9], page 54 for the case p = 1), which shows that

Lp
B(X) � Lp

B(X) (see [6] page 53, for the case B = D).
As expected the bilinear map B defines the smallest space in the scale {Lp

B(X) :
B bilinear and bounded }. One might expect the space of Pettis p-integrable func-
tions, Lp

D(X), to be the biggest in the scale. We shall now see that the inclusion
Lp
B(X) ⊂ P p(X) holds true only among certain class of bilinear maps.
Given x ∈ X and y ∈ Y we shall be denoting by Bx ∈ L(Y, Z) and By ∈

L(X, Z) the corresponding linear operators

Bx(y) = B(x, y) and By(x) = B(x, y).

Definition 4. Let Y and Z be Banach spaces and B : X × Y → Z be a
bounded bilinear map. We shall say that the triple (Y, Z,B) is admissible for X if
the map x → Bx is injective from X → L(Y, Z), i.e. B(x, y) = 0 for all y ∈ Y

implies x = 0.
Notice that if (Y, Z,B) is admissible for X if and only if (Z∗, Y ∗,B∗) is.
It is elementary to see that examples in (1)-(7) are admissible triples. In the

example (8) the admissibility condition becomes “no zero divisors” and holds true
for Banach algebras with identity or with bounded approximation of the identity.

Definition 5. Let Y and Z be Banach spaces and let B : X × Y → Z be a
bounded bilinear map. X is said to be (Y, Z,B)-normed (or normed by B) if there
exists C > 0 such that for all x ∈ X

‖x‖ ≤ C‖Bx‖.
This simply means X can be understood as a subspace of L(Y, Z) and that

|||x||| = ‖Bx‖ defines an equivalent norm on X .

Remark 4. Observe that
(i) If X is (Y, Z,B)-normed then (Y, Z,B) is an admissible triple.
(ii) X is (Y, Z,B)-normed if and only if it is (Z∗, Y ∗,B∗)-normed.

Remark 5. Let X be (Y, Z,B)-normed and f ∈ Lp
B(X). If we consider the

function
f̃ : Ω → L(Y, Z), f̃(w) = Bf(w).

then f̃ belongs to Lp
OY,Z

(L(Y, Z)). Moreover

‖f̃‖Lp
OY,Z

(L(Y,Z)) = ‖f‖Lp
B(X).

Proposition 1. Let X, Y and Z be Banach spaces and let B : X ×Y → Z be
a bounded bilinear map. The following are equivalent:
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(1) X is (Y, Z,B)-normed.
(2) There exists a constant k > 0 such that for each x ∗ ∈ X∗ there exists a

functional ϕx∗ ∈ L(Y, Z)∗ verifying ‖ϕx∗‖ ≤ k‖x∗‖ and
〈x, x∗〉 = ϕx∗(Bx) for all x ∈ X.

Proof. Assume that X is (Y, Z,B)-normed and denote by X̂ = {Bx : x ∈
X} ⊆ L(Y, Z). By assumption X̂ is a closed subspace of L(Y, Z). Given x∗ ∈ X∗

the map Bx → 〈x, x∗〉 defines bounded functional in (X̂)∗. Now, by the Hahn-
Banach theorem there is an extension ϕx∗ to (L(Y, Z))∗ such that ‖ϕx∗‖ = ‖x∗‖.

The converse is immediate.

Of course, given a Banach space X there are many triples (Y, Z,B) for which
X is (Y, Z,B)-normed. In particular the ones considered in the examples (1)-(7).

However it is also easy to produce examples of admissible triples which are not
(Y, Z,B)-normed:

Example 1. Let X = �p for 1 ≤ p < 2, Y = �2, Z = �1 and B : �p × �2 → �1

given by
B((αn)n, (βn)n) = (αnβn)n.

Then �p is not (Y, Z, B)-normed.

Theorem 1. Let X, Y and Z be Banach spaces and let B : X × Y → Z be a
bounded bilinear map. The following are equivalent:

(1) X is (Y, Z,B)-normed.
(2) The inclusion i : Lp

B(X) → P p(X) is continuous for all 1 ≤ p < ∞.
(3) The inclusion i : Lp

B(X) → P p(X) is continuous for some 1 ≤ p < ∞.

Proof.
(1)⇒(2) Let 1 ≤ p < ∞ and let s =

∑n
k=1 xk1Ak

∈ S(X). Using that X

is (Y, Z,B)-normed there exists a constant C > 0 such that ‖x‖ ≤ C‖Bx‖ for all
x ∈ X . Let us write

‖s‖Pp(X) = sup


(

n∑
k=1

|〈xk, x
∗〉|pµ(Ak)

) 1
p

: ‖x∗‖ = 1


= sup

{
|〈

n∑
k=1

xkµ(Ak)
1
p αk, x∗〉| : ‖x∗‖ = 1, ‖α‖�p′ = 1

}

≤ sup

{
‖

n∑
k=1

xkµ(Ak)
1
p αk‖‖x∗‖ : ‖x∗‖ = 1, ‖α‖�p′ = 1

}
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≤ C sup

‖B n∑
k=1

xkµ(Ak)
1
p αk

‖ : ‖α‖�p′ = 1


= C sup

{
‖B
(

n∑
k=1

αkxkµ(Ak)
1
p , y

)
‖ : ‖α‖�p′ = 1, ‖y‖ = 1

}

≤ C sup

{
n∑

k=1

‖B(xkµ(Ak)
1
p , y)‖ |αk| : ‖α‖�p′ = 1, ‖y‖ = 1

}
= C‖s‖Lp

B(X).

Now if we take a function f ∈ Lp
B(X) then there exists (sn)n ∈ S(X) convergent

to f a.e and in the norm ‖ · ‖L
p
B(X). Since (|〈sn, x∗〉|p)n converges to (|〈f, x∗〉|p)

a.e. , Fatou’s Lemma implies that

‖f‖p
Pp(X) = sup

{∫
Ω

lim
n

|〈sn(w), x∗〉|pdµ : ‖x∗‖ = 1
}

≤ sup
{

lim inf
n

∫
Ω
|〈sn(w), x∗〉|pdµ : ‖x∗‖ = 1

}
≤ lim inf

n
‖sn‖p

Pp(X)

≤ Cp lim inf
n

‖sn‖p
Lp
B(X)

≤ Cp‖f‖p
Lp
B(X).

(2)⇒(3) Obvious.
(3)⇒(1) Assume (3), fix x ∈ X and consider the simple function

fx: Ω → X

w �→ xµ(Ω)−
1
p 1Ω(w)

Since ‖fx‖Pp(X) = ‖x‖ and ‖fx‖Lp
B(X) = ‖Bx‖ one gets (1).

Proposition 2. Let X be a (Y, Z,B)-normed space and f ∈ L1
B(X). For each

E ∈ Σ there exists a unique xE ∈ X such that for any y ∈ Y

B(xE , y) =
∫

E
B(f(w), y)dµ.

The value xE = (B)
∫
E fdµ is called the B-integral of f over E .

Proof. Note that the uniqueness follows from the bilinearity of B and the
admissibility of the triple.
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To show the existence, observe that if f ∈ L1(X) then xE can be taken the
Bochner integral of f over E ,

∫
E fdµ, using that By ∈ L(X, Z) and By(xE) =∫

E By(f)dµ for any y ∈ Y .
Now, if f ∈ L1

B(X) and (sn)n is the sequence of simple functions of the
definition then we have∫

E

B(f(w), y)dµ = lim
n

B(xn,E , y),

for E ∈ Σ and y ∈ Y where xn,E =
∫
E sndµ.

The fact that X is (Y, Z,B)-normed implies that there exists limn xn,E ∈ X ,
say xE. Indeed,

‖xn,E − xm,E‖ ≤ C sup{‖Bxn,E−xm,E
(y)‖ : ‖y‖ = 1}

≤ C sup{‖B(sn − sm, y)‖L1(Z) : ‖y‖ = 1}
≤ C‖sn − sm‖L1

B(X).

Finally we have
∫
E B(f(w), y)dµ=limn B(xn,E , y)=B(limn xn,E , y)=B(xE, y).

Remark 6. If X be (Y, Z, B)-normed space and f ∈ L1
B(X) then

xE = (B)
∫

E
fdµ = (P )

∫
E

fdµ

for any E ∈ Σ where (P )
∫
E fdµ(w) stands for the Pettis integral over E .

We now will see more concrete examples of spaces and bilinear maps where the
theory can give nice applications.

Example 2. (Hölder’s bilinear map). Let (Ω1, η) be a σ-finite measure space,
let 1 ≤ p1, p2, p3 ≤ ∞ and 1

p3
= 1

p1
+ 1

p2
and consider

Hp1,p2 : Lp1(η)× Lp2(η) → Lp3(η), (f, g) → fg.

It is clear that Lp1(η) is (Lp2(η), Lp3(η),Hp1,p2)-normed.
In particular for Ω1 = N with the counting measure, one has for p = p3:

Proposition 3. Let 1 ≤ p1 < ∞, 1 ≤ p2 ≤ ∞, 1
p3

= 1
p1

+ 1
p2
and Hp1,p2 :

�p1 × �p2 → �p3 . If f = (fn) ∈ Lp3

Hp1,p2
(�p1) then

‖f‖Lp3
Hp1,p2

(�p1) = ‖(fn)‖�p1(Lp3).
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Proof. Note that

‖f‖Lp3
Hp1,p2

(�p1) = sup

{(∫
Ω
‖(fn(w)βn)n‖p3

�p3
dµ

) 1
p3

: ‖(βn)n‖�p2
= 1

}

= sup


( ∞∑

n=1

(‖fn‖Lp3(µ)|βn|)p3

) 1
p3

: ‖(βn)n‖�p2
= 1


= ‖(‖fn‖Lp3 )n‖�p1

= ‖(fn)n‖�p1(Lp3(µ))

Example 3. (Young’s bilinear map). Let G be locally compact abelian group,
1 ≤ p1, p2 ≤ ∞ and 1/p1 + 1/p2 ≥ 1. Let 1 ≤ p3 ≤ ∞ with 1

p3
= 1

p1
+ 1

p2
− 1

and consider

Yp1,p2 : Lp1(G)× Lp2(G) → Lp3(G), (f, g) → f ∗ g.

Proposition 4.

(1) Lp(R) is (L1(R), Lp(R),Yp,1)-normed for any 1 ≤ p < ∞.
(2) (L2(R), L2(R),Y1,2) is an admissible triple for L 1(R) but L1(R) is not

(L2(R), L2(R),Y1,2)-normed.

Proof.

(1) Since L1(R) has a bounded approximation of the identity then

‖f‖p = sup{‖f ∗ g‖p : ‖g‖1 = 1} = sup{‖Yp,1(f, g)‖p : ‖g‖1 = 1}.

(2) Note that

sup{‖f ∗ g‖2 : ‖g‖2 = 1} = sup{‖Y1,2(f, g)‖p : ‖g‖2 = 1} = ‖f̂‖∞
which is not equivalent to ‖f‖1.

In particular for G = R with the Lebesgue measure, the norm in the spaces
Lp
Yp1,p2

(Lp1) can be easily described in some cases.

Proposition 5. Let 1 ≤ p1 < ∞.
(1) Lp

Yp1,1
(Lp1(R)) = Lp(Lp1(R)) for any 1 ≤ p < ∞.

Moreover ‖f‖Lp
Yp1,1

(Lp1(R)) = ‖f‖Lp(Lp1 (R)).
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(2) If f ∈ L0(L1(R)) then

‖f‖L2
Y1,2

(L1(R)) = sup
x∈R

(∫
Ω
|f̂w(x)|2dµ

) 1
2

.

Proof.
(1) Assume f ∈ L0

Yp1 ,1
(Lp1(R)) then, Proposition 4 and Theorem 1 give that f

is weakly measurable and, due to the separability of Lp1(R), we conclude that
f ∈ L0(Lp1(R)). Assuming that f : Ω → Lp1(R) is given by w �→ fw and
taking a bounded approximation of the identity in L1(R), say gn, one has

‖f‖Lp(Lp1(R)) =
(∫

Ω
‖fw‖p

Lp1(R)dµ

) 1
p

=
(∫

Ω
lim

n→∞ ‖fw ∗ gn‖p
Lp1(R)dµ

)1
p

≤ sup

{(∫
Ω
‖fw ∗ g‖p

Lp1(R)
dµ

) 1
p

: ‖g‖L1(R) = 1

}
= ‖f‖Lp

Yp1,1
(Lp1(R))

The other inclusion and inequality of norms are always true.
(2) Now if f ∈ L0(L1(R)) then f : Ω → L1(R) given by w �→ fw and we have

(using Plancherel’s identity and Fubini’s theorem) that

‖f‖L2
Y1,2

(L1(R))

= sup

{(∫
Ω
‖fw ∗ g‖2

L2(R)dµ

)1
2

: ‖g‖L2(R) = 1

}

= sup

{(∫
Ω
‖f̂w ∗ g‖2

L2(R)dµ

)1
2

: ‖g‖L2(R) = 1

}

= sup

{(∫
Ω

∫
R

|f̂w(x)ĝ(x)|2dxdµ

)1
2

: ‖ĝ‖L2(R) = 1

}

= sup

{(∫
R

(∫
Ω

|f̂w(x)|2dµ

)
|ĝ(x)|2dx

)1
2

: ‖ĝ‖L2(R) = 1

}

= sup

{(∫
R

(∫
Ω
|f̂w(x)|2dµ

)
|h(x)|dx

)1
2

: ‖h‖L1(R) = 1

}

= sup
x∈R

(∫
Ω
|f̂w(x)|2dµ

)1
2
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3. GIRARDI-WEIS

Let (T, ΣT , µ) and (S, ΣS, ν) be a σ-finite measure spaces. We denote by

B(X, Y ) = {T : X → Y : T linear and continuous},

Σfinite
S = {A ∈ ΣS : ν(S) < ∞},

Σfull
S = {A ∈ ΣS : ν(S \ A) = 0}.

Definition 6. We say that a kernel k : S × T → B(X, Y ) satisfies condition
(C0) provided that for each A ∈ Σfinite

S and each x ∈ X

(1) there is TA,x ∈ Σfull
T so that if t ∈ TA,x then the Bochner integral∫

A
k(s, t)xdν(s)

exists;
(2) the mapping

TA,x � t →
∫

A
k(t, s)xdν(s) ∈ Y

defines a measurable function from T into Y .

Definition 7. We say that a kernel k : S × T → B(X, Y ) satisfies condition
(C1) provided there is a constant C1 so that for each x ∈ X

(1) the map T × S � (t, s) → ‖k(t, s)‖Y ∈ R is product measurable;
(2) there is Sx ∈ Σfull

S so that∫
T
‖k(t, s)x‖Y dµ(t) ≤ C1‖x‖X

for each s ∈ Sx.

Definition 8. Let Z be a subspace of Y ∗. We say that a kernel k : S × T →
B(X, Y ) satisfies condition (C0∞), with respect to Z, provided there is a constant
C0∞ so that for each y∗ ∈ Z there is Ty∗ ∈ Σfull

T so that for each t ∈ Ty∗

(1) the mapping S � s → ‖k∗(t, s)y∗‖X∗ ∈ R is measurable;
(2)

∫
S ‖k∗(t, s)y∗‖X∗dν(s) ≤ C0∞‖y∗‖Y ∗ .

Definition 9. Let Z be a subspace of Y ∗. We say that a kernel k : S × T →
B(X, Y ) satisfies condition (C∞), with respect to Z, provided there is a constant
C∞ and T0 ∈ Σfull

T so that for each y∗ ∈ Z and t ∈ T0
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(1) the mapping S � s → k∗(t, s)y∗ ∈ X∗ is measurable;
(2)

∫
S ‖k∗(t, s)y∗‖X∗dν(s) ≤ C∞‖y∗‖Y ∗ .

4. INTEGRAL OPERATORS BY MEANS OF BILINEAR MAPS

Throughout this section (Ω, Σ, dµ(w)) and (Ω′, Σ′, dµ′(w′)) are σ-finite com-
plete measure spaces, X is a Banach space and k : Ω × Ω′ → X belong to
L0
B(Ω × Ω′, X) for some admissible triple (Y, Z,B) for X . Our objective is to
study the boundedness of the integral operator associated to B given by

TB
k : Lp(Ω′, Y ) → Lp(Ω, Z)

g �→ TB
k (g)(w) =

∫
Ω′

B(k(w, w′), g(w′))dµ′(w′)

As usual, denote by

kw = k(w, ·): Ω′ → X

w′ �→ k(w, w′)
kw′

= k(·, w′): Ω → X

w �→ k(w, w′).

We also write K(w) = kw and K′(w′) = kw′
.

We now introduce similar conditions to the ones appearing in [8] in our more
general setting.

Definition 10. We say that k : Ω × Ω′ → X satisfies the condition (CB
0 ) if

(1) kw ∈ L1
B(Ω′, X) a.e. in Ω, and

(2) for each y ∈ Y and E ∈ Σ′ the function

TB
k (y, E): Ω → Z

w �→
∫

E
B(k(w, w′), y)dµ′(w′)

belongs to L0(Ω, Z) .

Consider now the kernel associated to the bilinear map B

kB : Ω′ × Ω → L(Y, Z), given by kB(w′, w) = B(k(w, w′), ·).

Let us take A′ ∈ Σ′ such that µ′(A) < ∞ (that is A′ ∈ Σfinite
Ω′ in the notation of

Girardi-Weis) and consider y ∈ Y . Then using first part of the condition (CB
0 ) we

can find A ∈ Σ such that µ(Ω − A) = 0 (that is A ∈ Σ full
Ω ) verifying that for all

w ∈ A ∫
Ω′

B(kw(w′), y)dµ′(w′)
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exists. This means that ∫
A′

kB(w′, w)(y)dµ′(w′)

exists. The second condition of the definition of the condition (C0) is automatically
fulfilled by the second condition of (CB

0 ). Hence, if k verifies condition (CB
0 ) then

kB verifies the condition (C0).

Remark 7. If the kernel k satisfies (CB
0 ) then the operator

TB
k : S(Ω′, Y ) → L0(Ω, Z)

g �→ TB
k (g)(w) =

∫
Ω′

B(k(w, w′), g(w′))dµ′(w′)

is well defined.

Remark 8. If K ∈ L0(Ω, L1
B(Ω′, X)) then k satisfies (CB

0 ).

Definition 11. We say that k : Ω × Ω′ → X satisfies the condition (CB
1 ) if

(1) kω′ ∈ L1
B(Ω, X) a.e. in Ω′,

(2) there exists a constant CB
1 > 0 such that

µ′({ω′ ∈ Ω′ : ‖kω′‖L1
B(Ω,X) > CB

1 } = 0.

Remark 9. If K′ ∈ L∞(Ω′, L1
B(Ω, X)) then k satisfies (CB

1 ) with

CB
1 ≤ ‖K′‖L∞(Ω′,L1

B(Ω,X)).

Proposition 6. Let B : X×Y → Z bounded bilinear map and let k : Ω×Ω ′ →
X a kernel satisfying (CB

0 ). If k satisties (CB
1 ) then the integral operator

TB
k : S(Ω′, Y ) → L1(Ω, Z)

g �→ TB
k (g)(ω) =

∫
Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)

can be continuously extended to L1(Ω′, Y ) and with norm bounded by CB
1 .

Proof. Let g =
∑n

k=1 yk1Ek
. Then

TB
k (g)(w) =

n∑
k=1

∫
Ek

B(k(ω, ω′), yk)dµ′(w′)



2400 O. Blasco and J. M. Calabuig

Therefore∫
Ω
‖TB

k (g)(w)‖dµ(w) ≤
∫

Ω

n∑
k=1

∫
Ek

‖B(k(ω, ω′), yk)‖dµ′(w′)dµ(w)

=
n∑

k=1

‖yk‖
∫

Ek

(∫
Ω
‖B(k(ω, ω′),

yk

‖yk‖
)
‖dµ(w))dµ′(w′)

≤
n∑

k=1

‖yk‖
∫

Ek

‖kw′‖L1
B(Ω,X)dµ′(w′)

≤ CB
1

n∑
k=1

‖yk‖µ′(Ek)

Now extend by the density of the simple functions on L1(Ω′, Y ).
We can get similar sufficient conditions for the boundedness on vector-valued

Lp-spaces for p > 1.

Definition 12. Let 1 < p < ∞. We say that k : Ω×Ω′ → X satisfies (CB
p ) if

(1) kω′ ∈ Lp
B(Ω, X) a.e. in Ω′,

(2) w′ → ‖kw′‖Lp
B(Ω,X) belongs to Lp′(Ω′).

Remark 10. If K′ ∈ Lp′(Ω′, Lp
B(Ω, X)) then k satisfies (CB

p ).

Proposition 7. Let 1 < p < ∞ and B : X × Y → Z be a bounded bilinear
map. If k : Ω × Ω′ → X is a kernel satisfying (CB

0 ) and (CB
p ) then the integral

operator

TB
k : S(Ω′, Y ) → Lp(Ω, Z)

g �→ TB
k (g)(ω) =

∫
Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)

can be continuously extended to Lp(Ω′, Y ).

Proof. Let g =
∑n

k=1 yk1Ek
and TB

k (g)(w) =
∫
Ω′ B(k(ω, ω′), g(w′))dµ′(w′).

Using Minkowski’s inequality one gets Therefore

(
∫

Ω
‖TB

k (g)(w)‖pdµ(w))
1
p ≤

∫
Ω′

(∫
Ω
‖B(k(ω, ω′), g(w′)

)
‖pdµ(w))

1
p dµ′(w′)

≤
∫

Ω′
‖kω′‖L

p
B(Ω,X)‖g(w′)‖dµ′(w′)

≤
(∫

Ω′
‖kw′‖p′

Lp
B(Ω,X)

dµ(w′)
) 1

p′ ‖g‖Lp(Ω′,Y )
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Now extend by the density of the simple functions on Lp(Ω′, Y ).

Recall that B∗ denotes the adjoint B∗ : X×Z∗ → Y ∗ given by 〈y,B∗(x, z∗)〉 =
〈B(x, y), z∗〉. We write k̃ : Ω′ × Ω → X for the map k̃(w′, w) = k(w, w′).

Proposition 8. Let B : X×Y → Z bounded bilinear map. If k : Ω×Ω ′ → X
satisfies (CB

0 ) and k̃ satisfies (CB∗
1 ) then the integral operator

TB
k : S(Ω′, Y ) → L∞(Ω, Z)

g �→ TB
k (g)(ω) =

∫
Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)

can be continuously extended to S(Ω ′, Y )
L∞(Ω′,Y ) with norm bounded by CB∗

1 .

Proof. Take g ∈ S(Ω′, Y ). The condition (C0
B) provides the measurability of

the function T B
k (g) : Ω → Z. Then, for those w ∈ Ω for which kw ∈ L1

B(Ω′, X),
we have that

‖TB
k (g)(w)‖ = sup

{∣∣∣∣∫
Ω′
〈B (k(w, w′), g(w′)

)
, z∗〉dµ′(w′)

∣∣∣∣ : ‖z∗‖ = 1
}

= sup
{∣∣∣∣∫

Ω′
〈g(w′),B∗(k(w, w′), z∗)〉dµ′(w′)

∣∣∣∣ : ‖z∗‖ = 1
}

≤ ‖g‖L∞(Ω′,Y )‖kw‖L1
B∗(Ω′,X).

Hence ‖TB
k (g)‖L∞(Ω′,Y ) ≤ CB∗

1 ‖g‖L∞(Ω′,Y ).
The boundedness of the operator in the case 1 < p < ∞ can also be deduced

now of the previous propositions by means of interpolation.

Lemma 1. (see [9], page 198). Let 1 < p < ∞ and let T : S(Ω′, Y ) →
L1(Ω, Z) + L∞(Ω, Z) be a linear map and there exist c1, c2 > 0 such that

‖T (g)‖L1(Ω′,Y ) ≤ c1‖g‖L1(Ω′,Y ) and ‖T (g)‖L∞(Ω′,Y ) ≤ c∞‖g‖L∞(Ω′,Y )

for all g ∈ S(Ω′, Y ). Then there exists a linear extension T : Lp(Ω′, Y ) →
Lp(Ω, Z) with norm bounded by c

1
p

1 c
1
p′∞.

Theorem 2. Let 1 < p < ∞, let B : X × Y → Z be a bounded bilinear map.
If k : Ω × Ω′ → X is a kernel satisfying (CB

0 ), k satisfies (CB
1 ) and k̃ satisfies

(CB∗
1 ) then the integral operator

TB
k : S(Ω′, Y ) → L∞(Ω, Z)

g �→ TB
k (g)(ω) =

∫
Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)
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can be continuously extended to T B
k : Lp(Ω′, Y ) → Lp(Ω, Z) with norm bounded

by (CB
1 )

1
p (CB∗

1 )
1
p′ .

We finish this sectionmentioning some results about the extension of the operator
to L∞(Y )) whose proofs can be obtained from the obvious modifications in the
operator-valued case (see [8]).

Theorem 3. Let B : X×Y → Z be a bounded bilinear map. If k : Ω×Ω ′ → X

satisfies (CB
0 ) and k̃ satisfies (CB∗

1 ) then the integral operator

TB
k : S(Ω′, Y ) → L∞(Ω, Z)

g �→ TB
k (g)(ω) =

∫
Ω′

B(k(ω, ω′), g(ω′))dµ′(w′)

can be continuously extended to S B
k : L∞(Ω′, Y ) → L∞

weak∗(Ω, Z∗∗) given by

〈z∗, SB
k (g)(w)〉 =

∫
Ω′
〈B(k(w, w′), g(w′)), z∗〉dµ′(w′)

for each z∗ ∈ Z∗, w ∈ Ω and g ∈ L∞(Ω′, Y ) with norm bounded by CB∗
1 .

Theorem 4. Let B : X × Y → Z be a bounded bilinear map. Assume that
k : Ω×Ω′ → X satisfies (CB

0 ) and k̃ satisfies (CB∗
1 ) and that Z does not contain a

copy of c0. Then TB
k has a continuous extension to T B

k : L∞(Ω′, Y ) → L∞(Ω, Z).
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