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NONLINEAR SIMULTANEOUS APPROXIMATION IN COMPLETE
LATTICE BANACH SPACES

Donghui Fang, Xianfa Luo and Chong Li*

Abstract. This paper is concerned with the problem of nonlinear best simul-
taneous approximations in conditional complete lattice Banach spaces with a
strong unit. Characterization results of the best simultaneous approximation
from simultaneous suns and suns are established. A counterexample, to which
the characterization theorem for convex sets due to Mohebi (Numer. Funct.
Anal. Optim., 25 (2004), 685-705) fails, is provided and a corrected version
of the theorem is presented.

1. INTRODUCTION

The problem of best simultaneous approximations from convex sets (in par-
ticular, subspaces) in normed linear spaces has been studied extensively, see, for
example, [1, 6, 9, 15, 19] and references herein. Extensions of the study to real
locally convex spaces are done in [8, 14]. These works are mainly on the charac-
terization and/or uniqueness of best simultaneous approximations.

Recent interests are focused on the study of the best simultaneous approximation
in conditional complete lattice Banach spaces with strong unit 1, see [16-18]. In
particular, the following characterization result, which plays key roles in [18], was
proved by Mohebi in [16, Theorem 3.1].

Theorem M. Let W be a closed convex subset of X , S be a bounded set
in X with S ∩ W = ∅, and w0 ∈ W . Then w0 ∈ PW (S) if and only if there
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exists f ∈ X ∗ with ‖f‖ = 1 such that f(sup S − w0) = sups∈S ‖s − w0‖ and
f(w0 − w) ≥ 0 for each w ∈ W .

Unfortunately, Theorem M is not true in general. In the present paper, we first
present an example in section 2 to which Theorem M fails; and then continue to
study the problem of the simultaneous approximation in conditional complete lattice
Banach spaces with strong unit 1 but from nonlinear sets (not necessary convex).
Characterization results of the best simultaneous approximation from simultaneous
suns and suns are established. As a corollary, a corrected version of Theorem M is
obtained. In addition, Some examples of nonconvex simultaneous suns are provided.

2. PRELIMINARIES

Let X be a normed linear space with the dual X ∗. For a nonempty subset W
of X and a nonempty bounded set S in X , Define

d(S, W ) = inf
w∈W

sup
s∈S

‖s − w‖

and PW (S) = {w ∈ W : sup
s∈S

‖s − w‖ = d(S, W )}.

Each element in PW (S) (if PW (S) �= ∅) is called a best simultaneous approximation
to S from W .

For a set A in X∗, let extA stand for the set of all extreme points of A.
Furthermore, we use B(X) to denote the closed unit ball of X . Recall that the
supporting mapping σ(·) on X is defined by

σ(x) = {f ∈ B(X∗) : f(x) = ‖x‖} for each x ∈ X.

It is known (cf. [2]) that σ(x) is a nonempty weak∗ compact convex subset of
B(X∗) for each x ∈ X . We then recall some notions concerning vector lattices.

Definition 2.1. A lattice (L,≤) is said to be conditionally complete if it
satisfies one of the following equivalent conditions:

(1) Every non-empty lower bounded set admits an infimum.
(2) Every non-empty upper bounded set admits an supremum.
(3) There exists a complete lattice L̄ := L ∪ {⊥,
}, which we call the minimal

completion of L, with bottom ⊥ and top element
, such that L is a sublattice
of L̄, inf L = ⊥ and sup L = 
.

Definition 2.2. A conditionally complete lattice Banach space (resp. normed
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linear lattice) X is a (real) Banach space (resp. normed linear space) which is also
a conditionally complete lattice such that

(2.1) |x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖ for any x, y ∈ X,

where |x| := sup{x,−x} for each x ∈ X .

Clearly, a conditional complete lattice Banach space is a normed linear lattice.
Recall that an element, denoted by 1, of a normed linear lattice X is called a strong
unit if ‖1‖ = 1 and x ≤ 1 for each x ∈ B(X). Throughout the remainder of the
paper, we always assume that X is a conditionally complete lattice Banach space
with strong unit 1. Then by [7, Lemma 1, p. 18] one has that

(2.2) ‖|x|‖ = ‖x‖ for each x ∈ X,

and the norm on X is monotonic, that is,

(2.3) −y ≤ x ≤ y =⇒ ‖x‖ ≤ ‖y‖ for all x, y ∈ X.

In particular,

(2.4) x ∈ B(X) ⇐⇒ −1 ≤ x ≤ 1.

We end this section with an example to which Theorem M fails.

Example 2.1. Let X = l2∞ be defined by

l2∞ = {x = (t1, t2) : t1, t2 ∈ R}

with the natural order and the norm defined by

‖x‖ = max{|t1|, |t2|} for each x = (t1, t2) ∈ l2∞.

Then X is a conditional complete lattice Banach space with the strong unit 1 =
(1, 1). Let W = {(t, t − 1) : t ∈ [0, 1]}. Then W is a closed convex subset of X .
Take S = {(t,−t) : t ∈ [−1, 0]} and w0 = ( 1

2 ,−1
2). Then S is a bounded subset of

X and S∩W = ∅. Furthermore, one has that w0 ∈ PW (S) and sup S = (0, 1). Let
f = (f1, f2) ∈ X∗ be such that ‖f‖ = 1 and f(supS − w0) = sups∈S ‖s − w0‖.
Then −1

2f1 + 3
2f2 = 3

2 and |f1| + |f2| = 1. It follows that f = (0, 1). However,
f(w0 − w̄) = −1

2 < 0, where w̄ = (1, 0). Therefore, Theorem M fails.

3. CHARACTERIZATIONS OF SIMULTANEOUS APPROXIMATIONS

We begin with the following key lemma.
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Lemma 3.1. Let S be a bounded subset of X . Then

(3.1) max{‖ supS‖, ‖ inf S‖} = sup
s∈S

‖s‖.

Proof. Set ‖S‖ = sups∈S ‖s‖. Since
∥∥∥ s
‖S‖

∥∥∥ ≤ 1 for each s ∈ S, it follows
from (2.4) that −‖S‖1 ≤ s ≤ ‖S‖1 and

−‖S‖1 ≤ inf S ≤ sup S ≤ ‖S‖1.

This together with (2.3) implies that

(3.2) max{‖ supS‖, ‖ inf S‖} ≤ ‖S‖.
For the opposite inequality, we note that, for each s ∈ S,

(3.3)
− sup{| supS|, | inf S|} ≤ −| inf S| ≤ inf S ≤ s

≤ sup S ≤ | supS| ≤ sup{| supS|, | inf S|}.
Applying (3.2) (with {| supS|, | inf S|} in place of S) and (2.2), we have that

‖ sup{| supS|, | inf S|}‖ ≤ max{‖ supS‖, ‖ inf S‖}.

It follows from (2.3) and (3.3) that

‖s‖ ≤ ‖ sup{| supS|, | inf S|}‖ ≤ max{‖ supS‖, ‖ inf S‖}.
Consequently,

‖S‖ = sup
s∈S

‖s‖ ≤ max{‖ supS‖, ‖ inf S‖}.

The proof is complete.

The following proposition describes the equivalence of the best simultaneous
approximations to a bounded set S and to {sup S, inf S}.

Proposition 3.1. Let W be a subset of X and S a bounded set in X . Then
w0 ∈ W is a best simultaneous approximation to S from W if and only if w 0 is a
best simultaneous approximation to {sup S, inf S} from W .

Proof. Let w ∈ W . Then, by Lemma 3.1, we have that

sup
s∈S

‖s−w‖ = max{‖ sup(S−w)‖, inf ‖(S−w)‖} = max{‖ supS−w‖, ‖ inf S−w‖}.

Thus the conclusion follows.
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Below we define the notions of suns and simultaneous suns. For a bounded set
S in X , w0 ∈ X and λ ≥ 0, we set

(3.4) Sλ = w0 + λ(S − w0).

Definition 3.1. Let W be a nonempty subset of X . W is called

(1) a sun if, for each w0 ∈ W and x ∈ X , w0 ∈ PW (x) implies that w0 ∈
PW (w0 + λ(x− w0)) for all λ > 0.

(2) a simultaneous sun if, for each w0 ∈ W and each bounded set S in X ,
w0 ∈ PW (S) implies w0 ∈ PW (Sλ) for all λ > 0.

The notion of suns introduced by Efimove and Stechkin in [5] plays an important
role in nonlinear approximation theory and have been investigated extensively, see,
for example, [3-5, 23]; while the notion of simultaneous suns was introduced in [21,
22]. Extensions to the case of other various simultaneous approximation problems
can be found in [10-14, 23]. Clearly, a simultaneous sun is a sun. As is well known
(cf. [21-23]), any convex subset is a simultaneous sun. Below we present examples
of nonconvex simultaneous suns.

Example 3.1. Recall from [23] that a subset W of X is called a

(a) quasi-convex set if for each pair of w1, w2 ∈ W , [w1, w2] ∩ W is dense in
[w1, w2].

(b) pseudo-convex set if there exist a convex set D and a closed set C in X such
that W = D \ C.

Let W be a quasi-convex set or pseudo-convex subset of X . Then W is a simulta-
neous sun.

In fact, let S be a bounded subset of X . Note that, if w0 ∈ PW (S), then, for
each λ ∈ [0, 1] and w ∈ W ,

sups∈Sλ
‖s − w0‖ = sups∈S ‖s − w0‖ − (1− λ) sups∈S ‖s − w0‖

≤ sups∈S ‖s − w‖ − (1 − λ) sups∈S ‖s − w0‖
≤ sups∈Sλ

‖s − w‖.
Hence

(3.5) w0 ∈ PW (S) =⇒ w0 ∈ PW (Sλ) for each λ ∈ [0, 1].

Thus we need only prove that

w0 ∈ PW (S) =⇒ w0 ∈ PW (Sλ) for each λ > 1.
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For this end, let λ > 1, w0 ∈ PW (S) and w ∈ W \{w0}. Set vλ := (1− 1
λ)w0+ 1

λw.
It suffices to show that

(3.6) sup
s∈Sλ

‖s − w0‖ ≤ sup
s∈Sλ

‖s − w‖;

or equivalently,

(3.7) sup
s∈S

‖s − w0‖ ≤ sup
s∈S

‖s − vλ‖.

In the case whenW is a quasi-convex set, there exists a sequence {wn} ⊆ [w0, w]∩
W such that limn→∞ ‖wn − vλ‖ = 0 because vλ ∈ [w0, w] and [w0, w] ∩ W is
dense in [w0, w] by definition. Consequently, sups∈S ‖s−w0‖ ≤ sups∈S ‖s−wn‖
for each n. Passing to the limit, one sees that (3.7) holds. In the case when W is
a pseudo-convex set, since W = D \C for some convex set D and closed set C in
X , one has that w0 ∈ D and w0 /∈ C. By the closedness of C, there exists δ > 0
such that B(w0, δ)∩C = ∅. Hence, (w0, w)∩B(w0, δ) ⊆ W because D is convex.
Set λ0 = max{1, ‖w−w0‖/δ}. If λ > λ0, then ‖vλ−w0‖ = 1

λ‖w−w0‖ < δ, and
so vλ ∈ (w0, w) ∩ B(w0, δ) ⊆ W . This together with the fact that w0 ∈ PW (S)
implies that (3.7) holds. Consequently, (3.6) holds in either cases. From this we get
that

(3.8) w0 ∈ P[w0,w](Sλ) if λ > λ0.

If λ ∈ (1, λ0], we take λ1 > λ0. Then λ
λ1

∈ (0, 1) and w0 ∈ P[w0,w](Sλ1) by (3.8).
Since

Sλ = w0 + λ(S − w0) = w0 +
λ

λ1
(Sλ1 − w0),

we apply (3.5) to Sλ1 , [w0, w] and λ
λ1
in place of S, W and λ to get that w0 ∈

P[w0,w](Sλ). This implies that (3.6) holds.

The following proposition regarding characterizations of a sun in Banach spaces
is well known, see for example [3, 4, 23]. Recall that, for a subset W and x ∈ X ,
w0 ∈ W is called a local best approximation to x from W if there exists δ > 0
such that w0 ∈ PW∩B(w0,δ)(x).

Proposition 3.2. Let W be a subset of X . Then the following statements are
equivalent.

(i) W is a sun in X .
(ii) For each x in X and w0 ∈ W , w0 ∈ PW (x) if and only if

max
f∈σ(x−w0)

f(w0 − w) ≥ 0 for each w ∈ W.
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(iii) For each x in X and w0 ∈ W , w0 ∈ PW (x) if and only if

max
f∈ext(σ(x−w0))

f(w0 − w) ≥ 0 for each w ∈ W.

(iv) For each x in X and w0 ∈ W , w0 ∈ PW (x) if and only if w0 is a local best
approximation to x from W .

For convenience, we define for a bounded subset S of X

(3.9) MS = {f ∈ B(X∗) : f(supS) = sup
s∈S

‖s‖ or f(inf S) = sup
s∈S

‖s‖}

and
ES = MS ∩ extB(X∗).

Note that MS is weak∗ compact in B(X∗). Since, by [20, Corollary 1.8, p. 59],
σ(x) is an extremal subset of B(X∗), it follows from [20, Lemma 1.7, p. 58] that
ext σ(x) = σ(x)∩ extB(X∗) for each x ∈ X . Consequently, in view of (3.1), one
has that

(3.10) ES =




ext σ(supS) ∪ ext σ(inf S) if ‖ sup S‖ = ‖ inf S‖,
ext σ(supS) if ‖ sup S‖ > ‖ inf S‖,
ext σ(inf S) if ‖ sup S‖ < ‖ inf S‖.

Theorem 3.1 below provides the characterization results of a simultaneous sun
in X and of the best simultaneous approximation from a simultaneous sun. To
prove this theorem, we need two lemmas, which will also be used in the proof of
Theorem 3.2.

Lemma 3.2. Let w0, w ∈ X and S be a bounded subset of X . Then

(3.11) max
f∈MS−w0

f(w0 − w) ≥ 0 ⇐⇒ max
f∈ES−w0

f(w0 − w) ≥ 0.

Proof. The right-hand side of (3.11) implies clearly the left-hand one of (3.11)
since ES−w0 ⊆ MS−w0 . To verify the opposite implication, suppose that the left-
hand side of (3.11) holds. Then there exists f ∈ MS−w0 such that f(w0−w) ≥ 0. In
view of (3.9), f(sup S−w0) = sups∈S ‖s−w0‖ or f(inf S−w0) = sups∈S ‖s−w0‖.
Without loss of generality, we may assume that f(supS −w0) = sups∈S ‖s−w0‖.
It follows from (3.1) that ‖ supS − w0‖ = sups∈S ‖s − w0‖ and

f(sup S − w0) = ‖ supS − w0‖.
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Hence, f ∈ σ(sup S −w0) and Krein-Milman Theorem is applicable to concluding
that there exists f ′ ∈ ext σ(supS − w0) such that

f ′(w0 − w) = max{h(w0 − w) : h ∈ σ(supS − w0)} ≥ f(w0 − w) ≥ 0.

By (3.10), one sees that the right-hand side of (3.11) holds.

Lemma 3.3. Let W be a subset of X and S a bounded subset of X . Suppose
that w0 ∈ W and that

(3.12) max
f∈MS−w0

f(w0 − w) ≥ 0 for each w ∈ W.

Then w0 ∈ PW (S).

Proof. Let w ∈ W be arbitrary. Then there is f ∈ MS−w0 such that
f(w0 − w) ≥ 0. Without loss of generality, we may assume that f(sup S − w0) =
sups∈S ‖s − w0‖. Thus,
sup
s∈S

‖s−w0‖=f(sup S−w)+f(w−w0)≤f(sup S−w)≤‖ supS−w‖≤sup
s∈S

‖s−w‖,

where the last inequality is because of (3.1). This shows that w0 ∈ PW (S).

Theorem 3.1. Let W be a subset of X . Then the following statements are
equivalent.

(i) W is a simultaneous sun in X .
(ii) For each bounded set S in X and w 0 ∈ W , w0 ∈ PW (S) if and only if

(3.12) holds.
(iii) For each bounded set S in X and w 0 ∈ W , w0 ∈ PW (S) if and only if

(3.13) max
f∈ES−w0

f(w0 − w) ≥ 0 for each w ∈ W.

Proof. (i)=⇒(ii). Suppose that (i) holds. By Lemma 3.3, if (3.12) holds, then
w0 ∈ PW (S). Hence we only need to show that (3.12) holds if w0 ∈ PW (S). To
do this, suppose on the contrary that (3.12) doesn’t hold. Then there exists w′ ∈ W

such that
max{f(w0 − w′) : f ∈ MS−w0} = −ε < 0.

Let U := {f ∈ B(X∗) : f(w0 − w′) < − ε
2}. Then U is an open set containing

MS−w0 . Set Ŝ := {sup S, inf S} and let Ŝλ be defined by (3.4) with Ŝ in place of
S, that is,

Ŝλ = {w0 + λ(ŝ − w0) : ŝ ∈ Ŝ} for each λ > 0.
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Then, for each ŝλ = w0 + λ(ŝ − w0) ∈ Ŝλ,

(3.14)

sup
f∈U

f(ŝλ − w′) = sup
f∈U

f(λ(ŝ − w0) + w0 − w′)

≤ λ‖ŝ − w0|+ sup
f∈U

f(w0 − w′)

≤ sup
s∈Ŝλ

‖s − w0‖ − ε

2
.

On the other hand, sinceB(X ∗)\U is a compact set disjointing withMS−w0 , there
is ε1 > 0 such that

sup
f∈B(X∗)\U

f(ŝ − w0) = sup
s∈S

‖s − w0‖ − ε1 for each ŝ ∈ Ŝ.

Let λ > ‖w0−w′‖
ε1

+ ε
2ε1
. Then, for each ŝλ = w0 + λ(ŝ − w0) ∈ Ŝλ,

(3.15)

supf∈B(X∗)\U f(ŝλ − w′) = sup
f∈B(X∗)\U

[λf(ŝ− w0) + f(w0 − w′)]

≤ λ(sup
s∈S

‖s − w0‖ − ε1) + ‖w0 − w′‖

< sup
s∈Ŝλ

‖s − w0‖ − ε

2

because
sup
s∈Ŝλ

‖s − w0‖ = λ sup
s∈Ŝ

‖s − w0‖ = λ sup
s∈S

‖s − w0‖

thanks to (3.1). Combining (3.14) and (3.15) yields that

sup
s∈Ŝλ

‖s − w′‖ = sup
ŝλ∈Ŝλ

sup
f∈B(X∗)

f(sλ − w′) ≤ sup
s∈Ŝλ

‖s − w0‖ − ε

2
.

This means that w0 /∈ PW (Ŝλ). Since W is a simultaneous sun by (i), it follows
that w0 /∈ PW (Ŝ); hence w0 /∈ PW (S) by Proposition 3.1. Hence the implication
that w0 ∈ PW (S) implies (3.12) is proved and completes the proof of (i)=⇒(ii).

(ii)=⇒(iii). This results from Lemma 3.2.
(iii)=⇒(i). Suppose that (iii) holds and S is a bounded set in X . Let w0 ∈ W

be such that w0 ∈ PW (S). Then (3.13) holds by (iii). Let λ > 0 be arbitrary. It
suffices to verify that w0 ∈ PW (Sλ). For this end, note that

sup Sλ − w0 = λ(supS − w0) and inf Sλ − w0 = λ(inf S − w0).

We have that ESλ−w0 = ES−w0 . This together with (3.13) implies that

max
f∈ESλ−w0

f(w0 − w) ≥ 0 for each w ∈ W.
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Therefore, w0 ∈ PW (Sλ) by (iii). The proof is complete.

The following theorem gives characterizations of the best simultaneous approx-
imation from a sun.

Theorem 3.2. Let W be a sun in X and w0 ∈ W . Let S be a bounded subset
of X such that ‖ supS − w0‖ �= ‖ inf S − w0‖. Then w0 ∈ PW (S) if and only if
(3.12) holds.

Proof. By Lemma 3.3, we need only verify that w0 ∈ PW (S) implies that (3.12)
holds. To do this, we assume that w0 ∈ PW (S) and, without loss of generality,
that

(3.16) ‖ sup S − w0‖ > ‖ inf S − w0‖.
Then

‖ sup S − w0‖ ≤ max{‖ supS − w‖, ‖ inf S − w‖} for each w ∈ W.

Furthermore, there is δ > 0 such that

‖ sup S − w‖ > ‖ inf S − w‖ for each w ∈ B(w0, δ).

Consequently,

‖ supS − w0‖ ≤ ‖ sup S − w‖ for each w ∈ B(w0, δ)∩ W.

This means that w0 is a local best approximation to sup S from W . Since W is a
sun in X , it follows from Proposition 3.2 that w0 is a best approximation to sup S

from W and

(3.17) max{f(w0 − w) : f ∈ σ(supS − w0)} ≥ 0 for each w ∈ W.

In view of the definition of MS−w0 and (3.16), one has that

MS−w0 = σ(supS − w0).

This together with (3.17) implies that (3.12) holds.
The following corollaries are direct consequences of Theorem 3.2.

Corollary 3.1. Let W be a sun in X and w0 ∈ W . Let S be a bounded subset
of X such that

(3.18) ‖ sup S − w0‖ > ‖ inf S − w0‖.
Then the following statements are equivalent.
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(i) w0 ∈ PW (S).
(ii) w0 ∈ PW (sup S).
(iii) max{f(w0 − w) : f ∈ σ(supS − w0)} ≥ 0 for each w ∈ W .
(iv) max{f(w0 − w) : f ∈ ext(σ(supS − w0))} ≥ 0 for each w ∈ W .

Corollary 3.2. Let W be a sun in X and w0 ∈ W . Let S be a bounded subset
of X such that

(3.19) ‖ supS − w0‖ < ‖ inf S − w0‖.
Then the following statements are equivalent.

(i) w0 ∈ PW (S).
(ii) w0 ∈ PW (inf S).
(iii) max{f(w0 − w) : f ∈ σ(inf S − w0)} ≥ 0 for each w ∈ W .
(iv) max{f(w0 − w) : f ∈ ext(σ(inf S − w0))} ≥ 0 for each w ∈ W .

The following theorem is a corrected version of Theorem M.

Theorem 3.3. Let W be a convex subset of X and w0 ∈ W . Let S be a
bounded subset of X such that (3.18) (resp. (3.19)) holds. Then w 0 ∈ PW (S) if
and only if there exists f ∈ B(X ∗) such that f(sup S−w0) = ‖ supS−w0‖ (resp.
f(inf S − w0) = ‖ inf S − w0‖) and
(3.20) f(w0 − w) ≥ 0 for each w ∈ W.

Proof. Without loss of generality, we may assume that (3.18) holds. Since
W is a sun in X , Corollary 3.1 is applicable and so w0 ∈ PW (S) ⇐⇒ w0 ∈
PW (sup S). It follows from [3, Theorem 2.1, P.6] (see also [23, Theorem 4.3,
P.14]) that w0 ∈ PW (sup S) if and only if there exists f ∈ B(X∗) such that
f(sup S − w0) = ‖ supS − w0‖ and (3.20) hold. This completes the proof.

Corollary 3.3. Let W be a convex subset of X and W0 ⊆ W . Let S be
a bounded subset of X . Suppose that there exists w 0 ∈ PW (S) such that (3.18)
(resp. (3.19)) holds. Then W0 ⊆ PW (S) if and only if there exists f ∈ B(X ∗)
such that f(sup S − w̄) = ‖ supS − w̄‖ ( resp. f(inf S − w̄) = ‖ inf S − w̄‖) for
each w̄ ∈ W0 and

f(w̄ − w) ≥ 0 for each w̄ ∈ W0 and w ∈ W.

Proof. As in the proof of Theorem 3.3, we may assume that w0 ∈ PW (S) is
such that (3.18) holds. By Theorem 3.3, the sufficiency part is clear. Below we
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shall verify the necessity part. To do this, let W0 ⊆ PW (S) and w̄ ∈ W0. Since
w0 ∈ PW (S), it follows from Theorem 3.3 that there exists f ∈ B(X∗) such that

(3.21) f(sup S − w0) = ‖ supS − w0‖

and (3.20) hold. Then

f(sup S − w̄) = f(sup S − w0) + f(w0 − w̄) ≥ f(sup S − w0) = ‖ supS − w0‖.

Since w̄ ∈ PW (S), it follows from (3.18) and Lemma 3.1 that

f(sup S − w̄) ≤ ‖ supS − w̄‖ ≤ sup
s∈S

‖s − w̄‖ = sup
s∈S

‖s − w0‖ = ‖ supS − w0‖.

Hence
f(supS − w̄) = ‖ supS − w̄‖ = ‖ supS − w0‖.

Combining this with (3.21) and (3.20) implies that

f(w̄−w) = f(w̄−sup S)+f(supS−w0)+f(w0−w) = f(w0−w) ≥ 0 for each w ∈ W,

and completes the proof of the necessity part.
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